Groupy: a group membership service

Johan Montelius and Vladimir Vlassov

August 29, 2016

Introduction

This is an assignment were you will implement a group membership service that provides atomic multicast. The aim is to have several application layer processes with a coordinated state i.e. they should all perform the same sequence of state changes. A node that wishes to perform a state change must first multicast the change to the group so that all nodes can execute it. Since the multicast layer provides total order, all nodes will be synchronized.

The problem in this assignment is that all nodes need to be synchronized even though nodes may come and go (crash). As you will see it is not as trivial as one might first think.

1 The architecture

We will implement a group membership service that provides atomic multicast in view synchrony. The architecture consists of a set of nodes where one is the elected leader. All nodes that wish to multicast a message will send the message to the leader and the leader will do a basic multicast to all members of the group. If the leader dies a new leader is elected.

A new node that wishes to enter the group will contact any node in the group and request to be join the group. The leader will determine when the node is to be included and deliver a new view to the group.

Each application layer process will have its own group process that it communicates with. The application layer will send multicast messages to the group process and receive all multicasted messages from it. The application layer must also be prepared to decide if a new node should be allowed to enter the group and also decide the initial state of this node.

Note that we will not deliver any views to the application layer. We could adapt the system so that it reports any view changes but for the application that we are targeting this is not needed. We will keep it as simple as possible and then discuss extensions and how much they would cost.

1.1 View synchrony

Each node in the group should be able to multicast messages to the members of the group. The communication is divided into views and messages will be said to be delivered in a view. For all messages in a view we will guarantee the following:

- in FIFO order: in the order that they were sent by a node
- in total order: all nodes see the same sequence
- reliably: if a correct node delivers a message, all correct nodes deliver the message

The last statement seems to be a bit weak, what do we mean by a correct node? A node will fail only by crashing and will then never be heard from again. A correct node is a node that does not fail during a view i.e. it survives to install the next view.

It will not be guaranteed that sent messages are delivered, we will use asynchronous sending without acknowledgment and if we have a failing leader a sent message might disappear.

1.2 The leader

A node will either play the role of a leader (let's hope there is only one) or a slave. All slaves will forward messages to the leader and the leader will tag each message with a sequence number and multicast it to all nodes. The leader can also accept a message directly from its own master i.e. the application layer. The application layer is unaware of whether its group process is acting as a leader or a slave.

1.3 A slave

A slave will receive messages from its application layer process and forward them to the leader. It will also receive messages from the leader and forward them to the application layer. If nodes would not fail this would be the easiest job in the world but since we must be able to act if the leader dies we need to do some bookkeeping.

In our first version of the implementation, we will not deal with failures but only with adding new nodes to the system. This is complicated enough to start with.

1.4 The election

The election procedure is very simple. All slaves have the same list of peers and they all elect the first node in the list as the leader. A slave that detects that it is the first node will of course adopt the role as leader. The leader will have to resend the last message that it received and the slaves will have to monitor the new leader.

1.5 The application layer

An application process will create a group process and contact any other application process it knows of. It will request to join the group providing the process identifier of its group process. It will then wait for a view delivery, containing the peer processes in the group.

There is no guarantee that the request is delivered to the leader or the leader could be dead and we have not detected this yet. The requesting application process is however not told about this so we can not do anything but wait and hope for the best. We will use a timeout and if we have not been invited we just abort the attempt.

Once added to the group the application process has the problem of obtaining the correct state (the color). It does this by using the atomic multicast layer in a clever way. It sends a request to obtain the state and waits for this message to be delivered to itself. It now knows that the other processes sees this message and respond by sending the state, also using the multicast layer.

The state message might however not be the first message that is delivered. We might have other state changes in the pipeline. Once the state is received these state changes must of course be applied to the state before the process is up and running. The implementation uses the implicit deferral of Erlang and simply let any state change messages remain in the message queue and chooses to handle the state message first before the state change messages.

2 The first implementation

Our first version, called gms1, will only handle starting of a single node and the adding of more nodes. Failures will not be handled so some of the states that we need to keep track of is not described. We will then extend this implementation to handle failures.

The group process will when started be a slave but might in the future become a leader. The first process that is started will however become a leader directly.

2.1 The leader process

The leader keeps the following state:

- Id: a unique name, of the node, only used for debugging
- Master: the process identifier of the application layer
- Slaves: an ordered list of the process identifiers of all slaves in the group

• Group: a list of all application layer processes in the group

The list of slaves is ordered based on when they were admitted to the group. We will use this order in the election procedure.

The leader should be able to handle the following messages:

- {mcast, Msg}: a message either from its own master or from a peer node. A message {msg, Msg} is multicasted to all peers and a message Msg is sent to the application layer.
- {join, Wrk, Peer}: a message, from a peer or the master, that is a request from a node to join the group. The message contains both the process identifier of the application layer, Wrk, and the process identifier of its group process.

