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Abstract

A supervised dimensionality reduction technique using artificial neural net-
works with a narrow bottleneck layer is presented and applied to the task of
automatically finding a two-dimensional representation of American English
vowels. The network is shown to be able to find a good vowel representation
directly from speech frames, with the resulting vowel space being relatively
speaker invariant compared to the traditional formant-based vowel space.

1 Introduction

Vowel visualisation has been employed in areas such as language learning (Dowd et al.
1998; Paganus et al. 2006; Wik and Escribano 2009) and speech-language pathology (e.g.
VowelViz,1 specifically developed for use in speech therapy), where a visual representation
provides the user with real-time feedback on their pronunciation of vowels. One common
approach is to represent the vowel as a point on a two-dimensional plane, with the goal
being for the user to “home in” on the target vowel to the best of their ability.
The most common method to project a vowel onto low-dimensional space is to represent
it in terms of its formants, the peaks in the power spectrum that are said to be vital for
vowel perception (Peterson and Barney 1952). This results in a relatively intuitive vowel
representation, as the formants are strongly correlated with mouth (e.g. tongue and lip)
configuration (Ladefoged 1982, ch. 9). For instance, the first formant, F1, of the high vowel
/iː/ in /biːt/ beat might typically be around 300 Hz, while the F1 of the low vowel /æ/ in
/bæt/ bat would be closer to 800 Hz in modern RP (De Jong et al. 2007).
However, some issues arise with this approach: Most importantly, even for vowels with the
same perceived quality, there is significant variation between speakers when it comes to the
mean frequencies of the formants (Peterson and Barney 1952), and the perceived quality
of a vowel is not determined directly by the absolute values of its formants (Traunmüller
1981; Fahey et al. 1996). Additionally, naive methods of formant extraction, such as peak
picking in the frequency response of the linear predictive filter, is known to suffer from peak
merging, where two formants with similar frequencies cannot be distinguished as separate
formants (Markel 1972).
While there exist a variety of methods for speaker normalisation and more robust formant
extraction, I propose a radically different approach: Using a non-linear supervised dimen-
sionality reduction technique, a low-dimensional vowel representation can be found automat-
ically, with no prior knowledge of the structure of the audio signal other than what vowel
class it belongs to. Specifically, I propose to train a bottlenecked artificial neural network

1http://completespeech.com/vowel-viz/vowelviz-overview/what-is-vowelviz/
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to map speech frames to the corresponding vowel class. A bottleneck layer is responsible for
finding a low-dimensional representation that the following layers can still use to discrimin-
ate between the vowels, and by preserving information about the classes corresponding to
the input, the network is encouraged to find a speaker-independent representation.
The problem of automatically modelling the vowel space using neural networks has been
studied previously in Nearey and Kiefte (2003), where a neural network was used to map
a set of K stimuli in the form of a 1-of-K-encoded input to the corresponding vowel class,
through a hidden layer with two units. As the input is not in the form of speech frames,
but rather an index corresponding to some abstract stimuli, the resulting scheme is akin to
that of an autoencoder performing dimensionality reduction on discrete vowel classes.
The authors conclude that as their two-dimensional model was unable to fit the data to a
satisfactory degree, this provides evidence that the underlying vowel space must be at least
three-dimensional. However, the fact that they only used a single hidden layer means that
the mapping from the two-dimensional representation to vowel classes must be performed
using a linear logistic classifier, in which case the network will perform poorly unless all
vowels are linearly separable. It is possible that the model would have performed better
with a deeper network.
In a related vein, Nagayama et al. (1994) describes performing dimensionality reduction
using Sammon mapping, after which a neural network is trained to learn the non-linear
mapping, so that the dimensionality reduction can be extended to unseen data. The net-
work is trained to produce the dimensionality-reduced vowels as output rather than using
bottleneck features. No particular precautions are taken to ensure that the low-dimensional
representation is speaker invariant.
There has also been research on the general case of generating features using bottleneck
layers in neural networks. Grézl et al. (2007) describes a method of generating features for
use with a GMM-HMM speech recognition system by injecting a narrow layer into a phone
classifier. Yu and Seltzer (2011) further builds on this approach by initialising the classifier
using restricted Boltzmann machine pre-training. Sivaram and Hermansky (2012) takes a
related approach by generating sparse features of the same dimension as the input, enforcing
sparsity in the bottleneck layer using a differentiable regularisation term.

