
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Coordination
Vladimir Vlassov and Johan Montelius

Coordination

Why is coordination important?

Why is it a problem to implement?

2 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Coordination

Coordination in a distributed system:
• no fixed coordinator
• no shared memory
• failure of nodes and networks

The hardest problem is often knowing who is alive.

3 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Failure detectors

How do we detect that a process has crashed and how
reliable can the result be?

• unreliable: result in unsuspected or suspected failure
• reliable: result in unsuspected or failed

Reliable detectors are only possible in synchronous systems.

4 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Examples of coordination

• Mutual exclusion - who is to enter a critical section
• Leader election - who is to be the new leader
• Group communication - same messages in the same order

5 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Mutual exclusion

Safety: at most one process may be in critical section at a time
Liveness: starvation free, deadlock free
Ordering: enter in request happened-before order

6 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Evaluation of algorithms

• Number of messages needed.
• Client delay: time to enter critical section
• Synchronization delay: time between exit and enter

7 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

A central server

Why not have one server that takes care of everything?

8 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

• request a token from the server
• wait for a token that grants access
• enter critical section and execute in it
• exit critical section and return the token

request
granted
return

Requirements: safety, liveness, ordering?
Evaluation: number of messages, client delay, synchronization delay

A ring based approach
Pass a token around the ring

9 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

• pass a token around
• before entering the critical section -

remove the token
• when leaving the critical section - release

the token

Requirements: safety, liveness, ordering?
Evaluation: number of messages, client delay, synchronization delay

p3

p2

p1 p0

pn token

p4

Why not complicate things?
To request entry:

• ask all other nodes for permission
• wait for all replies (save all

requests from other nodes)
• enter the critical section
• leave the critical section (give

permission to saved request)

A distributed approach

10 / 29 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

otherwise:
• give permission to anyone

What could possibly go wrong?
How do we solve it?

Ricart and Agrawala
A request contains a Lamport time stamp and a process identifier.

Request can be ordered based on the time stamp and, if time
stamps are equal, the process identifier.

When you’re waiting for permissions and receive a request from
another node:
• if the request is smaller, then give permission
• otherwise, save request

What order do we guarantee?

11 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

To request entry:
• ask all nodes your quorum for permission
• wait for all to vote for you:

• queue requests from other nodes
• enter the critical section
• leave the critical section:

• return all votes
• vote for the first request if any in the queue

Maekawa’s voting algorithm

12 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

otherwise:
• if you have not voted:

• vote for the first node to send a request
• if you have voted:

• wait for your vote to return, queue
requests from other nodes

• when your vote is returned, vote for the
first request if any in the queue

Why ask all nodes for permission, why not settle for a quorum?

How do we form quorums?
• allow any majority of nodes
• divide nodes into groups, any

two groups must share a node
• how small can the groups be?

Forming quorums

13 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Can we handle failures

All algorithms presented are more or less tolerant to failures.

Unreliable networks can be made reliable by retransmission
(we must be careful to avoid duplication of messages)

Crashing nodes, even if we have can detect them reliably, is
a problem.

14 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Election
Election, the problem of finding a leader in a group of nodes.

We assume that all nodes have unique identifiers.

Each node can decide which node to trust to be the leader.

Requirements:

• safety: if two nodes have decided they have decided to trust the
same leader

• liveness: all nodes will eventually decide

Algorithms are evaluated on: number of messages and turnaround time.

15 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

A ring based approach

• a node starts an election

ID2201 DISTRIBUTED SYSTEMS / COORDINATION

10

7

12

5

3
call: 3

A ring based approach

• a node starts an election
• the call is updated

ID2201 DISTRIBUTED SYSTEMS / COORDINATION

10

7

12

5

3
call: 3

call: 10

call: 10

call: 12

call: 12

A ring based approach

• a node starts an election
• the call is updated
• the leader is identified

ID2201 DISTRIBUTED SYSTEMS / COORDINATION

10

7

12

5

3
call: 12

call: 12

call: 12

A ring based approach

• a node starts an election
• the call is updated
• the leader is identified
• and proclaimed

Requirements: safety, liveness?
Evaluation: messages, turnaround?

ID2201 DISTRIBUTED SYSTEMS / COORDINATION

10

7

12

5

3
call: 12

call: 12

call: 12

call: 12

call: 12

The bully algorithm

Electing a new leader when the current leader has died.

• assumes we have reliable failure detectors
• all nodes know the nodes with higher priority

Assume we give priority to the nodes with lower process
identifiers.

20 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

The bully algorithm

21 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

3 6 8 13 18

The bully algorithm

22 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

3 6 8 13 18

Who is the leader?

