CHAPTER1

Introduction

This chapter is a prelude to this book. It first describes in general texms what the
discipline of dynamical systems is about. The following sections contain a large
number of exampies. Some of the problems treated later in the book appear here
for the first time. '

1.1 DYNAMICS

What is a dynamical system? It is dynamical, something happens, something
changes over time. How do things change in nature? Galileo Galilei and Isaac Newton
were key players in a revolution whose central tenet is Nature obeys unchanging
laws that mathematics can describe. Things behave and evolve in a way determined
by fixed rules. The prehistory of dynamics as we know it is the development of
the laws of mechanics, the pursuit of exact science, and the full development of
classical and celestial mechanics. The Newtonian revolution lies in the fact that
the principles of nature can be expressed in terms of mathematics, and physical
events can be predicted and designed with mathematical cettainty. After mechanics,
electricity, magnetism, and thermodynamics, other natural sciences followed suit,

and in the social sciences quantitative deterministic descriptions also have taken a
hold. '

1.1.1 Determinism Versus Predictability _
The key word is determinism: Nature obeys unchanging laws. The regularity of
celestial motions has been the primary example of order in nature forever:

God said, let there be lights in the firmament of the heavens to divide the day from the
night and let them be for signs and for seasons and for days and years,

The successes of classical and especially celestial mechanics in the eighteenth and
nineteenth centuries were seemingly unlimited, and Pierre Simon de Laplace felt
justified in saying (in the opening passage he added to his 1812 Philosophical Essay
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1. Introduction

on Probabilities):

We ought then to consider the present state of the universe as the effects of its pre-
vious state and as the cause of that which is to follow. An inteiligence that, ata given
instant, could comprehend all the forces by which nature is animated and the respec-
tive situation of the beings that make it up, if moreover it were vast enough to submit
these data to analysis, would encompass in the same formula the movements of the
greatest bodies of the universe and those of the lightest atoms. For such an intelli-
gence nothing would be uncertain, and the future, like the past, would be open to its
eyes.!
The enthusiasm in this 1812 overture is understandable, and this forceful descrip-
tion of determinism is a good anchor for an understanding of one of the ba-
sic aspects of dynamical systems. Moreover, the titanic life’s work of Laplace in
celestial mechanics earned him the right to make such bold pronouncernents.
There are some problems with this statement, however, and a central mission
of dynamical systems and of this book is to explore the relation between de-
terminism and predictability, which Laplace’s statement misses. The history of
the modern theory of dynamical systems begins with Henri Jules Poincaré in
the late nineteenth century. Almost 100 years after Laplace he wrote a summary

rejoinder:

If we could know exactly the taws of nature and the situation of the universe at the
initial instant, we should be able to predict exactly the situation of this same universe
at a subsequent instant. But even when the natural laws should have no further secret
for us, we could know the initial situation onty approximately. If that permits us to
foresee the subsequent sjtuation with the same degree of approximation, this is all we
require, we say the phenomenon has been predicted, that itis ruled by laws. But this
is not always the case; it may happen that slight differences in the ipitial conditions
produce very great differences in the final phenomena; a slight error in the former
would make an enormous error in the latter, Prediction becomes impossible and we

have the fortuitous phenornenon,Z

His insights led to the point of view that underlies the study of dynamics as it is
practiced now and as we present itin this book: The study of long-term asymptotic
behavior, and especially that of its qu alitative aspects, requires direct methods that
do not rely on prior explicit calculation of solutions. And in addition to the qual-
jtative (geometric) study of a dynamical system, probabilistic phenomena play a
role. ‘ . '

A major motivation for the study of dynamical systems is their pervasive im-
portance in dealing with the world around us. Many systems evolve continuously
in time, such as those in mechanics, but there are also systems that naturally
evolve in discrete steps. We presently describe models of, for example, butterfly

populations, that are clocked by natural cycles. Butterflies live in the summer, and

I Pierre Simon marquis de Laplace, Philosophical Essay on Probabilities, translated from the fifth
French edition of 1925 by Andrew L Dale, Springet-Verlag, New York, 1995, p. 2.

2 Heprl Jules Pt_)'mcaré, Science et méthode, Section IVIL, Flamnmarion 1908; see The Foundations of
Science; Scienceand Hypothests, The Value of science, Seience and Method, translated by George Bruce
Halsted, The Science Press, Lancaster, PA, 1946, pp. 3975 The Value of Science: Essential Writings of
Henri Poincaré, edited by Stephen Jay Gould, Modern Library, 2001.
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1.1 Dynamics : 3

we discuss laws describing how next summer’s population size is determined by
that of this summer. There are also ways of studying a continuous-time system
by making it look lke a discrete-time system. For example, one might check on
the moon’s position precisely every 24 hours. Or one could keep track of where
it rises any given day. Therefore we allow dynamical systerns to evolve in dis-
crete steps, where the same rule is applied repeatedly to the result of the previous
step.

This is important for another reason. Such stepwise processes do not only oc-
cur in the world around us, but also in our minds. This happens whenever we go
through repeated steps on our way to the elusive perfect solution, Applied to such
procedures, dynamics provides insights and methods that are useful in analysis. We
show in this book that important facts in analysis are consequences of dynamical
facts, even of some rather simple ones: The Contraction Principle (Proposition 2.2.8,
Proposition 2.2.10, Proposition 2.6.10} gives the Inverse-Function Theorem 9.2.2
and the Implicit-Function Theorem 9.2.3. The power of dynamics in situations of
this kind has to do with the fact that various problems can be approached with an
iterative procedure of successive approximation by improved guesses at an answer.
Dynamics naturally provides the means to understand where such a procedure
leads.

1.1.2 Dynamics in Analysis

Whenever you use a systematic procedure to improve a guess at a solution you are
likely to have found a way of using dynamics to solve your problem exactly. To begin
to appreciate the power of this approach it is important to understand that the iter-
ative processes dynamics can handle are not at all required to operate on numbers
only. They may manipulate quite complex classes of objects: numbers, points in
Euclidean spadce, curves, functions, sequences, mappings, and so on. The possibil-
ities are endless, and dynamics can handle them all. We use iteration schemes on
functions in Section 9.4, mappings in Section 9.2.1 and sequences in Section 9.5.
The beauty of these applications lies in the elegance, power, and simplicity of the
solutions and insights they provide.

1.1.3 Dynamics in Mathematics

The preceding list touches only on a portion of the utility of dynamical systems
in understanding mathematical structures. There are others, where insights into
certain patterns in some branches of mathematics are most easily obtained by
perceiving that underlying the structure in question is something of a dynamical
nature that can readily be analyzed or, sometimes, has been analyzed already. This
is arange of applications of dynamical ideas that is exciting because it often involves
phenomena of a rich subtlety and variety. Here the beauty of applying dynamical
systems lies in the variety of behaviors, the surprising discovery of order in bewil-
dering complexity, and in the coherence between different areas of mathematics
that one may discover. Alittle later in this introductory chapter we give some simple
examnples of such situations.
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E EXERCISES '

In these exercises you are asked to use a calculator to play with some simple iterative
procedures. These are not random samples, and we return to several of these in
due course. In each exercise you are given a function f as well as a number . The
assignment is to consider the sequence defined recursively by the given initial value
and the rule %1 = f(x,). Compute enough terms to describe what happens in the
long run. If the sequence converges, note the limit and endeavor to determine a
closed expression for it. Note the number of steps you needed to compute to see
the pattern or to get a good approximation of the limit.

B Exercise 111 f(x)=+24+x, x0=1.

B Exercise 1.1.2 f(x) =sinx, xp = 1. Use the degree setting on your calculator —
this means that (in radians) we actually compute f(x) = sin(mx/ 180).

Exercise 1.1.3 f{x) = sinx, x = 1. Usethe radian setting here and forever after.

B Exercise 1.1.4 f(x) =cosx, x = L.

‘M Exercise 1.1.5

xsinx+cosx
C14sinx

# Exercise 1.1.6 f(x) = {10x} = 10x — | 10x] (fractional part), % = /1/2.
B Exercise 1.1.7 f(x) = {2x}, % = /1/2.

@ Exercise 1.1.8

flx) = , xp=3/4.