2 Method

2.1 Feedforward neural networks

A feedforward neural network, also known as a multi-layer perceptron, is a simple network
composed of layers, which are in turn composed of so-called units. Every unit calculates a
weighted sum of the outputs of the previous layer’s units. The sum is then passed to an
activation function, whose output is taken as the output of the unit.
The calculations can be expressed in terms of matrices and vectors, by considering the output
of layer l as a row vector y(l) of dimension n(l), with the corresponding weight matrix W(l)

of dimension n(l−1) ×n(l), and bias (threshold, intercept) vector b(l) of dimension n(l). The
output of layer l + 1 is then given by

h(l+1) = y(l)W(l+1) + b(l+1)

y(l+1) = f(l+1)(h(l+1))

where f(l)(h) is the activation function of layer l.
The first layer is referred to as the input layer, with y(0) = x where x is the input. Layer N ,
where N is the number of non-input layers, is the output layer. In the case of classification,
the output layer generally corresponds to the posterior distribution y

(N)
i = P (y = i | x).

The N − 1 layers between the input and output layers are referred to as hidden layers.
The network is trained by feeding it input data with known corresponding output data,
and minimising an objective function comparing the expected output to the actual output
of the network. The objective function is minimised using gradient descent by calculating
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Figure 1: An example of a bottlenecked feedforward neural network mapping speech frames
to vowel classes. The network contains three hidden layers, of which the middle layer is the
bottleneck layer.

the gradient with respect to the weights and biases. The algorithm commonly used for
calculating the gradient is known as the back-propagation algorithm (Rumelhart et al. 1986).

2.2 Vowel space modelling

A feedforward neural network is constructed to map speech frames to vowel classes. The
outputs are represented using a 1-of-K encoding, with one output per vowel class. To model
the vowel space a narrow bottleneck layer with few units is inserted into the network. The
bottleneck layer forces the network to find a stable representation of the vowels in low-
dimensional space, that can still be used by later layers to discriminate between the vowels.
See fig. 1 for a graphical illustration of such a bottlenecked network.
The vital difference between this approach and unsupervised dimensionality reduction tech-
niques such as autoencoders or principal component analysis (PCA), is that this is a super-
vised dimensionality reduction technique. By explicitly telling the network what vowel class
each speech frame belongs to, the network is encouraged to find a common representation
for all vowels of the same class, even if the features used as input look quite different.
This work focuses primarily on two-dimensional vowel representations. This is mainly to
ease the interpretability of the representation, though it also grounded in the hypothesis
that two dimensions are enough to represent the vowel space of American English dialects:
While height (F1) and backness (F2) are contrastive in American English, no two vowels
are discriminated between using only lip rounding (F3) (Ladefoged 1999).
The activation function to use for the bottleneck layer requires some deliberation. While
a sigmoid function such as tanh might at a glance seem appropriate as it bounds the rep-
resentation within the range of the function, its tendency to saturate for large input values
risks yielding a representation where vowels tend to be “smeared” against the bounding box.
A better choice is a non-sparse activation function exhibiting locally linear behaviour over
most of its domain. An obvious such example is a fully linear function such as the identity
function f (k)(h)i = hi, where k is the bottleneck layer. Another function satisfying the
requirements is the maxout activation function (Goodfellow et al. 2013). As is standard for
classification, the activation function of the output layer is the softmax function:

f (N)(h)i =
ehi∑
j e

hj
.
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Table 1: Vowels in TIMIT. Examples are taken from the TIMIT documentation.
TIMIT vowel IPA symbol Example word Comment

Monophthongs
iy [i] beat
ih [ɪ] bit
eh [ɛ] bet
ae [æ] bat
aa [ɑ] bot Father-bother merger
ah [ʌ] but
ao [ɔ] bought
uh [ʊ] book
uw [u] boot
ux [u̟] toot Fronted /u/
er† [ɝ] bird

Diphthongs
ey [eɪ] bait
aw [aʊ] bout
ay [aɪ] bite
oy [ɔɪ] boy
ow [oʊ] boat

Weak/marginal vowels
ax [ə] about
ix [ɨ] debit
axr [ɚ] butter R-coloured /ə/
ax-h [ə]̥ suspect Devoiced /ə/
† Not used in this work.

