KTH ROYAL INSTITUTE
OF TECHNOLOGY

Erlang — functional programming in

Erlang

Concurrent Oriented Programming Functional programming

a concurrent wor I d * processes have state + evaluation of expressions
Johan Montelius and Vladimir Vlassov * communicate using * recursion
message passing » data structures are
» access and location immutable

transparent
* asynchronous

T

[

1D2201 DISTRIBUTED SYSTEMS / ERLANG 2

History Today

Developed at Ericsson in late eighties, early nineties. - H
> i
Targeting robust applications in the telecom world.
ERICSSON -

Survived despite “everything must be Java”

Growing interest from outside Ericsson.

) \.,3 Wooga 8

gM\(yﬂb DemonWaRE

1D2201 DISTRIBUTED SYSTEMS / ERLANG 3 1D2201 DISTRIBUTED SYSTEMS / ERLANG

Why Erlang? Erlang

e concurrency built-in » the functional subset
* multicore performance * concurrency

* simple to implement fault tolerance distribution

» scales well in distributed systems + failure detection

1D2201 DISTRIBUTED SYSTEMS / ERLANG 5 ID2201 DISTRIBUTED SYSTEMS / ERLANG 6

Data structures Variables

» Literals * lexically scoped
« atoms: foo, bar, ... » implicit scoping — the procedure definition
* numbers: 123, 1.23 .. * untyped — assigned a value when introduced
* bool: true, false » syntax: X, Foo, BarZot, _anything

 Compound structures
* tuples: {foo, 12, {bar, zot}}
» lists: [], [1,2,fo0,bar]

1D2201 DISTRIBUTED SYSTEMS / ERLANG 7 1D2201 DISTRIBUTED SYSTEMS / ERLANG 8

Assignment — Pattern matching Pattern matching

Assignment of values to variables is done by pattern matching: Pattern matching is used to extract elements from a data structure.
<Pattern> = <Expression>
{person, Name, Age} = find_person(Id, Employes),
A pattern can be a single variable:
Foo = 5
Bar = {foo, zot, 42}
or a compound pattern
{A, B} = {4, 5}
{A, {B, C}} = {41, {foo, bar}}
{A, {B, A}} = {41, {foo, 41}}

1D2201 DISTRIBUTED SYSTEMS / ERLANG © ID2201 DISTRIBUTED SYSTEMS / ERLANG 10

Pattern matching No circular structures

Pattern matching can fail: You can not construct circular data structures in Erlang.
{person, Name, Age} = {dog, pluto} (a structure in which the last element is a pointer to the first)

Pros — makes the implementation easier.

Cons — Someone might like/need circular structures.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 11 1D2201 DISTRIBUTED SYSTEMS / ERLANG 12

Definitions if statement

area(X, Y) -> X * Y. fac(N) ->
if
N == -> 1;
N > @ -> N*fac(N-1)
end.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 13 ID2201 DISTRIBUTED SYSTEMS / ERLANG 14

case statement case statement

sum(L) -> member(X,L) ->
case L of case L of
[1-> [1->
0; no;
[H[T] -> [x[_1 ->
H + sum(T) yes;
end. [_|T] -»>

member (X, T)
end.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 15 1D2201 DISTRIBUTED SYSTEMS / ERLANG 16

Higher order Higher order

F = fun(X) -> X + 1 end. map(Fun, List) ->
F(5) case List of
[1 ->
[1;
[HIT] ->

[Fun(H) | map(Fun, T)]
end.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 17 ID2201 DISTRIBUTED SYSTEMS / ERLANG 18

Modules Modules

-module(1st). -module(test).
-export([reverse/1]). -export([palindrome/1]).
reverse(L) ->

reverse(L,[]). palindrome(X) ->

reverse(L, A) -> case lst:reverse(X) of

case L of X ->
[1-> yes;
A; ->
[H|T] -> -
reverse(T,[H|A]) no
end. end.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 19 1D2201 DISTRIBUTED SYSTEMS / ERLANG 20

Concurrency Spawn a process
Concurrency is explicitly controlled by creation (spawning) of -module(account)
processes.

start(Balance) ->

A process is when created, given a function to evaluate.
P 9 spawn(fun() -> server(Balance) end).

no one cares about the result

Sending and receiving messages is the only way to
communicate with a process.

server(Balance) ->

no shared state (. . .well, almost)

1D2201 DISTRIBUTED SYSTEMS / ERLANG 21 ID2201 DISTRIBUTED SYSTEMS / ERLANG 22

Receiving a message Sending a message

server(Balance) ->

receive Account = account:start(40),
{deposit, X} -> Account ! {deposit, 100},
server(Balance+X); Account ! {withdraw, 50},

{withdraw, X} ->
server(Balance-X);
quit ->
ok
end.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 23 1D2201 DISTRIBUTED SYSTEMS / ERLANG 24

RPC-like communication RPC-like communication
friday(Account) -»>

server(Balance) -»>
Account ! {check, self()},

receive -
: receive
{check, Client} -> {Sa%gg, Balance} ->
Client !.{saldo, Balance}, Balance 5> 100 -5
server(Balance); barty (Account);
: true ->
end. work (Account)
end
end.

1D2201 DISTRIBUTED SYSTEMS / ERLANG 25 ID2201 DISTRIBUTED SYSTEMS / ERLANG 26

Implicit deferral Registration

A process will have an ordered sequence of received messages. A node registers associate names to process identifiers.
The first message that matches one of several program defined register(alarm_process, Pid)

patterns will be delivered.
Knowing the registered name of a process you can look-up

Pros and cons: . . the process identifier.
* one can select which messages to handle first
« risk of forgetting messages that are left in a growing queue The register is a shared data structure!

1D2201 DISTRIBUTED SYSTEMS / ERLANG 27 1D2201 DISTRIBUTED SYSTEMS / ERLANG 28

Registration Starting a node
Erlang nodes (an Erlang virtual machine) can be connected

inagroup . moon> erl -sname gold -setcookie xxxx

Each node has a unique name. :

Processes in one node can send messages to and receive (gold@moon)>

messages from processes in other nodes using the same
language constructs

1D2201 DISTRIBUTED SYSTEMS / ERLANG 29 ID2201 DISTRIBUTED SYSTEMS / ERLANG 30

Failure detection Monitor
e aprocess can monitor another process Ref = erlang:monitor(process, Account),
» if the process dies a messages is placed in the message queue Account ! {check, self()},

* the message will indicate if the termination was normal or)
abnormal or if the communication was lost receive
{saldo, Balance} ->

{°DOWN’, Ref, process, Account, Reason}->

end

1D2201 DISTRIBUTED SYSTEMS / ERLANG 31 1D2201 DISTRIBUTED SYSTEMS / ERLANG 32

Atomic termination

» Aprocess can link to another process, if the process dies with an
exception the linked process will die with the same exception.

» Processes that depend on each other are often linked together, if
one dies they all die.

1D2201 DISTRIBUTED SYSTEMS / ERLANG

Summary

» functional programming
* processes

* message passing

+ distribution

* monitor/linking

1D2201 DISTRIBUTED SYSTEMS / ERLANG

Linking

P = spawn_link(fun()-> server(Balance) end),
do_something(P),

ID2201 DISTRIBUTED SYSTEMS / ERLANG