5+ x%

\ =2,
2x o

flx) =

. ® Exerdise 1.1.9 fix)=x—tanx, x = 1.

B Exercise 1.1.10 f(x) = kx(1 — x), xo = 1/2, k= 1/2, 1, 2,3.1,3.5, 383,399, 4

B Exercise 1111 f(X)=x+e ¥ p=1

1.2 DYNAMICS IN NATURE

1.2.1 Antipodal Rabbits
Rabbits are not indigenous to Australia, but 24 wild European rabbits were intro-
duced by one Thomas Austin near Geelong in Southern Victoria around 1860, with
unfortunate consequences. Within a decade they were rampant across Victoria,
and within 20 years millions had devastated the land, and a prize of £25,000 was
advertized for a solution. By 1910 their descendants.had spread across most of the
continent. The ecological impact is deep and widespread and has been called a
national tragedy. The annual cost to agriculture is estimated at AUS600 million.
The unchecked growth of their population makes an interesting example of a
dynamical system.

In modeling the development of this population we make a few choices. Its
large size suggests to count it in millions, and when the number of rabbits is
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1.2 Dynamics in Nature 5

expressed as x million then x is not necessarily an integer. After all, the initial value
is 0.000024 million rabbits. Therefore we measure the population by a real number
x. As for time, in a mild climate rabbits — famously — reproduce continuously.
(This is different for butterflies, say, whose existence and reproduction are strictly

seasonal; see Section 1.2.9.) Therefore we are best served by taking the time variable

to be a real number as well, £, say. Thus we are logking for ways of describing the
number of rabbits as a function x(¢} of time. '

To understand the dependence on time we look at what rabbits do: They eat
and reproduce, Australia is large, so they can eat all they want, and during any given
time period At a fixed percentage of the {female) population will give birth and a
(smailer) percentage will die of old age (there are no natural enemies). Therefore
the increment x(f + A} — x(t) is proportional to x(f) At (via the difference of birth
and death rates). Taking a limit as At — 0 we find that

dx
{1.2.1) o=k

where k represents the (fixed) relative growth rate of the population. Alternatively,
we sometimes write £ = kx, where the dot denotes differentiation with respect to
t. By now you should recognize this model from your calculus class.

It is the unchanging environment (and biology) that gives rise to this unchang-
ing evolution law and makes this a dynamical system of the kind we study. The
differential equation (1.2.1), which relates x and its rate of change, is easy to solve:
Separate variables (all x on the left, all # on the right) to get {1 /X)dx = kdr and
integrate this with respect to t using substitution: ‘

log|x| = ldx: kdt =kt + C,
g x

where log is the natural logarithm. Therefore, {x(f)| = eCek with ¢ = [x(0}] and we
find that '

(1.2.2) _ x(t) = x(0)e". _
B Exercise 1.2.1 Justify the disappearance of the absolute value signs above.

- Exércise 1.2.2 I x(0) = 3 and x(4) = 6, find x(2), x(6), and x(8).

1.2.2 The Leaning Rabbits of Pisa

In the year 1202, Leonardo of Pisa considered a more moderate question regarding
rabbits, which we explore in Example 2.2.9 and Section 3.1.9. The main differences
to the large-scale Australian model above are that the size of his urban yard limited
him to small numbers of rabbits and that with such a small number the population
growth does not happen continuously, but in relatively substantial discrete steps.
Here is the problem as he posed it:?

How many pairs of rabbits can be bred from one pair in one year?

? Leonardo of Pisa: Liber abaci{1202), published in Scritti di Leonardo Pisano, Rome, B. Boncompagni,
1857; see . 3 of Dirk J. Struik, A Source Book In Mathematics 1200-1800, Princeton, NJ, Princeton
University Press, 1986,
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A man has one pair of rabbits at a certain place entirely surrounded by a wall. We
wish to know how many pairs can be bred from it in one year, if the nature of these
rabbits is such that they breed every month one other pair and begin to breed in the
second month after their birth, Let the first pair breed a pair in the first month, then
duplicate it and there will be 2 pairs in a month. From these pairs one, namely the fixst,
breeds a pair in the second month, and thus there are 3 pairs in the second month.
From these in one month two will become pregnant, so that in the third month 2 pairs
of rabbits will be born. Thus there are 5 pairs in this month, From these in the same
month 3 will be pregnant, so that in the fourth month there will be 8 pairs ... [We
have done this] by combining the first number with the second, hence 1 and 2, and the
second with the third, and the third with the fourth ...

In other words, he came up with a sequence of numbers (of pairs of rabbits)
governed by the recursion by 1= By + Bu-1 and chose starting values by = by =1,
sothesequencegoes 1, 1,2, 3,5, 8,13, .... Does thislook familiar? (Hint: As the son
of Bonaccio, Leonardo of Pisa was known as filius Bonacci or “son of good nature”;
Fibonacci for short.) Here is a quéstion that can be answered easily with alittte bit of
dynamics: How does his model compare with the continuous exponential-growth
model above?

According to exponential growth one should expect that once the terms get
large we always have by, = aby, for some constant aindependent of . if we pretend
that we have actual equality, then the recursion formula gives

a’by = @bps1 = bypo = by + b= (@ + Dby,

so we must have @ = a - 1. The quadratic formula then gives us the value of the
growth constant a.

B Exercise 1.2.3 Calculate a.

Note, however, that we have only shown that if the growth is eventually
exponential, then the growth constant is this 4, not that the growth is eventually
exponential. (If we assume the recursion by, = 1leads to exponential growth, we
could come up with a growth parameter if we are quick enough to do it before get-
ting a contradiction.) Dynamics provides us with tools that enable us to verify this
property easily in various different ways (Example 2.2.9 and Section 3.1.9). In Propo-
sition 3.1.11 we even convert this tecursively defined sequence into closed form.

The value of this asymptotic ratio was known to Johannes Kepler. It is the

golden mean or the divine proportion. In his 1619 book Harmonices Mundi he
wrote (on page 273):

there is the ratio which is never fudly expressed In numbers and cannot be demon-
strated by numbers in any other way, except by a long series of numbers gradually
approaching it: this ratio is called divine, when itis perfect, and it rules in various ways
throughout the dodecahedral wedding. Accordingly, the following consonances begin
to shadow forth that ratio: 1:2 and 2:3 and 3:5 and 5:8. For it exists most imperfectly

in 1:2, more perfectly in 5:8, and still more perfectly if we add 5 and 8 to make 13 and
take 8 as the numerator . ...*

1 Johannes Kepler, Ep'itome of Copernican Astronomy & Harmonies of the World, Amherst, NY,
Prometheus Books, 1995.
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1.2 Dynamics in Nature 7

We note in Example 15.2.5 that these Fibonacci ratios are the optimal rational
approximations of the golden mean.

B Exercise 1.2.4 Express 1+ 142434+ byinterms of bpsa.

1.2.3 Fine Dining :

Once upon a time lobsters were SO abundant in New England waters that they

were poor man's food. It even happened that prisoners in Maine rioted to demand
i be fed something other than lobsters for a change. Nowadays the hau! is less
abundant and Iobsters have become associated with fine dining. One (optimistic?)
model for the declining yields stipulates that the catch in any given year should
turn out to be the average of the previous two years’ catches.

Using again a, for the number of lobsters caught in the year n, we can express
this model by a sitple recursion relation:

(1.2.3) Apy1 = an1/2+ anf2.

ake the Maine harvests of 1996 and 1997, which were

As initial values one can t
ursion is similar to the one for

16,435 and 20,871 (metric) tons, respectively. This rec
. the Fibonacci numbers, but in this case no exponential growth is to be expected.

One can see from the recursion that all future yields should be between the two
initial data. Indeed, 1997 was a record yeat. In Proposition 3.1.13 we find a way of
giving explicit formulas for future yields, that is, we give the yield in an arbitrary
year nina closed form as a function of 7.

