Theory exam in DD1352/DD2352 Algorithms (data structures) and complexity 2016-08-17 9.00-11.00

No aids. Write your answers directly on this form. Examiner: Viggo Kann, 08-7906292.

Bonus points from the academic year 2015/2016 can be used for this exam. For grade E, 13 points is needed for the course DD1352 and 12 points for DD2352. If you also pass the n

C. If you	would like	elow you will get D, and if you also pass the grade C question you will get e to take an oral exam next week to get A or B (after passing this written this box: \Box		
Name:		Social security number:		
the		following clauses true or false? Circle the correct answer! For every question aswer will give you 1 point, and a convincingly motivated answer will give		
a)	$n^2 \in \omega(n \log n).$			
	true	false		
	Motivat	ion:		
b)	The exp	ected time complexity of Random Quicksort is $O(n \log \log n)$.		
	true	false		
	Motivat	ion:		
c)	$EXPTIME \subset P$			
	true	false		
	Motivat	ion:		
d)	If the approximation algorithm A approximates a minimization problem within 4 and the optimal value of a certain problem instance is 400, we know that A cannot return a solution with value greater than 1600.			
	true	false		
	Motivat	ion:		

2. (3 p) A, B, C and D are decision problems. Suppose that B is NP-complete, and that there are known polynomial Karp reductions between the problems in the following way (where a reduction from A to B is shown by an arrow $A\rightarrow B$):

$$\begin{array}{ccc} A & \leftrightarrow & B \\ \uparrow & & \uparrow \\ C & \leftrightarrow & D \end{array}$$

What is known about the complexity for A, C and D? Write an X in the table below for everything that is certain, and write a ring for everything that is possible but not certain.

	lies in NP	is NP-complete	is NP-hard
A			
С			
D			

- 3. a) (2 p) Define the concept Turing reduction.
 - b) (1 p) Define the complexity class P.
- 4. (Question for grade D, grading criterion: explain how problems of high complexity can be handled)

Give two different suggestions for how to attack optimization problems where the optimal solution cannot be computed efficiently enough.

Suggestion 1:

 $Suggestion\ 2:$

- 5. (Question for grade C, grading criterion: design simple heuristics and exhaustive search algorithms)
 - Give pseudo code for an exponential algorithm that solves the problem Hamiltonial circuit, where the input is an undirected graph with n vertices.