KTH ROYAL INSTITUTE
OF TECHNOLOGY

Middleware

Remote Invocation
Vladimir Vlassov and Johan Montelius

Application layer

Socket layer

| |
’ Remote invocation / indirect communication ‘
| |
’ Network layer ‘

T

[

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 2

Request / Reply Lost request

client server client server
find server JL : find server L '
encode . = identify and locate the server encode ~. What do we do if request is lost?
send message - ~ 3) send message - v
- receive message * encode/decode the message :
decode = send reply to the right client
handle .
attach reply to request
send reply

-

. ’ —
receive reply f
1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 3 1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 4

Resend request Lost reply
client server client server

find server L : find server :
encode o = need to detect that message is encode . ¢ = client will wait for timeout
send message L potentially lost send message : ~ s _)

: : = wait for a timeout (how long) ' receive message and re-send request

or error from underlying layer : decode = nota problem
= resend the request : handle

: = simple, problem solved :

. : - send reply
resend request &~ _ : D -

3

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 5 1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 6

Problem Idempotent operations
client server + add 100 euros to my account
find server 5 * what is the status of my account
encode X : = aproblem » Sweden scored yet another goal!
send message : T war o message * server might need a history * The standing is now 2-1!
decode of all previous request
handle * might need
resend request ~ _ send reply

. -\
. -
receive reply I . | receive message

History Request-Reply-Acknowledge

If operations are not idempotent, the server must make sure client server client server
that the same request is not executed twice. L : ‘L
Keep a history of all request and the replies. If a request is e ™~ -

resent the same reply can be sent without re-execution.
For how long do you keep the history?

:<—-— ::— :
I [=-»

Request-Reply (RR) Request-Reply-Acknowledge (RRA)

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION © 1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 10

At-most-once or At-least-once At most or At least

How about this: How about errors:
If an operation succeeds, then.. Even if we do resend messages we will have to give up at
at-most-once: the request has been executed once. some time.
Implemented using a history or simply not re-sending If an operation fails/is lost, then..
requests. at-most-once:
at-least-once: the request has been executed at least once.
No need for a history, simply resend requests until a reply is at-least-once:
received.

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 11 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 12

At most or At least UDP or TCP

Pros and cons:
» at-most-once without re-sending requests:
simple to implement, not fault-tolerant
* at-most-once with history:
expensive to implement, fault-tolerant
+ at-least-once:
simple to implement, fault-tolerant

Should we implement a request-reply protocol over UDP or TCP?

Can you live with at-least-once semantics?

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 13 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 14

Synchronous or Asynchronous RR over Asynchronous

Lo Lo \

~3 - ~3 l = = send request

continue to execute
= suspend if not arrived

P i(-——"' : * read reply
v ‘r ; '

Asynchronous Synchronous

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 15 1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 16

HTTP

Hide the latency

A request reply protocol, described in RFC 2616.

- - Request = Request-Line *(header CRLF) CRLF [message-body]
—
- -
i - Request-Line = Method SP Request-URI SP HTTP-Version CRLF
- - GET /index.html HTTP/1.1\r\n foo 42 \r\n\r\nHello
- - :k - :

HTTP methods Wireshark

* GET: request a resource, should be idempotent
* HEAD: request only header information

* POST: upload information to a resource, included in body,
status of server could change

« PUT: add or replace a resource, idempotent
+ DELETE: add or replace content, idempotent

o8 (TP segment of & reassesdled PoU|
54 5390030 [ADK] Sec=64n Ack=30% Win=3847043 Lar

s
o

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 19 1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 20

HTTP GET

GET / HTTP/1.1
Host: www.kth.se

HTTP Response

HTTP/1.1 200 OK
Date: Tue, 08 Sep 2015 10:37:49 GMT
Server: Apache/2.2.15 (Red Hat)

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:40.0) Gecko/20100101 X-UA-Compatible: IE=edge

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Set-Cookie: JSESSIONID=CDC76A3;Path=/; Secure; HttpOnly
Accept-Language: en-US,en;q=0.5 Content-Language: sv-SE