_ This situation as well as the Fibonacci rabbit problem are examples where time
| is measured in discrete steps. There are many other examples where this is natural.
‘ Such a scenario from population biology is discussed in Section 1.2.9. Other biolog-
' ical examples arise in genetics (gene frequency) o1 epidemiology. Social scientists
L use discrete-time madels as well (commodity prices, rate of spread of a rumor,
theories of learning that model the amount of information retained for a given

|
] time).

1.2.4 Turning Over a New Leaf
The word phyllotaxis comes from the words phyllo=leaf and taxis=order or arrange-

i
[
i
| ment. It refers to the way leaves are arranged on twigs, or other plant components
|
i

on the next larger one. The seeds of a sunflower and of a pine cone are further
given by Harold Scott Macdonald Coxeter in

examples. A beautiful description is
regular patterns often occur is famniliar from

his Introduction to Geometry. That
sunflowers and pineapples.

In some species of trees theleaves on twigs are also arranged in Tegular patterns.
The pattern varies by species. The simplest pattern is that of leaves alternating
on opposite sides of the twig. It is called (1, 2)-phyliotaxis: Successive leaves are

separated by a half-turn around the twig. The leaves of elms exhibit this pattern, as

do hazel leaves.” Adjacent leaves may also have a (2/3) turn between them, which

1d be referred to as (2, 3)-phyllotaxis. such is the case with beeches. Oak trees

wou

5 On which the first author of this book should be an expert!
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show a (3, 5)-pattern, poplars a (5, 8}, and willows, (8, 13}-phyllotaxis. Of course,
the pattern may not always be attained to full precision, and in some plants there
are transitions between different patterns as they grow.

The diamond-shaped seeds of a sunflower are packed densely and regularly.
One may perceive a spiral pattern in their arrangement, and, in fact, there are
always two such patterns in opposite directions. The numbers of spirals in the two
patterns are successive Fibonacci numbers. The seeds of a fir cone exhibit spirals
as well, but on a cone rather than flat ones. These come in two families, whose
numbers are again successive Fibonacci numbers. :

Pineapples, too, exhibit spiral patterns, and, because their surface is composed
of approximately hexagonal pieces, there are three possible directions in which
one can perceive spirals. Accordingly, one may find 5, 8, and 13 spirals: 5 sloping

-up gently to the right, say, 8 sloping up to the left, and 13 sloping quite steeply

right.

The observation and enjoyment of these beautiful patterns is not new. They
were noticed systematically in the nineteenth century. But an explanation for why
there are such patterns did not emerge particularly soon. In fact, the case is not
entirely closed yet.

Here is a model that leads to an explanation of how phyllotaxis occurs. The basic
growth process of this type consists of buds (primordia) of leaves or seeds growing
out of a center and then moving away from it according to three rules proposed in
1868 by the self-taught botanist Wilhelm Friedrich Benedikt Hofmeister, while he
was professor and director of the botanical garden in Heidetberg:

(1) New buds form at regular intervals, far from the old ones.
(2) Buds move radially from the center.
(3) The growth rate decreases as one moves outward. .

A physical experiment designed to mimic these three Hofmeister rules produces
spiral patterns of this Fibonacci type, so from these rules one should be able to
infer that spiral patterns must occur, This has been done recently with methods of
the kind that this book describes®

Here is a description of how dynamuics may help. To implement the Hofmeister
rules we model the situation by a family of N+ 1 concentric circles of radius
rk (k= 0, ..., N), where r stands for growth rate, and we put a bud on each circle.
The angle (with respect to the origin) between one bud and the next is @;. Possible
patterns are now parametrized by angles (6, ..., On). This means that the “space
of plants” is a forus; see Section 2.6.4, When a new bud appears on the unit circle,
all other buds move outward one circle. The angle of the new bud depends on all
previous angles, so we get a map sending old angles ¢ to new angles @, by

@ = fBo,....0n), ©O1=F6...,0n =6n1.

Now f has to be designed to reflect the first Hofmeister rule. One way to do thisis to
define a natural potential energy to reflect “repulsion” between buds and choosing

§ pau Ateta, Christophe Golé, and Scott Hotton: A dynamical system for plant pattern formation:
A rigorous analysis, fournal of Nonlinear Sclence 12 (2002), no. 6, pp. 641-676. ’
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1.2 Dynamics in Natuyre . 8

f@,, ..., 6y to be the minimum. A natural potential is
N . .
w(e) =) U(lrke®™ — &9,
=0

where U{x} = 1/x* for some s > 0. A simpler potential that gives the same qual-
itative behavior is W(®) = maxggy U{||r¥e’ — &'®|)). With either choice one
can show that regular spirals (that is, gy = ... = 05) are attracting fixed points
(Section 2.2.7) of this map. This means that spirals will appear naturally. A result of
the analysis is furthermore that the Fibonacci numbers also must appear.

1.2.5 Variations on Exponential Growth
In the example of a rabhit population of Section 1.2.1 it is natural to expect a
positive growth parameter & in the equation X = kx. This coefficient, however, is
the difference between. rates of reproduction and death. For the people of some
western societies, the reproduction rate has declined so much as to be lower
than the death rate. The same model still applies, but with & < 0 the solution
x(f) = x(0)e¥ describes an exponentially shrinking population.

The same differential equation X = kx comes up in numerous simple models
because it is the simplest differential equation in one variable. '

Radioactive decay is a popular example: It is an experimental fact that of a paz-
ticular radioactive substance a specific percentage will decay in a fixed time period.
As before, this gives ¥ = kx with k < 0. In this setting the constant k is often
specified by the half-life, which is the time T such that x(t + 1} = x(r)/2. Depend-
ing on the substance, this time period may be minute fractions of a second to
thousands of years. This is important in regard to the disposal of radiocactive waste,
which often has along half-life, or radioactive contamination. Biology laboratories
use radioactive phosphorus as a marker, which has a half-life of a moderate
number of days. A spill on the laboratory bench is usually covered with plexiglas
for some two weeks, after which the radiation has sufficiently diminished. On the
other hand, a positive effect of radioactive decay is the possibility of radicisotope
dating, which can be used to assess the age of organic or geologic samples. Unlike
in population biology, the exponential decay model of radicactivity needs no
refinements to account for real data. It is an exact law of nature. :

B Exercise 1.2.5 Express the half-life in terms of k, and vice versa.

The importance of the simple differential equation x = kx goes far beyond the
collection of models in which it appears, however many of these there may be.
It also comes up in the study of more complicated differential equations as an
approximation that can illuminate some of the behavior in the more complicated
setting. This approach of linearization is of great importance in dynamical systems.

1.2.6 The Doomsday Model

We now return to the problem of population growth. Actual population data show
that the world population has grown with increasing rapidity. Therefore we should
consider a modification of the basic model that takes inte account the progress of
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civilization. Suppose that with the growth of the population the growing number
of researchers manages to progressively decrease the death rate and increase
fertility as well. Assuming, boldly, that these improvements make the relative rate

of increase in population a small positive power x° of the present size x (rather

than being constant k), we find that
dx
5=
As before, this is easy to solve by separating variables:

t+C= [x“l"‘ dx = —x"%/e

xl-}-e.

with € = —x(0) /e, so x(f) = (x(0)~° —er}~¢, which becomes infinite for
f = 1/(cx(0)). Population explosion indeed!

As far as biology is concerned, this suggests refining our model. Clearly, our
assumptions on the increasing growth rate were too generous (ultimately, resources
are limited). As an example in differential equations this is instructive, however:
There are reasenable-looking differential equations that have divergent solutions,

1.2.7 Predators
The reason rabbits have not over taken over the European continent is that there
have always been predators around to kill rabbits. This has interesting effects on the
population dynamics, because the populations of predators and their prey interact:
A small number of rabbits decreases the predator population by starvation, which
tends to increase the rabbit population. Thus one expects a stable equlhbnum Of
possibly oscillations.

Many models of interacting populations of predator and prey were proposed
independently by Alfred Lotka and Vito Volterra. A simple one is the Lotka-Volterra
equation:

dx—ax+cx
a 1 1XY

ﬂ—ax%—cx
ar - X - C2XY,

where a;, ¢; > 0and .4, ¢ < 0, thatis, x is the prey population, which would grow
onits own {a; > 0) butis diminished by the predator (¢; < 0}, while yisthe predator,
which would starve if alone (@ < () and grows by feeding on its prey (¢; > 0).
Naturally, we take x and y positive. This model assumes that there is no delay
between causes and effects due to the time of gestation or egg incubation. This is
reasonable when the time scale of interest is not too short. Furthermore, choosing
time continuously is most appropriate when generations overlap substantially.
Populations with nonoverlapping generations will be treated shortly.