The question arises as to how diphthongs should be treated. For instance, the onset of the
diphthong [eɪ] is phonetically similar to [ɛ], while the offset is more similar to [i], a property
that we would like to preserve in the generated vowel space. To avoid the issue of having to
decide what class to map each part of the diphthongs to, only monophthongs will be used
to train the network. Additionally, r-coloured and weak or marginal vowels are not used.

3 Experiments

The experiments were performed using the phonetically annotated TIMIT corpus, consisting
of 10 sentences each spoken by speakers of different American English dialects. The TIMIT
dataset is divided into a two parts: the training set, consisting of 462 speakers, and the
test set, consisting of 168 speakers. The training set was further split into a validation set
containing the utterances of 47 of the speakers, and a reduced training set consisting of the
remaining 415 speakers. The samples corresponding to monophthongs (see table 1 for an
overview of the vowels used for phonetic transcription in TIMIT) were extracted, and the
first and last 20% of the samples belonging to each vowel utterance discarded.
The remaining samples were divided into speech frames using overlapping windows. As vowel
utterances are typically very short, using only the samples corresponding to vowels results
in a significant reduction in the amount of available data, especially if context windows are
to be used. In an attempt to combat this, the window size was set to a relatively short 5
ms, with an overlap of 2 ms. The Hamming window was applied to each speech frame, after
which the power spectral density was computed using the fast Fourier transform. Finally,
filter bank features were extracted from the power spectrum using 40 triangular overlapping
filters spaced linearly along the mel scale within the frequency range of 20 Hz to the Nyquist
frequency (8000 Hz). All data was normalised to have zero mean and unit variance using
the mean and variance estimated from the training set.
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The biases were initialised to 0, and the weights were drawn from a Gaussian distribution
with a standard deviation of 0.01. The networks were regularised during training using
dropout (Srivastava et al. 2014) with a dropout rate of 0.5 for the non-bottleneck hidden
layers, and Gaussian noise with a standard deviation of 0.2 was added to the input each
iteration. The networks were trained using cross-entropy as the objective function, with the
filter bank features with a context of 5 frames on both sides as input, and a batch size of
64. The learning rate was set to 0.01 initially and scaled by a factor of 0.1 every time no
improvement of the validation error, measured as the number of correctly classified frames
in the validation set, had been observed for 20 epochs, until the learning rate dropped below
10−5 at which point the training stopped.
An initial survey was conducted using non-bottlenecked networks. Out of the networks
tested, best performance was achieved using a network with two hidden layers of 1000
maxout units each. This architecture was used as a base for the bottlenecked networks.
Performance of the networks was evaluated using the phone error rate (PER) on the test set,
i.e. the percentage of speech frames that were correctly classified. All bottlenecked networks
tested used maxout units for the hidden layers, with the exception of the bottleneck layer
for which a variety of activation functions were evaluated.

4 Results
4.1 Classification performance

Table 2 shows the final PER on the test set for different configurations of hidden layers and
bottleneck activation functions. Each network in the table is the best one of its configuration,
as based on the final validation error. While maxout performed the best in this case, the
different activation functions perform comparably. In all cases the networks performed
better with at least two wide hidden layers placed before the bottleneck.

Table 2: Phone error rate on the test set of the best network with the given configuration.
Hidden layers Bottleneck activation PER (%)
1000-1000 N/A 27.66
1000-2-1000 Linear 29.50
1000-1000-2 Linear 28.30
1000-1000-2-1000 Linear 28.61
1000-2-1000 Maxout 28.86
1000-1000-2 Maxout 28.45
1000-1000-2-1000 Maxout 28.11
1000-2-1000 tanh 29.66
1000-1000-2 tanh 29.56
1000-1000-2-1000 tanh 28.36

4.2 Resulting vowel representation

After training the networks the vowel representation was extracted at the bottleneck layer
after exciting the network with the input data. Figure 2 shows what effect the choice of
activation function has on the resulting representation. All data was collected from the
networks with the hidden layer configuration 1000-1000-2-1000 using the test set as input.
Perhaps unsurprisingly, the linear and maxout bottlenecks result in very similar projections.
While there is some overlap, the vowels form clear and relatively stable clusters. On the
other hand, as expected, the tanh bottleneck shows a tendency for the vowels to be placed
near the bounding box due to the saturation of the activation function for large input values.
In order to compare the bottleneck representation to other forms of 2D vowel visualisation,
the test set was additionally processed using formant extraction and t-SNE. For the formant
extraction the vowel samples were split up using 20 ms long windows with 10 ms overlap.
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Figure 2: Representation of the vowels in the test set extracted at the bottleneck layer for
different activation functions.

