
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Erlang – functional programming in
a concurrent world
Johan Montelius and Vladimir Vlassov

Concurrent Oriented Programming
• processes have state
• communicate using

message passing
• access and location

transparent
• asynchronous

Erlang

2 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Functional programming
• evaluation of expressions
• recursion
• data structures are

immutable

History
Developed at Ericsson in late eighties, early nineties.

Targeting robust applications in the telecom world.

Survived despite “everything must be Java”

Growing interest from outside Ericsson.

3 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Today

4 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Why Erlang?
• concurrency built-in
• multicore performance
• simple to implement fault tolerance
• scales well in distributed systems

5 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Erlang
• the functional subset
• concurrency
• distribution
• failure detection

6 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Data structures
• Literals

• atoms: foo, bar, ...
• numbers: 123, 1.23 ..
• bool: true, false

• Compound structures
• tuples: {foo, 12, {bar, zot}}
• lists: [], [1,2,foo,bar]

7 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Variables
• lexically scoped
• implicit scoping – the procedure definition
• untyped – assigned a value when introduced
• syntax: X, Foo, BarZot, _anything

8 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Assignment – Pattern matching
Assignment of values to variables is done by pattern matching:

<Pattern> = <Expression>

A pattern can be a single variable:

Foo = 5
Bar = {foo, zot, 42}

or a compound pattern
{A, B} = {4, 5}
{A, {B, C}} = {41, {foo, bar}}
{A, {B, A}} = {41, {foo, 41}}

9 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Pattern matching
Pattern matching is used to extract elements from a data structure.

 {person, Name, Age} = find_person(Id, Employes),

10 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Pattern matching
Pattern matching can fail:
{person, Name, Age} = {dog, pluto}

11 ID2201 DISTRIBUTED SYSTEMS / ERLANG

No circular structures
You can not construct circular data structures in Erlang.
 (a structure in which the last element is a pointer to the first)

Pros – makes the implementation easier.

Cons – Someone might like/need circular structures.

12 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Definitions

area(X, Y) -> X * Y.

13 ID2201 DISTRIBUTED SYSTEMS / ERLANG

if statement

fac(N) ->
 if
 N == 0 -> 1;
 N > 0 -> N*fac(N-1)
 end.

14 ID2201 DISTRIBUTED SYSTEMS / ERLANG

case statement

sum(L) ->
 case L of
 [] ->
 0;
 [H|T] ->
 H + sum(T)
 end.

15 ID2201 DISTRIBUTED SYSTEMS / ERLANG

case statement

member(X,L) ->
 case L of
 [] ->
 no;
 [X|_] ->
 yes;
 [_|T] ->
 member(X, T)
 end.

16 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Higher order

F = fun(X) -> X + 1 end.
F(5)

17 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Higher order

map(Fun, List) ->
 case List of
 [] ->
 [];
 [H|T] ->
 [Fun(H) | map(Fun, T)]
 end.

18 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Modules
-module(lst).
-export([reverse/1]).

reverse(L) ->
 reverse(L,[]).

reverse(L, A) ->
 case L of
 [] ->
 A;
 [H|T] ->
 reverse(T,[H|A])
 end.

19 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Modules
-module(test).
-export([palindrome/1]).

palindrome(X) ->
 case lst:reverse(X) of
 X ->
 yes;
 _ ->
 no
 end.

20 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Concurrency
Concurrency is explicitly controlled by creation (spawning) of
processes.

A process is when created, given a function to evaluate.

 no one cares about the result

Sending and receiving messages is the only way to
communicate with a process.

 no shared state (. . .well, almost)

21 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Spawn a process
-module(account)

start(Balance) ->
 spawn(fun() -> server(Balance) end).

server(Balance) ->
:
:
:

22 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Receiving a message
server(Balance) ->
 receive
 {deposit, X} ->
 server(Balance+X);
 {withdraw, X} ->
 server(Balance-X);
 quit ->
 ok
 end.

23 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Sending a message
:
Account = account:start(40),
Account ! {deposit, 100},
Account ! {withdraw, 50},
:

24 ID2201 DISTRIBUTED SYSTEMS / ERLANG

RPC-like communication
server(Balance) ->
 receive
 :
 {check, Client} ->
 Client ! {saldo, Balance},
 server(Balance);
 :
 end.

25 ID2201 DISTRIBUTED SYSTEMS / ERLANG

RPC-like communication
friday(Account) ->
 Account ! {check, self()},
 receive
 {saldo, Balance} ->
 if
 Balance > 100 ->
 party(Account);
 true ->
 work(Account)
 end
 end.

26 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Implicit deferral
A process will have an ordered sequence of received messages.

The first message that matches one of several program defined
patterns will be delivered.

Pros and cons:
• one can select which messages to handle first
• risk of forgetting messages that are left in a growing queue

27 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Registration
A node registers associate names to process identifiers.

register(alarm_process, Pid)

Knowing the registered name of a process you can look-up
the process identifier.

The register is a shared data structure!

28 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Registration
Erlang nodes (an Erlang virtual machine) can be connected
in a group .

Each node has a unique name.

Processes in one node can send messages to and receive
messages from processes in other nodes using the same
language constructs

29 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Starting a node

moon> erl -sname gold -setcookie xxxx
:
:
(gold@moon)>

30 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Failure detection
• a process can monitor another process

• if the process dies a messages is placed in the message queue

• the message will indicate if the termination was normal or
abnormal or if the communication was lost

31 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Monitor
Ref = erlang:monitor(process, Account),
Account ! {check, self()},

receive
 {saldo, Balance} ->
 :
 {’DOWN’, Ref, process, Account, Reason}->
 :
 end

32 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Atomic termination
• A process can link to another process, if the process dies with an

exception the linked process will die with the same exception.
• Processes that depend on each other are often linked together, if

one dies they all die.

33 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Linking
P = spawn_link(fun()-> server(Balance) end),
do_something(P),

34 ID2201 DISTRIBUTED SYSTEMS / ERLANG

Summary
• functional programming
• processes
• message passing
• distribution
• monitor/linking

35 ID2201 DISTRIBUTED SYSTEMS / ERLANG