There is an equilibrium of species at (@& /c2, @ /c1). Any other initial set of
populations turns out to result in oscillations of the numbers of predator and prey.
To see this, use the chain rule to verify that

E(x, y) = x"®e @ yh ety
is constant along orbits, that is, (d/df)Ex(f), (1)) =0. This means that the
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12 Dynamics in Nature . 1

. solutions of the Lotka—Volterra equation must lie on the curves E(x, ¥) = const.
2 These curves are closed.

1.2.8 Horror Vacui :
The Lotka-Volterra equation invites a brief digression to a physical system that
shows a different kind of oscillatatory behavior. Its nonlinear oscillations have ger-
erated much interest, and the system has been important for some developments
in dynamics. : .

The Dutch engineer Balthasar van der Pol at the Science Laboratory of the

Philips Light Bulb Factory in Eindhoven modeled a vacuum tube circuit by the
differential equation

&x

‘ d
— 4 e(x? — 1}7: +x=0,

which can be rewritten using y = dx/dr as

dx
9t =Y
%Yf =e(l—-x2)y—x.
If € = 1, the origin is a repeller (Definition 2.3.6). However, solutions do not grow
indefinitely, because there is a periodic solution that circles around the origin.
Indeed, for ¢ = 0 there are only such solutions, and for ¢ = 1 one of these circles
5 persists in deformed shape, and all other solutions approach it ever more closely
as t - -+oa. The numerically computed picture in Figure 1.2.1 shows this clearly.
The curve is called a limit cycle. ‘

~As an aside we mention that there is also the potential for horrifying complexity
in"a vacuum tube circuit. In 1927, van der Pol and J. van der Mark reported on
experiments with a “relaxation oscillator” circuit built from a capacitor and a neon
lamp (this is the nonlinear element} and a periodic driving voltage. (A driving
voltage corresponds to putting a periodic term on the right-hand side of the van
der Pol equation above.) They were interested in the fact that, in contrast to a linear
oscillator (such as a violin stxing), which exhibits multiples of a base frequency,
‘ these oscillations were at “submultiples” of the basic frequency, that is, half that
: frequency, a third, and so on down to 1/40th, as the driving voltage increased. They

Figure 1.2.1, The van der Pol equation,




12 - 1. Introduction

obtained these frequencies by listening “with a telephone coupled loosely in some
way to the system” and reported that

Often an irregular noise is heard in the telephone receivers before the frequency
jumps to the next lower value. However, this is a subsidiary phenomencn, the main
effect being the regular frequency demultiplication.

This irregular noise was one of the first experimental encounters with what was to
“become known as chaos, but the time was not ripe yet.”

1.2.9 The Other Butterfly Effect’

Population dynamics is naturally done in discrete-time steps when generations
do not overlap. This was imposed somewhat artificially in the problem posed by
Leonardo of Pisa (Section 1.2.2). For many populations this happens naturally,
especially insects in temperate zones, including many crop and orchard pests. A
pleasant example is a butterfly colony in an isolated location with a fairly constant
seasonal cycle (unchanging rules and no external influence}. There is no overlap at
all between the current generation (this surnmer) and the next (next summer). We
would like to know how the size of the population varies from sumnmer to sumtmer.
There may be plenty of environmental factors that affect the population, but by
assuming unchanging rules we ensure that next summer’s population depends
only on this summer’s population, and this dependence is the same every year
That means that the only parameter in this model that varies at altis the population
itself. Therefore, up to choosing some fixed constants, the evolution law will specify
the population size next summer as a function of this summer’s population only.
The specific evolution law will result from modeling this situation according to our
understanding of the biological processes involved.

1. Exponential growth. Forinstance, itis plausible that alarger populationis likely
tolay more eggs and produce a yetlarger population next year, proportional, in fact,
to the present population. Denoting the present population by x, we then find that
nextyear’s populationis f(x) = kxforsome positive constant k, whichis theaverage
number of offspring per butterfly. If we denote the population in year i by x;, we
thereforefind that ;1 = f() = kx; andin particular thatx; = kxg, Xp = kx = k%,
and so on, that is, x; = k'xp; the population grows exponentially. This looks much
like the exponential-growth problem as we analyzed it in continuous time.

2. Competition. A problem familiar from public debate is sustainability, and the
exponential growth model leads to large populations relatively rapidly. It is more
realistic to take into account that a large population will run into problems with
limited food supplies. This will, by way.of malnutrition or starvation, reduce the

7 B. van der Pol, T. van der Mark, Frequency demultiplication, Nature 120 (1927), 363-364.

8 This is a reference te the statement of Edward Lorenz (see Section 13.3) that a butterfly may flutter
by in Rio and thereby cause a typhoon in Tokyo a week later. Or maybe to butterfly baltots in the
2000 Florida election? ’
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1.2 Dynamics in Nature 13

number of butterflies available for egg-laying when the time comes, A relatively
small number of butterflies next year is the resuit.

The simplest rule that incorporates such more sensible qualitative properties
is given by the formula f(x) = k{1 — ax)x, where x is the present number of
butterfiies: This rule is the simplest because we have only adduced a linear
correction to the growth rate k. In this correction « represents the rate at which
fertility is reduced through competition. Alternatively, one can say that 1/a is the
maximal possible number of butterflies; that is, if there are 1 /e butterflies this year,
then they will eat up all available food before getting a chance to lay their eggs;
hence they will starve and there will be no butterflies next year. Thus, if again x;
denotes the butterfly population in the year i, starting with i = 0, then the evolution
is given by x4 = k(1 — ax;) = f(x;). This is a deterministic mathematical model
in which every future state (size of the butterfly colony) can be computed from
this year’s state, One drawback is that populations larger than 1/« appear to give
negative populations the next year, which could be avoided with a model such
as X1 = xe1=*) But tractability makes the simpler model more popular, and it
played a significant role in. disseminating to scientists the important insight that
simple models can have complicated long-term behaviors.?

One feature reminiscent of the exponential-growth model is that, for popula-
tions much smaller than the limit population, growth is indeed essentially

exponential: If ax « 1, then 1 —ax~1 and thus x4y = kx; hence x, =~ k"x —.
but only so long as the population stays small. This makes intuitive sense: The
population is too small to suffer from competition for food, as a large population
would.

Note that we made a slip in the previous paragraph: The sequence X, ~ k"xp
grows exponentialty if k> 1. If this is not the case, then the butterfly colony
becomes extinct, An interesting interplay between reproduction rates and the
carrying capacity influences the possibilities here.

. 3. Change of variable. To simplify the analysis of this system it is convenient to
make a simple change of variable that eliminates the parameter . We describe it
with some care here, because changing variables is an important tool in dynamics.

Write the evolution law as ¥’ = kx(1 — ax), where x is the population in one year
and x' the population in the next year, If we rescale our units by writing y = ax,
then we must set : '

¥ =oax' = akx(l —ax) = ky(l — y).

In other words, we now iterate the map g(y) = ky(1 — ). The relationship between
the maps f and g is given by g(y) = I~ ( f(h()}), where h(y) = y/a = x. This can
be read as “go from new variable to old, apply the old map, and then go to the new
variable again.”

