
Phoneme Recognition in
TIMIT using LSTM networks

Ludvig Ericson
ludv@kth.se

Paulina Hensman
phensman@kth.se

Abstract

In this project, we use LSTM networks in different configurations to recognize
phonemes in speech. We experiment on different network structures by using one
or two layers, and use either LSTM units or the closely related GRU units. We find
that a two-layer LSTM network has the best performance, and we also investigate
that performance on a per-phoneme basis.

1 Introduction

1.1 Automatic Speech Recogition

Automatic Speech Recognition (ASR) is a popular research area with many applications. In addition
to classic applications like automatic phone help lines there have been recent developments in
automatic transcriptions of speech, which could be a great help to the hard of hearing as well as an
aid to automatic translations of speech.

One of the most basic components in speech is the phoneme. As an example, the word “wash”
consists of the phonemes “w,” “aa,” and “sh.” There are about 44 defined phonemes in the English
language, but all are not used, and more importantly, all combinations of phonemes are not used.
In fact, knowing the preceding phoneme greatly narrows down the possibilities for the following
phoneme [1].

This project will compare the performance of different configurations of neural networks for a
phoneme recognition task.

1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) consist of several identical units linked together in a chain
structure, as shown in fig. 1. This structure makes RNNs suitable for modelling sequences, such as
text and speech, where one unit is used for each word or time step. However, RNNs tend to have
problems carrying on information through longer sequences due to vanishing or exploding gradients,
and therefore certain adaptations are preferred.

1.3 Long Short Term Memory

Long Short Term Memory (LSTM) [3] networks are an adaption of RNN. Each unit takes in both a
vector representing an input frame, and a state vector. Each unit updates the state vector and passes
it on to the next unit in the chain. It also gives output for each step. This structure lets the network
retain information from previous timesteps in the state vector.

The important part of the LSTM is the updating of the state vector. This is done in several steps,
shown in some detail in fig. 2.

The updating is done in several layers, often called gates. First is the forget gate, determining how
much of the state vector should be removed or forgotten. Next is the input gate, determining how



much information to add to the state vector. Finally, the output layer reads from the updated state
vector and determines what to output. This careful regulation of the state vector allows the LSTM to
save important features indefinitely while forgetting less important ones fast.

1.4 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [4] is a simplification of LSTM, combining the input gate and the
forget gate into a single update gate. This introduces a dependency between forgetting and input not
present in the LSTM. The state vector is also more exposed to the unit, allowing more information
throughput. GRU have been shown to perform empirically better than LSTM in a number of instances
[5], but neither has been conclusively shown to be better than the other.

2 Method

2.1 Data Processing

The speech data was divided into frames of 10 000 µs each. We calculated the Mel filterbank features
for each frame using HList from the HTK language processing package [6]. We took every third
such filterbank frame and labelled it with the most relevant phoneme for the time frame, as determined
by the phoneme transcribed closest in time. Lastly, we prepended the 19 immediately preceding
filterbank frames, and padded with zeroes where necessary.

2.2 Networks

For the networks, we used the Keras neural networks library [7] with a Theano backend [8]. The
structure was a simple sequence of one or two LSTM or GRU layers with 128 units each followed
by a dense layer and a softmax activation layer. The networks were trained for 20 epochs, with
mini-batches of 4096 samples. We used a categorical cross-entropy loss function, and an RMS-prop
optimizer. The network structures are shown in fig. 3

3 Experiments

3.1 Dataset

We used the TIMIT dataset [9], a corpus of read speech. It has 630 speakers, each reading 10
phonetically rich sentences, for example “The cranberry bog gets very pretty in autumn.” The
breakdown of the dataset is shown in table 1. After processing as previously described in section 2.1,
we obtained 473 177 training samples, and 172 776 validation samples.

3.2 Parameters

We made a selection of parameters to experiment with, as follows.

• LSTM Layers (1, 2)

Figure 1: A graphical representation of an RNN, the left picture showing it as a loop going through
a single network, and the right showing it as a sequence of identical networks. Image from [2]
(modified)

2



Table 1: Table of breakdown between genders in test and training data sets.

Test Training Σ
Men 1 120 3 260 4 380

Women 560 1 360 1 920
Σ 1 680 4 620 6 300

• GRU or LSTM

Generally, more layers tend to mean better generalization, which leads to better results. We will try
networks with 1 or 2 layers, with either LSTM or GRU layers.

We made different combinations of the above parameters, ending up with the networks shown in
table 2.

Table 2: Table of network parameters.