Each window was processed using a pre-emphasis filter followed by the Hamming window
function. The first two formants were then extracted using naive peak picking as described by
Markel (1972), using 20 filter coefficients. t-SNE (Van der Maaten and Hinton 2008) was run
on a randomly selected subset of 20,000 speech frames using the implementation provided
by Scikit-learn (Pedregosa et al. 2011). The dimensionality reduction was performed on
unnormalised filter bank features.
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Figure 3: Comparison of different vowel visualisation techinques: Supervised dimensionality
reduction using a maxout bottleneck in a neural network, automatic extraction of absolute
F1 and F2 values, and unsupervised dimensionality reduction using t-SNE.

As can be seen in fig. 3, the vowel representation in formant space is similar to that of the
bottleneck representation, though the vowel clusters suffer from more overlap in formant
space. t-SNE seemingly completely fails to find a useful representation of the data, although
some tendencies for speech frames belonging to the same vowel class to end up close to each
other can be observed.
Figure 4 compares three vowels spoken by male and female speakers of the same dialect.
With the exception of the vowel [u], it is evident that the neural network manages to
significantly reduce the effect of inter-speaker variation. On the other hand, in formant
space there is a clear tendency for female speakers to have a raised F1 and F2, resulting
in some separation of vowel clusters corresponding to the same vowel. Finally, while t-SNE
does indeed manage to cluster similar vowels together as long as the speakers are similar,
it spectacularly fails at any kind of speaker normalisation—though this is not unexpected
from an unsupervised dimensionality reduction technique.
Figure 5 models the generated vowel space using 50% confidence intervals of multivariate
Gaussian distributions estimated from the bottleneck representation of the test set when
fed to the maxout-bottlenecked 1000-1000-2-1000 network. The vowel space bears a striking
resemblance to the traditional formant-based vowel space, which is particularly remarkable
as the network was not given any prior information regarding vowel similarity.
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5 Discussion and conclusions

The network managed to find a good two-dimensional vowel representation, that in addition
strongly corresponds to the traditional formant-based vowel space. The goal of doing auto-
matic speaker normalisation was also fulfilled to a large extent, although more so for some
vowels than others. The failure of the network to normalise specific vowels warrants invest-
igation into whether this is truly a fault of the network, or simply a sociolectal difference in
vowel quality.
The actual classification performance of the network was underwhelming, both for the bot-
tlenecked and non-bottlenecked networks, with the phone error rate being well above the
around 17–20% PER reported for related architectures for the full TIMIT phone recognition
task (Mohamed et al. 2012; Graves et al. 2013; Tóth 2014). Possible explanations for this
bad performance include sub-optimal architecture or hyperparameter settings, data sparsity
as a result of only using vowel samples, or that vowel recognition might simply be a harder
problem than consonant recognition, so that focusing on only vowels inflates the error rate.
This latter hypothesis is supported by e.g. the confusion matrix reported by Deng et al.
(2013), which shows a systematically higher error rate for vowels than for other phones.
Nevertheless, several alternative architectures are available for consideration. Two types of
architectures that have been shown to be promising for speech recognition are convolutional
neural networks (Sainath et al. 2013) and recurrent neural networks (Graves et al. 2013).
However, for real-time vowel visualisation the information of interest is the pronunciation
at the current time instance, with the context being of less use, possibly making RNNs
ill-suited for the task. On the other hand, CNNs are thought to reduce the effect of speaker
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variation (Abdel-Hamid et al. 2014), making them a prime candidate for use in the task at
hand.
Other aspects to tune include the weight initialisation strategy, learning rate scheme, and
regularisation techniques. Additionally, training using a more appropriate dataset than
TIMIT may increase performance, robustness to noise, and stability of the vowel represent-
ation, and in particular, using datasets that include vowels from several different languages
may increase the vowel space coverage. It is also possible that other input features may lead
to better performance, such as linear predictive coding coefficients, mel-frequency cepstral
coefficients, or features that include derivative values.
Finally, more investigation into the properties of the generated vowel space is needed. For
instance, if limited to a single speaker, is there a linear correspondence between the bot-
tleneck representation and the formant values of vowels? Does the speaker normalisation
performed by the network correspond to any known formant normalisation scheme? A more
robust formant extraction technique is also required to facilitate more reliable comparisons.
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