9 As its title shows, getting this message across was the aim of an influentiat article by Robert M. May,
Simple Mathematical Models with Very Complicated Dynamics, Nafure 261 (1876), 459-467. This
article also established the quadratic model as the one to be studied. A good impression of the effects
on various branches of biology is given by James Gleick, Chaos, Making a New Science, Viking Press,
New York, 1987, pp. 78ff,
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The effect of this change of variable is to normalize the competition factor o to . . Stari =
1. Since we never chose specific units to begin with, let's rename the variables and populat
. maps back to xand f. a decen
‘ are the

4. The logistic equation. We have arrived at a model of this system that is

represented by iterations of | B Exer:
F) = kx{1 — x). ' : you dis¢
This map f is called the logistic map {or logistic family, because there is a pa- L If ki
rameter), and the equation x' = kx(1 — x} is called the logistic equation. The term . it also g
logistic comes from the French logistique, which in turn derived from logement, the :
lodgment of soldiers. We also refer to this family of maps as the quadratic family. It B Exer
was introduced in 1845 by the Belgian sociologist and rnathematician Verhulst.'® discern
From the brief discussion before the preceding subsection it appears that the ‘
case k < 1 results in inevitable extinction. This is indeed the case. For k < I, this is o For k
clear because kx(1 — x) < kx, and for k = 1 it is not hard to verify either, although ‘ . settles d
the population decay is not exponential in this case. By contrast, large values of co and too
k should be good for achieving a large population. Or maybe not. The problem is hint of i
that too large a population will be succeeded by a less numerous generation. One still prev
would hope that the population settles to an agreeable size in due time, at which
there is a balance between fertility and.competltlon. B Exerc
B Exercise 1.2.6 Prove that the case k = 1 results in extinction. clear pal
Note that, unlike in the simpler exponential growth model, we now refrained Forl k
from writing down an explicit formula for x, in terms of xo. This formula is given get a litt
by polynomials of order 2", Even if one were to manage to write them down for a program
reasonable #, the formulas would not be informative. We will, in due course, be able y
to say quite a bit about the behavior of this model. At the moment it makes sense to ‘ # Exerc
explore it a little to see what kind of behavior occurs. Whether the initial size of the ) clear pat
population matters, we have not seen yet. But changing the parameter k certainly is
likely to make a difference, or so one would hope, because it would be a sad model _ In thy
indeed that predicts certain extingtion all the time. The reasonable range for k is ' s0 slowh
from 0 to 4. [For k > 4, it predicts that a population size of 1/2 is followed two years iteration
later by anegative population, which makes little biological sense. This suggests that is correc
a slightly more sophisticated (nonlinear) correction rule would be a good idea.] . . before.
Thes
5. Experiments. Increasing kshould produce the possibility of a stable population, persistel
that is, to allow the species to avoid extinction. So let’s start working out the model Specles
for some k > 1. A simpleminded choice would be k = 2, halfway between 0 and 4. 1ntoI o;fe? 3
: _ . i : udgi -
" I8 Exercise 1.2.7 Starting with x = 0.01, iterate 2x(1 — x) until you discern a clear S butto be -
! pattern. ‘ Whetlr‘.ler ;
10" Pierre-Frangois Verhulst, Récherches mathématiques sur Iz loi d’accroissement de Ja population, ' . E Exerc

Nouvelles Mémoires de I'Academie Royale des Sciences et Belles-Lettres de Bruxelles 18 (1845), 1-38, . you disc




1.2 Dynamics in Nature 15

Starting from a small population, one obtains steady growth and eventually the
population levels off at 1/2. This is precisely the behavior one should expect from
a decent model. Note that steady states satisfy x = 2x(1 — x), of which 0 and 1/2
are the only solutions. ‘

B Exercise 1.2.8 Starting with x = 0.01 iterate 1.9x(1 — x) and 2.1x{1 — x) until
you discern a clear pattern.

If kis a little less than 2, the phenomenon is rather the same, for k a little bigger
it also goes that way, except for slightly overshooting the steady-state population.

B Exercise 1.2.9 Starting with x = 0.01, iterate 3x(1 - x) and 2.9x(1 — x) until you
discern a clear pattern.

For k = 3, the ultimate behavior is about the same, but the way the population
settles down is a little different. There are fairly substantial oscillations of too large
and too small population that die out slowly, whereas for k near 2 there was only a
hint of this behavior, and it died down fast. Nevertheless, an ultimate steady state
still prevails.

B Exercise 1.2.10 Starting with x = 0.01, iterate 3.1x(1 —~ X) until you discern a
clear pattern.

For k = 3.1, there are oscillations of too large and too small as before. They do
get a little smaller, but this time they do not die down all the way. With a simple
program one can iterate this for quite awhile and see that no steady state is attained.

B Exercise 1.2.11 Starting with x = (.66, iterate 3.1x(l — x) until you discern a
clear pattern. ‘

In the previous experiment, there is the possibility that the oscillations die down
so slowly that the numerics fail to notice. Therefore, as a control, we start the same
iteration at the average of the two values. This should settle down if our diagnosis
is correct. But it does not. We see oscillations that grow until their size is as it was
before.

These osciflations are stable! This is our first population model that displays
persistent behavior that is not monotonic. No matter at which size you start, the
species with fertility 3.1 is just a little too fertile for its own good and keeps runining
into overpopulation every other year. Not by much, but forever. :

Judging from the previous increments of k there seems only about k = 4 left,
but to be safe let’s first try something closer to 3 first. At least it is interesting to see
whether these oscillations get bigger with increasing k. They should. And how big?

B Exercisé 1.2,12 Starting with x = 0.66, iterate 3.45x(1 — x} and 3.5x(1 — x) until
you discern a clear pattern.
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The behavior is becoming more complicated around k = 3.45. Instead of the
simple oscillation between two values, there is now a secondary dance around each
of these values. The oscillations now involve four population sizes: “Big, small, big,
Small” repeated in a 4-cycle. The period of oscillation has doubled.

B Exercise 1.2.13 Experiment in a manner as before with parameters slightly
larger than 3.5.

A good numerical experimenter will see some pattern here for a while: After
a rather slight parameter increase the period doubles again; there are now eight
population sizes through which the model cycles relentlessly. A much more minute
increment brings us to petiod 16, and it keeps getting more complicated by powers
of two. This cascade of period doublings is complementary to what one sees in a
linear oscillator such as a violin string or the column of air in wind instruments or.
organ pipes: There it is the frequency that has higher harmonics of double, triple,
and quadruple the base frequency. Here the frequency is halved successively to
give subharmonics, an inherently nonlinear phenomenon.

Does this period doubling continue until k£ = 4?

B Exercise 1.2.14 Starting with x = .5, iterate 3.83x(1 - x) until you discern a clear
pattern. ‘

‘When we look into k= 3.83 we find something rather different: There is a
periodic pattern again, which we seem to have gotten used to. But the period is 3,
nat a power of 2. So this pattern appeared in an entirely different way. And we don't
see the powers of 2, so these must have run their course somewhat earlier.

% Exercise 1.2.15 Try k= 3.828,

No obvious pattern here.

B Exercise 1.2.16 Tryk=4.
There is not much tranquility here either,
6. Outlook. Intrying out afew parameter valuesin the simplest possible nonlinear

population model we have encountered behavior that differs widely for different
parameter values. Where the behavior is somewhat straightforward we do not have

the means to explain how it evolves to such patterns: Why do periods double for -

a while? Where did the period-3 oscillation come from? And at the end, and in
experiments with countless other values of the parameter you may choose to try,
we see behavior we cannot even describe effectively for lack of words. At this stage
there is little more we can say than that in those cases the numbers are all over the
place.

We return to this model later (Section 2.5, Section 7.1.2, Section 7.4.3 and
Chapter 11) to explain some of the basic mechanisms that cause these diverse
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1.2 Dynamics in Nature 17

behaviors in the quadratic family fi:(x) = kx(1 — x). We do not provide an exhaus-
tive analysis that covers all parametex values, but the dynamics of these maps 1s
quite well understood. In this book we develop important concepts that are needed
to describe the complex types of behavior one can see in this situation, and in many
other important ones. : :

Already this purely numerical exploration carries several lessons. The first one
is that simple systerns can exhibit complex long-term behavior. Again, we arrived at
this example from the linear one by making the most benign change possible. And
immediately we ran into behavior so complex as to defy description. Therefore
such complex behavior is likely to be rather more common than one would have
thought.

