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Middleware 

Network layer 

Socket layer 

Remote invocation / indirect communication 

Application layer 
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identify and locate the server 
encode/decode the message 
send reply to the right client 
attach reply to request 

Request / Reply 
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client server 

find server 
encode 
send message 

receive reply 

receive message 
decode 
handle 
send reply 
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What do we do if request is lost? 

Lost request 
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client server 

find server 
encode 
send message 
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need to detect that message is 
potentially lost 
wait for a timeout (how long) 
or error from underlying layer 
resend the request 
simple, problem solved 

Resend request 
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client server 

find server 
encode 
send message 

resend request 
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client will wait for timeout 
and re-send request 
not a problem 

Lost reply 
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client server 

find server 
encode 
send message 

receive message 
decode 
handle 
send reply 
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a problem  
server might need a history 
of all previous request 
might need 

Problem 
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client server 

find server 
encode 
send message 

receive reply 

receive message 
decode 
handle 
send reply ssresend request 

receive message 
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Idempotent operations 
• add 100 euros to my account 
• what is the status of my account 
• Sweden scored yet another goal! 
• The standing is now 2-1! 
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History 
If operations are not idempotent, the server must make sure 
that the same request is not executed twice. 
Keep a history of all request and the replies. If a request is 
resent the same reply can be sent without re-execution. 
For how long do you keep the history? 
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Request-Reply-Acknowledge 
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client server client server 

Request-Reply (RR) Request-Reply-Acknowledge (RRA) 
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At-most-once or At-least-once 
How about this: 
If an operation succeeds, then.. 
at-most-once: the request has been executed once. 

Implemented using a history or simply not re-sending 
requests. 

at-least-once: the request has been executed at least once. 
No need for a history, simply resend requests until a reply is 
received. 
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At most or At least 
How about errors: 
Even if we do resend messages we will have to give up at 
some time. 
If an operation fails/is lost, then.. 
at-most-once: 
 
at-least-once: 
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At most or At least 
Pros and cons: 
• at-most-once without re-sending requests: 
 simple to implement, not fault-tolerant 
• at-most-once with history: 
 expensive to implement, fault-tolerant 
• at-least-once: 

simple to implement, fault-tolerant 
 
Can you live with at-least-once semantics? 
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UDP or TCP 
 
 
Should we implement a request-reply protocol over UDP or TCP? 
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Synchronous or Asynchronous 
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Asynchronous Synchronous 
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RR over Asynchronous 
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send request 
continue to execute 
suspend if not arrived 
read reply 
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Hide the latency 
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HTTP 
A request reply protocol, described in RFC 2616. 
 
Request = Request-Line *(header CRLF) CRLF [ message-body ] 
 
Request-Line = Method SP Request-URI SP HTTP-Version CRLF 
 

GET /index.html HTTP/1.1\r\n foo 42 \r\n\r\nHello 
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HTTP methods 
• GET: request a resource, should be idempotent 
• HEAD: request only header information 
• POST: upload information to a resource, included in body, 

status of server could change 
• PUT: add or replace a resource, idempotent 
• DELETE: add or replace content, idempotent 
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Wireshark 
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HTTP GET 
GET / HTTP/1.1 
Host: www.kth.se 
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:40.0) Gecko/20100101 
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 
Accept-Language: en-US,en;q=0.5 
Accept.Encoding: gzip, deflate 
Cookie: ...... 
Connection: keep-alive 
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HTTP Response 
HTTP/1.1 200 OK 
Date: Tue, 08 Sep 2015 10:37:49 GMT 
Server: Apache/2.2.15 (Red Hat) 
X-UA-Compatible: IE=edge 
Set-Cookie: JSESSIONID=CDC76A3;Path=/; Secure; HttpOnly 
Content-Language: sv-SE 
Content-Length: 59507 
Connection: close 
Content-Type: text/html;charset=UTF-8 
<!DOCTYPE html> 
<html lang="sv"> 
<title>KTH | Valkommen till KTH</title> 
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The web 
On the web the resource is often a HTML document that is 
presented in a browser. 
 
