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Concurrent Oriented Programming 
• processes have state 
• communicate using 

message passing 
• access and location 

transparent 
• asynchronous 

Erlang 
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Functional programming 
• evaluation of expressions 
• recursion 
• data structures are 

immutable 

History 
Developed at Ericsson in late eighties, early nineties. 
 
Targeting robust applications in the telecom world. 
 
Survived despite “everything must be Java” 
 
Growing interest from outside Ericsson. 
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Today 
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Why Erlang? 
• concurrency built-in 
• multicore performance 
• simple to implement fault tolerance 
• scales well in distributed systems 
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Erlang 
• the functional subset 
• concurrency 
• distribution 
• failure detection 
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Data structures 
• Literals 

• atoms: foo, bar, ... 
• numbers: 123, 1.23 .. 
• bool: true, false 
 

• Compound structures 
• tuples: {foo, 12, {bar, zot}} 
• lists: [], [1,2,foo,bar] 
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Variables 
• lexically scoped 
• implicit scoping – the procedure definition 
• untyped – assigned a value when introduced 
• syntax: X, Foo, BarZot, _anything 
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Assignment – Pattern matching 
Assignment of values to variables is done by pattern matching: 

<Pattern> = <Expression> 
 
A pattern can be a single variable: 

Foo = 5 
Bar = {foo, zot, 42} 

or a compound pattern 
{A, B} = {4, 5} 
{A, {B, C}} = {41, {foo, bar}} 
{A, {B, A}} = {41, {foo, 41}} 
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Pattern matching 
Pattern matching is used to extract elements from a data structure. 
 
 {person, Name, Age} = find_person(Id, Employes), 
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Pattern matching 
Pattern matching can fail: 
{person, Name, Age} = {dog, pluto} 
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No circular structures 
You can not construct circular data structures in Erlang. 
 (a structure in which the last element is a pointer to the first) 

 
Pros – makes the implementation easier. 
 
Cons – Someone might like/need circular structures. 
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Definitions 
 
area(X, Y) -> X * Y. 
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if statement 
 
fac(N) -> 
 if 
    N == 0 -> 1; 
    N > 0 -> N*fac(N-1) 
 end. 
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case statement 
 
sum(L) -> 
 case L of 
    [] -> 
  0; 
    [H|T] -> 
  H + sum(T) 
 end. 

15 ID2201 DISTRIBUTED SYSTEMS / ERLANG 

case statement 
 
member(X,L) -> 
 case L of 
    [] -> 
  no; 
    [X|_] -> 
  yes; 
    [_|T] -> 
  member(X, T) 
 end. 
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Higher order 
 
F = fun(X) -> X + 1 end. 
F(5) 
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Higher order 
 
map(Fun, List) -> 
 case List of 
    [] -> 
  []; 
    [H|T] -> 
  [Fun(H) | map(Fun, T)] 
 end. 
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Modules 
-module(lst). 
-export([reverse/1]). 
 
reverse(L) -> 
 reverse(L,[]). 
 
reverse(L, A) -> 
 case L of 
    [] -> 
  A; 
    [H|T] -> 
  reverse(T,[H|A]) 
 end. 
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Modules 
-module(test). 
-export([palindrome/1]). 
 
palindrome(X) ->  
 case lst:reverse(X) of 
   X -> 
  yes; 
   _ -> 
  no 
 end. 
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Concurrency 
Concurrency is explicitly controlled by creation (spawning) of 
processes. 

A process is when created, given a function to evaluate. 

 no one cares about the result 

Sending and receiving messages is the only way to 
communicate with a process. 

 no shared state (. . .well, almost) 
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Spawn a process 
-module(account) 
 
start(Balance) -> 
 spawn(fun() -> server(Balance) end). 
 
server(Balance) -> 
: 
: 
: 
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Receiving a message 
server(Balance) -> 
 receive 
   {deposit, X} -> 
  server(Balance+X); 
   {withdraw, X} -> 
  server(Balance-X); 
   quit -> 
  ok 
 end. 
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Sending a message 
: 
Account = account:start(40), 
Account ! {deposit, 100}, 
Account ! {withdraw, 50}, 
: 
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RPC-like communication 
server(Balance) -> 
 receive 
 : 
 {check, Client} -> 
  Client ! {saldo, Balance}, 
 server(Balance); 
 : 
 end. 
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RPC-like communication 
friday(Account) -> 
 Account ! {check, self()}, 
 receive 
    {saldo, Balance} -> 
  if 
     Balance > 100 -> 
   party(Account); 
     true -> 
    work(Account) 
  end 
 end. 
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Implicit deferral 
A process will have an ordered sequence of received messages. 

The first message that matches one of several program defined 
patterns will be delivered. 

Pros and cons: 
• one can select which messages to handle first 
• risk of forgetting messages that are left in a growing queue 
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Registration 
A node registers associate names to process identifiers. 

register(alarm_process, Pid) 

Knowing the registered name of a process you can look-up 
the process identifier. 

The register is a shared data structure! 
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Registration 
Erlang nodes (an Erlang virtual machine) can be connected 
in a group . 

Each node has a unique name. 

Processes in one node can send messages to and receive 
messages from processes in other nodes using the same 
language constructs 
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Starting a node 
 
moon> erl -sname gold -setcookie xxxx 
: 
: 
(gold@moon)> 
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Failure detection 
• a process can monitor another process 

• if the process dies a messages is placed in the message queue 

• the message will indicate if the termination was normal or 
abnormal or ..... if the communication was lost 
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Monitor 
Ref = erlang:monitor(process, Account), 
Account ! {check, self()}, 
 
receive 
   {saldo, Balance} -> 
      : 
   {’DOWN’, Ref, process, Account, Reason}-> 
      : 
   end 
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Atomic termination 
• A process can link to another process, if the process dies with an 

exception the linked process will die with the same exception. 
• Processes that depend on each other are often linked together, if 

one dies they all die. 
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Linking 
P = spawn_link(fun()-> server(Balance) end), 
do_something(P), 
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Summary 
• functional programming 
• processes 
• message passing 
• distribution 
• monitor/linking 
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