Network Type Layers
Network 1 LSTM 1
Network 2 GRU 1
Network 3 LSTM 2
Network 4 GRU 2

4 Results

The accuracy for each net is shown in table 3, and loss function plots in fig. 4.

Table 3: Table of accuracy for each network, where accuracy is defined as the rate of correct
predictions in the maximum likelihood sense.

Network Accuracy
Network 1 46.66%
Network 2 46.93%
Network 3 57.26%
Network 4 46.33%

A detailed analysis of the best-performing network, the two-layer LSTM network, is presented as a
confusion matrix in fig. 5, which is summarized in table 4.

5 Discussion & Future work

Network 3, with two LSTM layers, strongly outperformed the other networks. We did expect the
two-layer networks to outperform the single-layers ones, but we did not expect this large difference
between the LSTM and the GRU networks. There are many things we did not try due to time
constraints that may further explain the results.

We ran the networks with large batches and few epochs. It is possible that we would get different
results if we used smaller batches and more epochs. There are also many parameters that we never
tried to tune, for example the number of units in the LSTM and GRU layers. It is possible that certain
parameter settings worked better with LSTM than with GRU, meaning that different settings could
make another network perform better. This would be interesting to investigate.

Since two-layer LSTM performed better than single-layer LSTM, it is possible that three layers would
be even better. In future work, it would be interesting to try more layers.

For now, we conclude that a two-layer LSTM can outperform single-layer LSTM networks and a
two-layer GRU network.

3



Table 4: Table of accuracy with the three most frequent classifications for each phoneme using the
two-layer LSTM network.

Phoneme Samples Classifications of phoneme
h# 21 378 h# 87.3% pau 37.6% hh 16.8%
sh 3 139 sh 69.5% ch 8.1% epi 6.9%
iy 8 004 iy 61.3% ey 10.3% ih 8.0%
hv 832 hv 49.7% zh 4.7% hh 3.8%
ae 7 019 ae 38.6% eh 5.9% ey 3.8%
dcl 2 759 dcl 45.3% tcl 7.1% gcl 7.1%
d 992 d 43.6% dh 6.0% t 5.1%
y 1 453 y 68.0% iy 4.5% ih 2.3%
er 3 239 er 36.1% axr 18.1% r 6.4%
aa 4 703 aa 45.4% aw 15.1% ay 14.3%
r 5 242 r 59.8% er 14.0% axr 8.5%
kcl 3 933 kcl 65.7% gcl 7.6% tcl 7.2%
k 2 746 k 77.0% t 7.0% hh 6.8%
s 10 058 s 71.9% z 11.5% ch 8.2%
uw 630 uw 65.2% uh 7.7% ux 7.3%
dx 897 dx 34.9% nx 2.4% dcl 2.3%
ih 4 491 ih 35.2% uh 15.4% eh 11.1%
ng 906 ng 56.1% n 5.0% gcl 1.6%
gcl 1 391 gcl 65.0% g 8.9% dcl 7.6%
g 776 g 70.5% d 6.0% k 4.5%
w 2 851 w 65.7% ao 4.2% l 3.5%
epi 788 epi 51.8% zh 3.1% en 1.7%
q 2 733 q 49.2% oy 3.8% tcl 3.5%
ao 4 746 ao 46.2% aa 15.6% aw 8.3%
l 4 814 l 53.0% el 18.8% aw 14.7%
axr 3 832 axr 49.1% er 24.3% r 8.0%
ow 3 339 ow 60.9% ah 14.4% nx 11.9%
n 4 495 n 51.8% nx 31.0% ng 19.8%
m 3 098 m 67.8% n 14.8% en 9.8%
tcl 4 197 tcl 50.6% dcl 12.2% kcl 9.0%
t 2 466 t 56.4% d 6.7% ch 6.2%
ix 5 113 ix 36.5% ih 16.3% uh 7.7%
eh 4 288 eh 27.8% ae 10.8% ey 7.5%
oy 1 477 oy 66.4% ao 6.3% el 4.8%
ay 4 192 ay 47.5% aa 10.4% ae 6.1%
dh 1 365 dh 49.5% th 8.0% d 6.4%
hh 798 hh 45.2% hv 10.7% zh 1.6%
z 3 618 z 71.8% zh 14.1% s 13.9%
pcl 2 248 pcl 68.7% bcl 8.6% tcl 8.0%
ax 2 207 ax 33.0% uh 30.8% ah 13.5%
th 769 th 44.8% f 4.8% dh 2.7%
bcl 1 722 bcl 73.9% b 11.5% pcl 11.1%
b 506 b 65.2% d 5.6% p 5.0%
ux 2 024 ux 66.4% uw 10.1% ih 5.8%
f 3 133 f 68.5% th 13.4% hh 5.1%
el 1 063 el 56.4% uh 7.7% ax 6.7%
v 1 414 v 59.1% f 6.6% hv 6.2%
aw 1 245 aw 27.9% ae 4.4% aa 1.7%
p 1 409 p 71.6% dh 5.0% t 4.3%
ah 2 655 ah 26.0% eh 7.1% ay 6.5%
ey 3 575 ey 44.8% eh 7.4% ae 4.5%
en 646 em 50.0% en 41.8% n 3.7%
ch 741 ch 57.5% jh 5.2% t 4.0%
uh 563 uh 23.1% ah 4.4% ax 2.1%
pau 2 509 pau 35.5% ax-h 33.3% h# 6.6%
jh 730 jh 63.4% ch 10.3% zh 9.4%
nx 341 nx 47.6% dx 2.9% n 2.2%
ax-h 135 ax-h 66.7% t 1.0% th 0.8%
zh 215 zh 45.3% sh 3.2% jh 1.4%
em 115 em 50.0% en 1.7% uw 1.4%
eng 13 en 0.7% ux 0.1% n 0.1%