The state of a leader is implemented by the following procedure. We use a function bcast/3 that will send a message to each of the processes in a list.

```
leader(Id, Master, Slaves, Group) ->
receive
{mcast, Msg} ->
bcast(Id, {msg, Msg}, Slaves),
Master ! Msg,
leader(Id, Master, Slaves, Group);
{join, Wrk, Peer} ->
Slaves2 = lists:append(Slaves, [Peer]),
Group2 = lists:append(Group, [Wrk]),
bcast(Id, {view, [self()|Slaves2], Group2}, Slaves2),
Master ! {view, Group2},
leader(Id, Master, Slaves2, Group2);
stop ->
ok
end.
```

Notice that we add the new node at the end of the list of peers. This is important, we want the new node to be the last one to see the view message that we send out. More on this later when we look at failing nodes.

2.2 A slave

A slave has an even simpler job, it will not make any complicated decisions. It is simply forwarding messages from its master to the leader and vice verse. The state of a slave is exactly the same as for the leader with the only exception that the slaves keep explicit track of the leader.

The messages from the master are the following:

- {mcast, Msg}: a request from its master to multicast a message, the message is forwarded to the leader.
- {join, Wrk, Peer}: a request from the master to allow a new node to join the group, the message is forwarded to the leader.
- {msg, Msg}: a multicasted message from the leader. A message Msg is sent to the master.
- {view, Peers, Group}: a multicasted view from the leader. A view is delivered to the master process.

This is the implementation of the slave:

```
slave(Id, Master, Leader, Slaves, Group) ->
    receive
        {mcast, Msg} ->
            Leader ! {mcast, Msg},
            slave(Id, Master, Leader, Slaves, Group);
        {join, Wrk, Peer} ->
            Leader ! {join, Wrk, Peer},
            slave(Id, Master, Leader, Slaves, Group);
        \{msg, Msg\} \rightarrow
            Master ! Msg,
            slave(Id, Master, Leader, Slaves, Group);
        {view, [Leader|Slaves2], Group2} ->
            Master ! {view, Group2}
            slave(Id, Master, Leader, Slaves2, Group2);
        stop ->
            ok
    end.
```

Since we will not yet deal with failure there is no transition between being a slave and becoming a leader. We will add this later but first let us have this thing up and running.

2.3 Initialization

Initializing a process that is the first node in a group is simple. The only thing we need to do is to give it an empty list of peers and let it know that its master is the only node in the group. Since it is the only node in the group it will of course be the leader of the group.

```
start(Id) ->
Self = self(),
{ok, spawn_link(fun()-> init(Id, Self) end)}.
```

```
init(Id, Master) ->
    leader(Id, Master, [], [Master]).
```

Starting a node that should join an existing group is only slightly more problematic. We need to send a {join, Master, self()} message to a node in the group and wait for an invitation. The invitation is delivered as a view message containing everything we need to know. The initial state is of course as a slave.

```
start(Id, Grp) ->
Self = self(),
{ok, spawn_link(fun()-> init(Id, Grp, Self) end)}.
init(Id, Grp, Master) ->
Self = self(),
Grp ! {join, Master, Self},
receive
{view, [Leader|Slaves], Group} ->
Master ! {view, Group},
slave(Id, Master, Leader, Slaves, Group)
end.
```

2.4 The application process

To do some experiment we create worker that uses a gui to describe its state. Make sure that you can create a group and add some peers.

3 Handling failure

We will build up our fault tolerance gradually. First we will make sure that we detect crashes, then to make sure that a new leader is elected an then make sure that the layer preserves the properties of the atomic multicast. Keep gms1 as a reference and call the adapted module gms2.

3.1 Failure detectors

We will use the Erlang built in support to detect and report that processes have crashed. A process can monitor another node an if that nodes dies a message will be received. For now we will assume that the monitors are perfect i.e. they will eventually report the crash of a node and they will never report the death of a node that has not died.

We will also assume that the message that inform a process about a death of a process is the last message that it will see from the node. The message will thus be received in FIFO order as any regular message. The question we first need to answer is, who should monitor who? In our architecture we need not report new views when a slave dies and there is nothing to prevent a dead slave to be part of a view so we will keep things simple; the only node that will be monitored is the leader. A slave that detects that a leader has died will move to an election state.

This is implemented by first adding a call to erlang:monitor/2 in the initialization of the slave:

erlang:monitor(process, Leader)

and a new clause in the state of the slave:

```
{'DOWN', _Ref, process, Leader, _Reason} ->
    election(Id, Master, Slaves, Group);
```

In the election state the process will select the first node in its lists of peers and elect this as the leader. It could of course be that the process finds itself being the first node and it will thus become the leader of the group.

```
election(Id, Master, Slaves, [_|Group]) ->
   Self = self(),
   case Slaves of
      [Self|Rest] ->
        bcast(Id, {view, Slaves, Group}, Rest),
        Master ! {view, Group},
        leader(Id, Master, Rest, Group);
      [Leader|Rest] ->
        erlang:monitor(process, Leader),
        slave(Id, Master, Leader, Rest, Group)
   end.
```

One thing that we have to pay attention to is what we should do if, as a slave, receive the *view message* from the new leader before we have noticed that the old leader is dead. Should we refuse to handle view messages unless we have seen the *Down message* from the leader or should we happily receive accept the new view and then ignore trailing *Down messages*.