The bully algorithm

23 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

3 6 8 13 18

It’s not you!

The bully algorithm

24 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

3 6 8 13 18

Who is the leader?

The bully algorithm

25 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

3 6 8 13 18

It’s not you!

The bully algorithm

26 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

3 6 8 13 18

I’m the leader!

Requirements: safety, liveness? Evaluation: messages, turnaround?

Reliability
• integrity: a message is only delivered once
• validity: a messages is eventually delivered
• agreement: if a node delivers a message then

all nodes will
Ordering of delivery:

• FIFO: in the order of the sender
• causal: in a happened-before order
• total: the same order for all nodes

Group communication

27 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

application layer

group layer

network layer

cast

send

deliver

receive

Multicast a message to specified group of nodes.

Basic multicast

Assuming we have a reliable network layer this is simple.

A casted message is sent to all nodes in the group.

A received message is delivered.

What if nodes fail?

28 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Worst possible scenario

29 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

p5

p4

p3

p1

p2

Worst possible scenario

We have violated the agreement requirement.

How do we fix it?

30 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

p5

p4

p3

p2

Reliable multicast

31 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

p5

p4

p3

p1

p2

When receiving a message, forward it to all
nodes.

Watch out for duplicates.

Reliable multicast

32 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

p5

p4

p3

p2

When receiving a message, forward it to all
nodes.

Watch out for duplicates.

A lot of messages!

Reliable multicast often implemented by
detecting failed nodes and then fix the problem.

Uniform agreement

33 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Assume we first deliver a received message
before we forward it.

p5

p4

p3

p1

p2

Uniform agreement

34 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Assume we first deliver a received message
before we forward it.

p5

p4

p3

p2

Uniform agreement

35 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Assume we first deliver a received message
before we forward it.

Crashed nodes could have delivered a message.

Uniform agreement: if any node, correct or
incorrect, delivers a message then all correct
node will deliver the message.

Non-uniform agreement: if a correct node
delivers a message then all correct node will
deliver the message.

p5

p4

p3

Ordered multicast

• FIFO: in the order of the sender
• causal: in a happened-before order
• total: the same order for all nodes

36 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Sequencer

37 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

The simple way to implement ordered multicast.
• multicast the message to all nodes
• place in a hold-back queue

seq

p4

p3

p1

p2

m
sg

 k

Sequencer

38 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

The simple way to implement ordered multicast.
• multicast the message to all nodes
• place in a hold-back queue
• multicast a sequence number to all nodes
• deliver in total order

seq

p4

p3

p1

p2

se
q

k-
i

The ISIS algorithm

39 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Similar to Ricart and Agrawala.
• multicast the message to all nodes
• place in a hold-back queue

p5

p4

p3

p1

p2

m
sg

 k

The ISIS algorithm

40 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Similar to Ricart and Agrawala.
• multicast the message to all nodes
• place in a hold-back queue
• propose a sequence number
• select the highest

p5

p4

p3

p1

p2

pr
op

 i 5

The ISIS algorithm

41 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Similar to Ricart and Agrawala.
• multicast the message to all nodes
• place in a hold-back queue
• propose a sequence number
• select the highest
• multicast the sequence number to all nodes
• deliver in total order

Why does this work? p5

p4

p3

p1

p2

se
q

k-
i

Causual ordering

Surprisingly simple!

42 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Atomic Multicast

Atomic multicast: a reliable total order muclticast.
Solves both leader election and mutual exclusion.

43 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

Summary

Coordination:

• mutual exclusion
• leader election
• group communication

Biggest problem is dealing with failing nodes.

44 ID2201 DISTRIBUTED SYSTEMS / COORDINATION

	Coordination
	Coordination
	Coordination
	Failure detectors
	Examples of coordination
	Mutual exclusion
	Evaluation of algorithms
	A central server
	A ring based approach
	A distributed approach
	Ricart and Agrawala
	Maekawa’s voting algorithm
	Forming quorums
	Can we handle failures
	Election
	A ring based approach
	A ring based approach
	A ring based approach
	A ring based approach
	The bully algorithm
	The bully algorithm
	The bully algorithm
	The bully algorithm
	The bully algorithm
	The bully algorithm
	The bully algorithm
	Group communication
	Basic multicast
	Worst possible scenario
	Worst possible scenario
	Reliable multicast
	Reliable multicast
	Uniform agreement
	Uniform agreement
	Uniform agreement
	Ordered multicast
	Sequencer
	Sequencer
	The ISIS algorithm
	The ISIS algorithm
	The ISIS algorithm
	Causual ordering
	Atomic Multicast
	Summary