HTTP could be used as a general-purpose request-reply 
protocol. 
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REST and SOAP 
Request-reply protocols for Web-services: 
 
• REST (Representational State Transfer) 

• content described in XML, JSON, . . . 
• light weight, 

• SOAP (Simple Object Access Protocol) 
• over HTTP, SMTP . . . 
• content described in SOAP/XML 
• standardized, heavy weight 
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HTTP over TCP 
 
 
 
HTTP over TCP - a good idea? 
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Masking a request-reply 
 
 
Could we use a regular program construct to hide the fact 
that we do a request-reply? 
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Masking a request-reply 
 
 
Could we use a regular program construct to hide the fact 
that we do a request-reply? 
• RPC: Remote Procedure Call 
• RMI: Remote Method Invocation 
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Procedure calls 
What is a procedure call: 

• find the procedure 
• give the procedure access to arguments 
• pass control to the procedure 
• collect the reply if any 
• continue execution 

 
How do we turn this into a tool for distributed programming? 
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int x, n; 
n = 5; 
proc(n); 
x = n; 

Operational semantics 
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int x, arr[3]; 
arr[0] = 5; 
proc(arr); 
x = arr[0]; 
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Call by value/reference 
Call by value 

– A procedure is given a copy of the datum 
Call by reference 

– A procedure is given a reference to the datum  
 

What if the datum is a reference and we pass a copy of the datum? 
Why is this important? 
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RPC: Remote Procedure Call 
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Client Server 

. 

. 
inc(); 
. 
. 

void inc() { 
  g = g+1; 
} 

g: 13 

v

RPC: Remote Procedure Call 
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Client Server 

. 

. 
inc(x); 
. 
. 

void inc(i) { 
  g = g+i; 
} 

g: 13 

v

x: 3 

3 



RPC: Remote Procedure Call 
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Client Server 

. 

. 
inc(a); 
. 
. 

void inc(int[] h) { 
  g = g+h[2]; 
  h[2] = g; 
} 

g: 13 

v

a: {1,2,3,4} 

? 

Open Network Computing (ONC) RPC (SunRPC) 

• targeting intranet, file servers etc 
• at-least-once call semantics 
• procedures described in Interface Definition Language 

(IDL) 
• XDR (eXternal Data Representation) specifies message 

structure 
• used UDP as transport protocol (TCP also available) 
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Java RMI (Remote Method Invocation) 
• similar to RPC but: 

• we now invoke methods of remote objects 
• at-most-once semantics 
 

• Objects can be passed as arguments, how should this be 
done? 
• by value 
• by reference 
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Java RMI 
We can do either: 
 
A remote object is passed as a reference (by reference) i.e. it 
remains as at the original place where it was created. 
 
A serializable object is passed as a copy (by value) i.e. the 
object is duplicated. 
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Finding the procedure/object 
How do we locate a remote procedure/object/process? 
 
Network address that specifies the location or.. 
 
a known “binder” process that keeps track of registered 
resources. 
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Remote invocation design decisions 
• failure handling: maybe / at-most-once / at-least-once 
• call-by-value / call-by-reference 
• message specification and encoding 
• specification of resource 
• procedure binder 
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Examples 
• SunRPC: call-by-value, at-least-once, IDL, XDR, binder 
• JavaRMI: call-by-value/reference, at-most-once, interface,  

JRMP (Java Remote Method Protocol), rmiregistry 
• Erlang: message passing, maybe, no,  

ETF (External Term Format), local registry only 
• CORBA (Common Object Request Broker Architecture):  

call-by-reference, IDL, ORB (Object Request Broker), tnameserv 
• Web Services: WSDL (Web Services Description Language), 

UDDI (Universal Description, Discovery, and Integration) 
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Summary 
Implementations of remote invocations: procedures, methods, 
messages to processes,  
 have fundamental problems that needs to be solved. 
 
Try to see similarities between different implementations. 
 
When they differ, is it fundamentally different or just 
implementation details. 
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