Since the leader can crash it could be that a node that wants to join the group will never receive a reply. The message could be forwarded to a dead leader and the joining node is never informed of the fact that its request was lost. We simply add a timeout when waiting for an invitation to join the group.

```
after ?timeout ->
    Master ! {error, "no reply from leader"}
```

That is it we can now both add new nodes to the system and survive even if nodes crash. That was not that hard was it? Do some experiments to see that it works and then ship the product.

3.2 Missing messages

Is seams to be too easy and unfortunately it is. To show that it is not working we can change the bcast/3 procedure and introduce a random crash. We define a constant arghh that defines the risk of crashing. A value of 100 means that a process will crash in average once in a hundred attempts. The definition of bcast/3 now looks like this:

```
bcast(Id, Msg, Nodes) ->
    lists:foreach(fun(Node) -> Node ! Msg, crash(Id) end, Nodes).
crash(Id) ->
    case random:uniform(?arghh) of
        ?arghh ->
            io:format("leader ~w: crash~n", [Id]),
            exit(no_luck);
            _->
                  ok
    end.
```

We also add seeding of the random number generator when starting a process so that we will not have all processes crashing at the same time. The initialization is for example done as follows, the slave will be initialized in a similar manner.

```
start(Id) ->
Rnd = random:uniform(1000),
Self = self(),
{ok, spawn_link(fun()-> init(Id, Rnd, Self) end)}.
init(Id, Rnd, Master) ->
random:seed(Rnd, Rnd, Rnd),
leader(Id, Master, [], [Master]).
```

Run some experiments and see if you can have the state of the workers become out of sync. What is happening?

3.3 Reliable multicast

To remedy the problem we could replace the basic multicaster with a reliable multicaster. A process that would forward all messages before delivering them to the higher layer. Using a vanilla reliable multicaster would however be very costly, we could try a smarter solution.

Assume that we keep a copy of the last message that we have seen from the leader. If we detect the death of the leader it could be that it died during the basic multicast procedure and that some nodes have not seen the message. We will now make an assumption that we will discuss later:

- Messages are reliably delivered and thus,
- if the leader sends a message to A and then B, and B receives the message, then also A will receive the message.

The leader is sending messages to the peers in the order that they occur in the list of peers. If anyone receives a message then the first peer in the list receives the message. This means that only the next leader needs to resend the message.

This will of course introduce the possibilities of doublets of messages being received. In order to detect this we will number all messages and only deliver new messages to the application layer.

Lets go through the changes that we need to make and create a new module gms3 that implements these changes.

- slave(Id, Master, Leader, N, Last, Slaves, Group): the slave procedure is extended with two arguments: N and Last. N is the expected sequence number of the next message and Last is a copy of the last message (a regular message or a view) received from the leader.
- election(Id, Master, N, Last, Slaves, Group): the election procedure is extended with the same two arguments.
- leader(Id, Master, N, Slaves): the leader procedure is extended with the the argument N, the sequence number of the next message (regular message or view) to be sent.

The messages are also changed and will now contain the sequence number.

- {msg, N, Msg}: a regular message with a sequence number.
- {view, N, Peers, Group}: a view message with a sequence number.

We must also add clauses to the slave to accept and ignore duplicate messages. If we do not remove these from the message queue they will add up and after a year generate a very hard to handle trouble report.

When discarding messages we discard messages we only want to discard messages that we have seen i.e. messages with a sequence number less than N. We can do this by using the **when** construction. For example:

{msg, I, _} when I < N ->
 slave(Id, Master, Leader, N, Last, Slaves, Group);

You might wonder how a message possibly could arrive early but there is a small window where this could actually happen.

The crucial part is then in the election procedure where the elected leader will forward the last received message to all peers in the group. Hopefully this will be enough to keep slaves synchronized.

```
bcast(Id, Last, Rest),
```

This completes the transition and gms3 should be ready for release.

3.4 Some experiments

Run some experiments and create a group spanning several computers, if available. Can we keep a group rolling by adding more nodes as existing nodes die?

Assuming all test went well we're ready to ship the product. There is however one thing we need to mention and that is that our implementation does not work. Well, it sort of works depending on what the Erlang environment guarantees and how strong our requirements are.

4 What could possibly go wrong

The first thing we have to realize is what guarantees the Erlang system actually gives on message sending. The specifications only guarantee that messages are delivered in FIFO order, not that they actually do arrive. We have built our system relying on reliable delivery of messages, something that is not guaranteed.

How would we have to change the implementation to handle the possibly lost messages? How would this impact performance?

The second reason why things will not work is that we rely on that the Erlang failure detector is perfect i.e. that it will never suspect any correct node for having crashed. Is this really the case? Can we adapt the system so that it will behave correctly if it does make progress, even though it might not always make progress?

The third reason why things do not work is that we could have a situation where one incorrect node delivers a message that will not be delivered by any correct node. This could happen even if we had reliable send operations and perfect failure detectors. How could this happen and how likely is it that it does? What would a solution look like?