The other lesson is that it is worth learning about ways of understanding,
describing, and explaining such rich and complicated behavior. Indeed, the impor-
tant insights we introduce in this book are centered on the study of systems where
explicit computation is not feasible or useful. We see that even in the absence of
perfectly calculated results for all time one can make precise and useful qualitative
and quantitative statements about such dynamical systems. Part of the work is to
develop concepts adequate for a description of phenomena of such complexity
as we have begun to glimpse in this example. Our study of this particular example
begins in Section 2.5, where we study the simple behaviors that occur for small pa-
rameter values. In Section 7.1.2 and Section = 4.3 we look at large parameter values.
For these the asymptotic behavior is most chaotic. In Chapter 11 we present some
of the ideas used in understanding the intermediate parameter regime, where the
transitions to maximal complexity occut.

As an interesting footnote we mention that the analogous population with
continuous time (which is quite reasonable for other species) has none of this
complexity (see Section 2.4.2). ‘

1.2.10 A Flash of Inspiration
As another example of dynamics in nature we can take the flashing of fireflies.

Possibly the earliest reportof a remarkable phenomenon is from Sir Francis Drake’s
1577 expedition:
[oJur general...sailed to a certaine little istand to the southwards of Celebes, . ..
throughly growen with wood of a large and high growth. .. . Among these trees night
by night, through the whole land, did shew themselves an infipite swarme of fiery
wormes flying in the ayre, whose bodies beeing no bigger than our common English
flies, make such a shew of light, as if every twigge or tree had been a burning candle.!!
A clearer description of what is so remarkable about these fireflies was given by
Engelbert Kémpfer, a doctor from eastern Westphalia who made a 10-year voyage
through Russia, Persia, southeast Asia, and Japan. On July 6, 1690, he traveled down
the Chao Phraya (Meinamj River from Bangkok and observed: |

The glowworms {Cicindelae} represent another shew, which settle on some trees,
like a fiery cloud, with this surprising circumstance, that a whole swarm of these

11 Richard Hakluyt (proncunced Hack-loo, A Selection of the Principal Voyages, Traffiques and
Discoveries of the English Nation, edited by Laurence Irving, Knopf, New York, 1926.
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insects, 'having taken possession of one tree, and spread themselves over its branches,
sometimes hide their light all at once, and a moment after make it appear again
with the utmost regularity and exactness, as if they were in perpetual systole and
diastole.!? ‘

So, in some locations large numbers of the right species of flashing fireflies in
a bush or a collection of bushes synchronize, turning their arboreal home into
a remarkable christmas-tree-like display. Or do they? This is such a striking
phenomenon that for along time reports of it had a status not entirely unlike that
of tales of dragons and sea monsters. As late as 1938 they were not universally
accepted among biologists. Only with increased affordability and speed of travel
could doubters see it for themselves.!® Once there was some belief that this
really happens, it took many decades to develop an understanding of how this
is possible. Early on it was supposed that some subtle and undetected external
periodic influence caused this uniform behavior, but it is the fact that these fireflies
naturalty flash at close to the same rate combined with a tendency to harmonize
with the neighbors that causes an entire colony to wind up in perfect synchrony.

An analogous situation much closer to home is the study of circadian rhythms,
where periodic changes in our body (the sleep cycle) synchronize with the external
cues of day and night. In the absence of clocks and other cués to the time of day,
the human wake-sleep cycle reverts to its natural period, which is for most people
slightly longer than 24 hours. Those external cues affect the system of neurons and
hormones that make up our complicated internal oscillator and gently bring it
up to speed. In this case, the rate at which the adjustment happens is fairly quick.
Even the worst jet lag usually passes within a few days, that is, a few cycles. |

These systems are instances of coupled oscillators, which also appeat in nu- -

merous other guises. Thie earth-moon system can be viewed as such a system when
one looks for an explanation why we always see the same side of the moon, that s,
why the moon'’s rotation and revolution are synchronized. Here simple tidal friction
is the coupling that has over eons forced the moon's rotation into lockstep with its
revolution and will eventually synchronize the earth’s rotation as well, so a day will
be amonth long - or amonth a day long, making the moon a geostationary satellite.
It is amusing to think that at some intermediate time the longer days may match up
with our internal clocks, as if human evolution is slightly ahead of its time on this

count.

12 pngelbert Kimpfer, The history of Japan, edited by J. G, $cheuchzer, Scheuchzer, London, 1727,
The translation is not too good. The German original apparently remained unpublished for cen-
turies: “Finen zweiten sehr angenehmen Anblik geben die Lichtmiicken {cicindelae), welche einige
Baume am Ufer mit einer Menge, wie eine brennende Wolke, beziehn. Es war mir besonders hiebel
merkwitrdig, daR die ganze Schaar dieser Vigel, so vief sich threr auf einem Baume verbunden,
und durch alle Aeste desselben verbreitet haben, alle zugleich und in einem Augenblik ihr Licht
verbergen und wieder von sich geben, und dies mit einer solchen Harmonie, als wenn der Baum
selbst In einer bestindigen Systole und Diastole begriffen wire,” (Geschichte und Beschreibung

_von Japan (1677-79). Internet Edition by Wolfgang Michel. In: Engelbert-Kaempfer-Forum, Kyushu
University, 1999.). )

13 An account of this sea change is given by John Buck, Synchronous rhythmic flashing of fireflies,
Quarterly Review of Biology 13, no. 3 (September 1938), 301-314; 11, Quarterly Review of Biology
63, no. 3 {September 1988), 265-289. The articles include the quotes given here and many more
reports of flashing fireflies from various continents.
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We will look at systems made up of two simple oscillators in Section 4.4. 5,
where relatively simple considerations suggest that this kind of synchromzanon is
somewhat typical.'

B EXERCISES

B Exercise 1.2.17 In 1900, the global human population numbered 1.65 million,
and in 1950 it was 2.52 billion. Use the exponential growth model (Equation 1.2.2)
to predict the population in 1990, and to predict when the population will reach
6 billion. (The actual 1990 population was some 5.3 billion, and around July 1999
it reached 6 billion. Thus the growth of the world population is accelerating.)

B Exercise 1.2.18 Denote by g, the number of sequences of 0's and 1's of length »
that do not have two consecutive 0's. Show that 4,1 = a, + 4,_1. {Note that this is
the same recursion as for the Fibonacei numbers, and that @) = 2 and a4 = 3.)

E Exercise 1.2.19 Show that any two successive Fibonacei numbers are relatively
prime.

2] F.xercise_ 1.2.20 Determinelimy,_, . @, in (1.2.3)ifgy = 1 and a; = 0.

£.3 DYNAMICS IN MATHEMATICS

In this section we collect a few examples of a range of mathematical activity where
knowledge of dynamical systems provides novel insights,

1.3.1 Heroic Efforts with Babylonian Roots

Sometime before 250 A.D., in his textbook Metrica, Heron of Alexandria (often
latinized to Hero of Alexandria) computed the area of a triangle with sides 7, 8, and
9 by first deriving the formula area’ = s(s — a@)(s — b)(s — ¢), where a, b, ¢ are the
sides and 25 = a + b+ ¢. To compute the resulting square root of 12 . 5.4 .3 = 720
he took the following approach, which may have been known to the Babylonians
2000 years before:

Since {z=1720 has not its side rational [that is, 720 is not a perfect square], we can
obtain its side within a very small difference as follows. Since the next succeeding
square number is 729, which has [x =]27 for its side, divide 720 by 27. This gives
[y =1262. Add 27 to this, making 532, and take half of this or [¥' = (x + ) =]26] {

The 51de of 720 will therefore be very nearly 26 .. Ifwedesireto make the difference
still smaller...we shall take [x' = 1(x+ = % = 26% instead of x = 27] and by
proceeding in the same way we sha]l find that the resulting difference is much less. . }*

Heron used that, in order to find the square root of z, it suffices to find a square
with area z; its sides have length /z. A geometric description of his procedure is

4 We omic a full treatment of coupled linear oscillators, The subject of fireflies is treated by Renato
Mirollo and Steven Strogatz, Synchronization of Pulse-Coupled Biological Oscillators, SIAM journal
of Applied Mathematics 50 no. 6 (1990), 1645-1662.