Acknowledgments

The computations were performed on resources provided by the Swedish National Infrastructure
for Computing (SNIC) at the Center for High Performance Computing (PDC), Royal Institute of
Technology.

References

[1] Xuedong Huang et al. Spoken language processing: A guide to theory, algorithm, and system
development. Prentice Hall PTR, 2001.

[2] Christopher Olah. Understanding LSTM Networks. 2015. URL: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/ (visited on 05/24/2016).

[3] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[4] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for statisti-
cal machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[5] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural networks on sequence
modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

[6] S.J. Young and Sj Young. “The HTK Hidden Markov Model Toolkit: Design and Philosophy”.
In: Entropic Cambridge Research Laboratory, Ltd 2 (1994), pp. 2–44.

[7] François Chollet. keras. https://github.com/fchollet/keras. 2015.
[8] Theano Development Team. “Theano: A Python framework for fast computation of mathemati-

cal expressions”. In: arXiv e-prints abs/1605.02688 (May 2016). URL: http://arxiv.org/
abs/1605.02688.

[9] JS Garofolo et al. “TIMIT Acoustic-Phonetic Continuous Speech Corpus, Linguistic Data
Consortium, Philadelphia”. In: (1993). DOI: LDC93S1.

5

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://dx.doi.org/LDC93S1


REFERENCES 6

Figure 2: A block in an LSTM network. The input activation at time t is denoted xt, the output at
that time ht, the cell state Ct, the forget gate ft, input gate it, and output gate ot. Image from [2]
(modified to add detail).

Figure 3: Figures of our networks. As the figure shows, they are rather simple. The LSTM/GRU
layers each have 128 units.



REFERENCES 7

0.0 0.2 0.4 0.6 0.8 1.0
Training iteration 1e7

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
a
te

g
o
ri

ca
l 
cr

o
ss

-e
n
tr

o
p
y
 l
o
ss

Network 1: Single-layer LSTM

Training loss
Validation loss

0.0 0.2 0.4 0.6 0.8 1.0
Training iteration 1e7

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
a
te

g
o
ri

ca
l 
cr

o
ss

-e
n
tr

o
p
y
 l
o
ss

Network 2: Single-layer GRU

Training loss
Validation loss

0.0 0.2 0.4 0.6 0.8 1.0
Training iteration 1e7

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
a
te

g
o
ri

ca
l 
cr

o
ss

-e
n
tr

o
p
y
 l
o
ss

Network 3: Two-layer LSTM

Training loss
Validation loss

0.0 0.2 0.4 0.6 0.8 1.0
Training iteration 1e7

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
a
te

g
o
ri

ca
l 
cr

o
ss

-e
n
tr

o
p
y
 l
o
ss

Network 4: Two-layer GRU

Training loss
Validation loss

Figure 4: Plots of loss function on both training and validation sets for the four networks. The training
loss is calculated for each iteration, whereas validation loss is only calculated at the end of an epoch.
The validation data thus serves to demarcate epochs.



REFERENCES 8

Predicted class

T
ru

e
 c

la
ss

Normalized confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5: Normalized confusion matrix for the two-layer LSTM network. The diagonal is quite
clearly highlighted, and this is expected as this represents the correct classifications.


	Introduction
	Automatic Speech Recogition
	Recurrent Neural Networks
	Long Short Term Memory
	Gated Recurrent Unit

	Method
	Data Processing
	Networks

	Experiments
	Dataset
	Parameters

	Results
	Discussion & Future work
	References