Accept.Encoding: gzip, deflate Content-Length: 59507

Cookie: Connection: close

Connection: keep-alive Content-Type: text/html;charset=UTF-8

<IDOCTYPE html|>
<html lang="sv">
<title>=KTH | Valkommen till KTH</title>

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 21 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 22

The web REST and SOAP

On the web the resource is often a HTML document that is Request-reply protocols for Web-services:
presented in a browser.
* REST (Representational State Transfer)
HTTP could be used as a general-purpose request-reply * content described in XML, JSON, . . .
protocol. + light weight,
* SOAP (Simple Object Access Protocol)
* over HTTP, SMTP . ..
+ content described in SOAP/XML
» standardized, heavy weight

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 23 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 24

HTTP over TCP Masking a request-reply

Could we use a regular program construct to hide the fact
HTTP over TCP - a good idea? that we do a request-reply?

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 25 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 26

Masking a request-reply Procedure calls

What is a procedure call:
+ find the procedure

Could we use a regular program construct to hide the fact » give the procedure access to arguments
that we do a request-reply? + pass control to the procedure

* RPC: Remote Procedure Call « collect the reply if any

* RMI: Remote Method Invocation « continue execution

How do we turn this into a tool for distributed programming?

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 27 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 28

Operational semantics Call by value/reference

int x, n; int x, arr[3]; Call by value

n = 5; arr[0] = 5; — Aprocedure is given a copy of the datum
proc(n); proc(arr); Call by reference

X =n; x = arr[0]; — Anprocedure is given a reference to the datum

What if the datum is a reference and we pass a copy of the datum?
Why is this important?

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 29 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 30

RPC: Remote Procedure Call RPC: Remote Procedure Call

Client Server Client Server
______ » void inc() { : 3 ___--»voidinc() {
(RCOE—- - ="~ }g =g+l IRCCOm=—- == """ }g =o*h

g: 13 9:13

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 31 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 32

RPC: Remote Procedure Call Open Network Computing (ONC) RPC (SunRPC)

Client Server + targeting intranet, file servers etc
" ____» void inc(int[] h) { » at-least-once call .semr?mtlcs o
__________ g = g+h[2]; » procedures described in Interface Definition Language
Inc(@): == h[2] = g; (IDL)
b + XDR (eXternal Data Representation) specifies message
structure
» used UDP as transport protocol (TCP also available)
a: {1,2,3,4} g: 13

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 33 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 34

Java RMI (Remote Method Invocation) Java RMI
» similar to RPC but: We can do either:
* we now invoke methods of remote objects
+ at-most-once semantics Aremote object is passed as a reference (by reference) i.e. it

remains as at the original place where it was created.

* Objects can be passed as arguments, how should this be
done? A serializable object is passed as a copy (by value) i.e. the
by value object is duplicated.

* by reference

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 35 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 36

Finding the procedure/object Remote invocation design decisions

How do we locate a remote procedure/object/process? » failure handling: maybe / at-most-once / at-least-once
» call-by-value / call-by-reference

Network address that specifies the location or.. * message specification and encoding
» specification of resource

a known “binder” process that keeps track of registered * procedure binder

resources.

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 37 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 38

Examples Summary
¢ SunRPC: call-by-value, at-least-once, IDL, XDR, binder Implementations of remote invocations: procedures, methods,
« JavaRMI: call-by-value/reference, at-most-once, interface, messages to processes,

JRMP (Java Remote Method Protocol), rmiregistry have fundamental problems that needs to be solved.

« Erlang: message passing, maybe, no,
ETF (External Term Format), local registry only

* CORBA (Common Object Request Broker Architecture):
call-by-reference, IDL, ORB (Object Request Broker), thameserv

» Web Services: WSDL (Web Services Description Language), When they differ, is it fundamentally different or just
UDDI (Universal Description, Discovery, and Integration) implementation details.

1D2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 39 ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION 40

Try to see similarities between different implementations.