15 Thomas L. Heath, History of Greek Mathematics: From Aristarchus to Diophantus, Dover, 1981,

p. 324, This sequence of approximations also occurs in Babylonian texts; as related by Bartels van

der Waerden: Science awakening, Oxford University Press, Oxford, 1961, p. 45, who gives a geometric

interpretation on pp. 121f. Some variant was known to Archimedes.
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that as a first approximation of the desired square we take a rectangle with sides
x and y, where x is an educated guess at the desired answer and xy = z. (if zis not
as large as in Heron's example, one can simply take x =1, y = 2 The procedure
of producing from a rectangle of correct area another rectangle of the same area
whose sides differ by less is to replace the sides x and y by taking one side to
have the average length (x + ¥)/2 (arithmetic mean) and the other side to be such
as to get the same area as before: 2xy/(x -+ y) (this is called the harmonic mean
of x and y). The procedure can be written simply as repeated application of the
function

(1.3.1) x+y351)

ﬂLw:( 7 x4y

of two variables starting with (xp, yo) = (z, 1} {or {xo, yo) = (27, 26%)] in Heron’s
example}. Archimedes appears to have used a variant of this. One nice thing about
this procedure is that the pairs of numbers obtained at every step lie on either side
of the true answer (because xy = z at every step), so one has explicit control over
the accuracy. Even before starting the procedure Heron's initial guess bracketed
the answer between 265 and 27.

B Exercise 1.3.1 To approximate /4, calculate the numbers (X, ynforo<i<4

using this method, starting with (1, 4), and give their distance to 2.

® Exercise 1.3.2 Carry Heron's approximation of /720 one step further and use a
calculator to determine the accuracy of that approximation.

& Exercise 1.3.3 Starting with initial guess 1, how many steps of this procedure
are needed get a better approximation of +/720 than Heron's initial guess of 272

What happens after a few steps of this procedure is that the numbers x, and yn
that one obtains are almost equal and therefore close to /z. With Heron'’s intelligent
initial guess his first approximation was good enough (26% is within .002% of
/720, and he never seems to have carried out the repeated approximations he
proposed. ltisa remarkable method not only because it works, but because it works
so quickly. But why does it work? And why-does it work so quickly? And exactly how
quickly does it work? These are questions we can answer with ease after our start
in dynamical systems {Section 2.2.8).

1.3.2 The Search for Roots

Many problerms asking fora specific numerical solution can be easily and profitably
rephrased as looking for a solution of f(x) = 0 for some appropriate function f.
We describe two well-known methods for addressing this question for functions of
one variable.

1. Binary Search. Thereisa situation where we can be sure that a solution exists:
The Intermediate-Value Theorem from calculus tells us that if f: [a, bl — R is
continuous and f(@ < 0 < fibfor fib) <0 < fla), sowe could say fla) f(B) < 01,
then there is some ¢ € (g, b) such that f(c) = 0.
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® Exercise 1.3.4 Show that this statement of the Intermediate-Value Theorem is
equivalent to the standard formulation.

Knowing that a solution exists is, however, not quite the ‘same as knowing the
solution or at least having a fairly good idea where it is. Here is a simple reliable
method for getting to a root.

Given that f(a) < 0 < f(), consider the midpoint z = (a + b) /2.

CASE. 0: If f(z) = 0, we have found the root. Otherwise, there are two cases.

CASE 1: If f(2) > 0, replace the interval [, b] bjr the interval (a, 2], which is
half as long and contains a root by the Intermediate-Value Theorem because
f(@) < 0 < f(2). Repeat the procedure on this interval.

CASE 2: If f(z) < 0, replace [a, b] by [z, b, which is also half as long, and apply
the procedure here.

This binary search produces a sequence of nested intervals, cutting the length
in half at every step. Each interval contains a root, so we obtain ever-better
approximations and the limit of the right (or left) endpoints is a solution.

Note that this procedure is iterative, but it does not define a dynamical system.
Not one that operates on numbers anyway. One could view it as a dynamical
system operating on intervals on whose endpoints f does not have the same sign.

B Exercise 1.3.5 Carry out three steps of this procedure for fl) =x— cosx on
10, 1]. Conclude with an approximate solution and its accuracy.

This method is reliable: It gives ever-better approximations to the solution at
a guaranteed rate, and this rate is respectable and the error can be calculated. For

- example, nine steps give an error less than (b — a)/1000.

2. The Newton Method. The Newton Method (or Newton-Raphson Méethod) was
devised as a solution of the same problem of finding zeros of functions. It is more
flamboyant than the binary search: It is ingenious and can work rapidly, but it is
not always reliable. '

For this method we need to assume that the function f, whose zero we are o
find, is differentiable, and, of course, that there is a zero someplace. One begins by
making an educated guess xp at the solution. How to make this guess is up to the
user and depends on the problem. A reasonable graph might help, or maybe the
situation is such that the binary search can be applied. In the latter case a few steps
give an excellent initial guess.

Newton's method endeavors to give you a vastly improved guess. If the function
is linear, then your initial guess combined with the slope of the graph imrnediately
gives the exact solution. Being differentiable, the function f is well approximated
by tangent lines. Therefore the initial guess xp and the equation of the tangent line
to the graph of f tell us the x-intercept of the tangent line. This is the improved
guess. In terms of formulas the calculation amounts to

~ fw)
fa)’

0 = Flx) ==X
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@ Exercise 1.3.6 Verifythatthis formula encodes the geometric descriptionabove.

& Exercise 1.3.7 Apply this method four times to %2 — 4 = 0 with initial guess 1.
Compare with Exercise 1.3.1. {Look also at Exercise 1.3.18 and Exercise 1.3.19.)

This simple procedure can be applied repeatedly by jterating F. It gives a
sequence of hopefully ever-better guesses. In Section 2.2.8 we give a simple
criterion to ensure that the method will succeed.

B Exercise 1.3.8 Several of the exercises in Section 1.1-are examples of Newton's
method at work. Find the ones that are and give the equation whose solution they

find.

Since this method defines a dynamical system, it has been studied as such. This
isinlarge partbecause some initial choices provide situations where the asymptotic
behavior is complicated. Especially when this is done with complex numbers, one
can produce beautiful pictures by riumerical calculations. An important devel-
opment was an adaptation of this method to work on points in function spaces
usually called the Kolmogorov-Arnol'd-Moser or KAM method, which provided
a tool for one of the furthest advances in studying whether.our solar system is
stable. This is an outstanding example where knowledge about simple asymptotics
of a dynamical system in an auxiliary space gives insight into another dynamical
system.

1.3.3 Closed Geodesics

If an airplane pilot were to tie down. the wheel!® and had a lot of fuel, the plane
would go around the earth all the way along a great circle, returning precisely to the
starting point, and repeat. One could try the same with a vehicle on the surface, but
some more attention would be required because of intervening mountains, oceans,
rainforests, and such. The idealized model of this kind of activity is that of a particle
moving freely on the surface of a sphere. Because there are no external forces (and
1o friction, we assume), such a particle moves at constant speed with no change
of direction. It is quite clear that the particle always returns to the starting point
periodically. So there are infinitely many ways of traveling (freely) in a periodic

~ fashion.

What if your sphere is not as round and shiny as the perfect round sphere? It
may be slightly dented, or maybe even badly deformed. One could adorn it with a
mushroom-like appendage or even make it look like a barbell. Only, no tearing or
glueing of the surface is allowed. And no crimping. A smooth but not ball-shaped
“sphere” Now a {reely moving particle has no obvious reason to automatically
return home. Almost any way of deforming the sphere produces many nonperiodic
motions. Here is a hard question: Are there still infinitely many ways, on a given
deformed sphere, of moving freely and periodically?

16 This means that the plane flies horizontally and straight, and the proper technical term would be
“yoke" instead of “wheel”,
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One beautiful aspect of free particle motion is that the path of motion is always
the shortest connection between any two points on it that are not too far apart.
(Obviously, a closed path is not the shortest curve from a point to itself.) This is
familiar for the round sphere when these paths are great circles, but it is universally
true, and such paths are called geodesics. Therefore, the above question can also
be asked in terms of geodesics: On any sphere, no matter how deformed, are there
always infinitely many closed geodesics?

