
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Remote Invocation
Vladimir Vlassov and Johan Montelius

Middleware

Network layer

Socket layer

Remote invocation / indirect communication

Application layer

2 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

identify and locate the server
encode/decode the message
send reply to the right client
attach reply to request

Request / Reply

3

client server

find server
encode
send message

receive reply

receive message
decode
handle
send reply

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

What do we do if request is lost?

Lost request

4

client server

find server
encode
send message

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

need to detect that message is
potentially lost
wait for a timeout (how long)
or error from underlying layer
resend the request
simple, problem solved

Resend request

5

client server

find server
encode
send message

resend request

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

client will wait for timeout
and re-send request
not a problem

Lost reply

6

client server

find server
encode
send message

receive message
decode
handle
send reply

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

a problem
server might need a history
of all previous request
might need

Problem

7

client server

find server
encode
send message

receive reply

receive message
decode
handle
send reply ssresend request

receive message

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Idempotent operations
• add 100 euros to my account
• what is the status of my account
• Sweden scored yet another goal!
• The standing is now 2-1!

8 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

History
If operations are not idempotent, the server must make sure
that the same request is not executed twice.
Keep a history of all request and the replies. If a request is
resent the same reply can be sent without re-execution.
For how long do you keep the history?

9 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Request-Reply-Acknowledge

10

client server client server

Request-Reply (RR) Request-Reply-Acknowledge (RRA)

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

At-most-once or At-least-once
How about this:
If an operation succeeds, then..
at-most-once: the request has been executed once.

Implemented using a history or simply not re-sending
requests.

at-least-once: the request has been executed at least once.
No need for a history, simply resend requests until a reply is
received.

11 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

At most or At least
How about errors:
Even if we do resend messages we will have to give up at
some time.
If an operation fails/is lost, then..
at-most-once:

at-least-once:

12 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

At most or At least
Pros and cons:
• at-most-once without re-sending requests:
 simple to implement, not fault-tolerant
• at-most-once with history:
 expensive to implement, fault-tolerant
• at-least-once:

simple to implement, fault-tolerant

Can you live with at-least-once semantics?

13 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

UDP or TCP

Should we implement a request-reply protocol over UDP or TCP?

14 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Synchronous or Asynchronous

15

Asynchronous Synchronous

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

RR over Asynchronous

16

send request
continue to execute
suspend if not arrived
read reply

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Hide the latency

17 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

HTTP
A request reply protocol, described in RFC 2616.

Request = Request-Line *(header CRLF) CRLF [message-body]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

GET /index.html HTTP/1.1\r\n foo 42 \r\n\r\nHello

18 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

HTTP methods
• GET: request a resource, should be idempotent
• HEAD: request only header information
• POST: upload information to a resource, included in body,

status of server could change
• PUT: add or replace a resource, idempotent
• DELETE: add or replace content, idempotent

19 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Wireshark

20 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

HTTP GET
GET / HTTP/1.1
Host: www.kth.se
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:40.0) Gecko/20100101
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept.Encoding: gzip, deflate
Cookie:
Connection: keep-alive

21 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

HTTP Response
HTTP/1.1 200 OK
Date: Tue, 08 Sep 2015 10:37:49 GMT
Server: Apache/2.2.15 (Red Hat)
X-UA-Compatible: IE=edge
Set-Cookie: JSESSIONID=CDC76A3;Path=/; Secure; HttpOnly
Content-Language: sv-SE
Content-Length: 59507
Connection: close
Content-Type: text/html;charset=UTF-8
<!DOCTYPE html>
<html lang="sv">
<title>KTH | Valkommen till KTH</title>

22 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

The web
On the web the resource is often a HTML document that is
presented in a browser.

HTTP could be used as a general-purpose request-reply
protocol.

23 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

REST and SOAP
Request-reply protocols for Web-services:

• REST (Representational State Transfer)

• content described in XML, JSON, . . .
• light weight,

• SOAP (Simple Object Access Protocol)
• over HTTP, SMTP . . .
• content described in SOAP/XML
• standardized, heavy weight

24 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

HTTP over TCP

HTTP over TCP - a good idea?

25 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Masking a request-reply

Could we use a regular program construct to hide the fact
that we do a request-reply?

26 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Masking a request-reply

Could we use a regular program construct to hide the fact
that we do a request-reply?
• RPC: Remote Procedure Call
• RMI: Remote Method Invocation

27 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Procedure calls
What is a procedure call:

• find the procedure
• give the procedure access to arguments
• pass control to the procedure
• collect the reply if any
• continue execution

How do we turn this into a tool for distributed programming?

28 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

int x, n;
n = 5;
proc(n);
x = n;

Operational semantics

29

int x, arr[3];
arr[0] = 5;
proc(arr);
x = arr[0];

ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Call by value/reference
Call by value

– A procedure is given a copy of the datum
Call by reference

– A procedure is given a reference to the datum

What if the datum is a reference and we pass a copy of the datum?
Why is this important?

30 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

RPC: Remote Procedure Call

31 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Client Server

.

.
inc();
.
.

void inc() {
 g = g+1;
}

g: 13

v

RPC: Remote Procedure Call

32 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Client Server

.

.
inc(x);
.
.

void inc(i) {
 g = g+i;
}

g: 13

v

x: 3

3

RPC: Remote Procedure Call

33 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Client Server

.

.
inc(a);
.
.

void inc(int[] h) {
 g = g+h[2];
 h[2] = g;
}

g: 13

v

a: {1,2,3,4}

?

Open Network Computing (ONC) RPC (SunRPC)

• targeting intranet, file servers etc
• at-least-once call semantics
• procedures described in Interface Definition Language

(IDL)
• XDR (eXternal Data Representation) specifies message

structure
• used UDP as transport protocol (TCP also available)

34 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Java RMI (Remote Method Invocation)
• similar to RPC but:

• we now invoke methods of remote objects
• at-most-once semantics

• Objects can be passed as arguments, how should this be
done?
• by value
• by reference

35 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Java RMI
We can do either:

A remote object is passed as a reference (by reference) i.e. it
remains as at the original place where it was created.

A serializable object is passed as a copy (by value) i.e. the
object is duplicated.

36 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Finding the procedure/object
How do we locate a remote procedure/object/process?

Network address that specifies the location or..

a known “binder” process that keeps track of registered
resources.

37 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Remote invocation design decisions
• failure handling: maybe / at-most-once / at-least-once
• call-by-value / call-by-reference
• message specification and encoding
• specification of resource
• procedure binder

38 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Examples
• SunRPC: call-by-value, at-least-once, IDL, XDR, binder
• JavaRMI: call-by-value/reference, at-most-once, interface,

JRMP (Java Remote Method Protocol), rmiregistry
• Erlang: message passing, maybe, no,

ETF (External Term Format), local registry only
• CORBA (Common Object Request Broker Architecture):

call-by-reference, IDL, ORB (Object Request Broker), tnameserv
• Web Services: WSDL (Web Services Description Language),

UDDI (Universal Description, Discovery, and Integration)

39 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Summary
Implementations of remote invocations: procedures, methods,
messages to processes,
 have fundamental problems that needs to be solved.

Try to see similarities between different implementations.

When they differ, is it fundamentally different or just
implementation details.

40 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