This is a question from geometry, and it was posed long ago. It was solved (not
so long ago) by dynamicists using the theory of dynamical systems. We explain
how geodesics are related to dynarmics in Section 6.2.8 and outline an approach to
this question in Section 14.5.

1.3.4 First Digits of the Powers of 2
As an illustration of the power of dynamics to discern patterns even of a subtle and

intricate nature, consider the innocuous sequence of powers of 2. Here are the first
50 terms of this sequence: '

2 2048 2097152 2147483648 2199023255552
4 4096 4194304 4294967296 4398046511104
8 8192 8388608 8589934592 8796093022208
16 16384 16777216 17179869184 17592186044416

32 32768 33554432 34359738368 35184372088832

64 65536 67108864 68719476736 70368744177664
128 131072 134217728 137438953472 140737488355328
0BG 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312
1024 1048576 1073741824 1099511627776 1125899906842624.

This list looks rather complicated beyond the trivial pattern that these numbers
grow. There are some interesting features to be observed, however. For example, the
last digits repeat periodically: 2, 4,8, 6. That this must be so is quite obvious: Thelast
digit of the next power is determined by the last digit of the previous one; so once
a single repetition appears, itis bound to reproduce the pattern. (Furthermore, the

~ Jast digit is always even and never 0.)

Asimilar argument shows that thelasttwo digits jointly mustalso eventuallystart
repeating periodically: By the previous observation there are at most 40 possibilities
for the last two digits, and since the last two digits of the next power are determined
by those of the previous one, it is sufficient to have one repetition to establish a
periodic pattern. Looking at our sequence we sec that, indeed, the last two digits
form the following periodic sequence with period 20 beginning from the second
wrnn0408163264285612244896928468367244887652

Note that this sequence has a few interesting patterns. Adding its first and
eleventh terms gives 100, as does adding the second and twelfth, the third and thir-
teenth, and so on. One way of developing this sequence is to start from 04 and apply
the followingrule repeatedly: Ifthe current numberis under 50, double it; otherwise, -
double the difference to 100. The simpler 2,4,8,6 above exhibits analogous patterns.
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Now look at the sequence of the first digits. Reading off the same list:

2 2048 2097152 2147483648 2199023255552

4 4096 4194304 4294967296 ¢ 4398046511104

8 8192 $388608 8589934592 8796093022208

16 16384 16777216 17179869184 17592186044416
32 32768 33554432 34359738368 35184372088832
64 65536 67108864 68719476736 70368744177664
128 131072 134217728 137438953472 140737488355328
056 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312
1024 1048576 1073741824 1099511627776 1125899906842624

one finds the first digits of the 50 entries to be

2481361251
2481361251
2481361251
2481361251
2481371251.

This is tantalizingly close to being periodic, buta small change creeps in at the end,
so no truly periodic pattern appears — and there is no reason to expect any. {If you
calculate further entries in this sequence, this behavior continues; little changes
keep appearing here and there.)

Since this sequence is not as regular as the previous one, a statistical approach
might be helpful. Look at the frequency of each digit — how often does a particular
digit figure in this list? We have: '

digit: 1 2 34567889
number of times : I5105554150.

These frequencies look somewhat uneven. In particular, seven and nine seem to
be disfavored. Seven appears for the first and only time at the 46th place in our
sequence, and nine appears for the first time as the first digit of 2°%. Calculation
of the first 100 entries gives slightly less lopsided frequencies, but they seem to be
sraller for larger digits.

Thus, all nine digits appear as the first digit of some power of 2. We would like
to know more, however. Does every digit appear infinitely many times? If yes, do
they appear with any regularity? Which of the digits appear most often?

In order to discuss them we need to formulate these questions precisely. To
that end we count for each digit d and every natural number 7 the number Fq{n) of
those powers 2™, m = 1,..., nthat begin with d. Thus, we just listed the 10 values
of F,4(50). The frequency with which d appears as the first digit among the first n
powers of 2is F4{n)/n. Thus, one of our questions is whether each of these quantities
has a limit as » goes to infinity and how these limits, if they exist, depend on d.
Once these questions have been answered, one can also ask them about powers of
3 and compare the limit frequencies.
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In Proposition 4.2.7 we obtain existence of these limits and give a formula for
them which in particular implies that all limit frequencies are positive and that they
decrease as dincreases. Thus, contrary to the evidence from the first 50 powers (but
in agreement with what one sees among the first 100}, seven eventually appears
more often than eight. The relationship between these limits for powers of 3 versus
powers of 2 is also striking.

1.3.5 Last Digits of Polynomials

In the previous example we had immediate success in studying patterns of last
digits and noted that some dose of dynamics provides the tools for understanding
the behavior of the first digits. Let us look at another problem of integer sequences

where similar questions can be asked about last digits.

Instead of an exponential sequence consider the sequence x, = n® for n e Ny.
The last digits come out to be 01496569410 and repeat periodically thereafter.

B Exercise 1.3.9 Prove that these digits repeat periodically.

B Exercise 1.3.10- Explain why this sequence is palindromic, that is, unchanged
when reversed. ‘ '

This is about as simple' as it was earlier, so let’s try x, = # p/q instead, for some

p.q € N. Unless g = 1, these won't all be integers, so we make explicit that we are
looking at the digit before the decimal point. You may want to experiment a little,
but it is easy to see directly that we still get a periodic pattern, with period at most
10g. The reason is that '

Ons10g — Gn = (11 10g)? p/g — n* p/q = 10Q2np + 10pq)

is an integer multiple of 10, so the digit before the decimal point (as well as all the
ones after) is the same for gy,104 and ay.

B Exercise 1.3.11 Prove that the initial 104 results form a palindromic string.

This was interesting, but not subtle. It is natural to replace p/q by an irrational
nurmber, because that should cause an “infinite period,” as it were, that is, no
periodicity at all. 7

So, consider x,; = n?/2. The sequence of last digits {before the decimal point)
begins with the following 100 terms: 47764935641602207257751690074812184811
0737998503554058008492320613431613320591 1072577527011950343171.

There are no obvious reasons for periodicity, nor is any such pattern apparent.
Certainlyall digits make an appearance. However, the questions we asked about first
digits of powers of 2 arealso appropriatehere: Doall digits appearinfinitely often? Do
they appear with well-defined relative frequencies? Relative frequencies are defined
as before: Let P,(d) be the number of times the last digit is d in the set {r? ﬁ}::]l
and consider P,(d)/nfor large . Among the first 100 values we get the frequencies

i: 0 I 2 3 4 5 6 7 8 9
Proo(1)/100 0.14 0.15 0.09 0.10 0.09 0.11 0.06 0.13 0.06 0.07.
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This list does not suggest any answer to this question, and the same list for larger right neigh

| : nmight not either. 2 wave,” bec
} Dynamics is able to address these questions as well as many similar ones ! " This is
completely and rigorously. In this particular example it turns out that all relative E beyond th
| frequencies converge to 1/10. Thus we have an example of uniform distribution, | interpretat
which is one of the central paradigms in dynamics as well as in nature. We outline B ‘ the map 4
a solution of the problem of distribution of last digits in Section 15.1. known as :
: encoding «
1.2.6 Cellular Automata ; repeated, ¢ |
A game of sorts called the game of life was popular in the 1980s. It is intended are given | |
i to model a simple population of somethings that live in fixed locations. Each of most useft
' the “organisms” is at a point of a fixed lattice, the points in the plane with integer it the (left
coordinates, say, and can have several states of health. In the simplest version such 3 - underadi
organisms might have only the two states “present” and “not there” (or 1 and 0). But Symbo
one may also take a model with a larger number of possible states, including, for It provide:
example, “sickly” or “happy.” The rule of the game is that the population changes L variety of
in discrete time steps in a particular way. Each organism checks the states of some : -
of its neighbors (up to some distance) and, depending on all these, changes its own ' B EXERC|
state accordingly. For example, the rule might say that if allimmediate neighbors are ' B Exercis
present, the organism dies (overpopulation). Maybe the same happens if there are drisht (
no neighbors at all (too lonely or exposed). This game was popular because fromrel- | andrig <
atively simplerules one could find (or design) intriguing patterns, and because com- B Exercis
puters, even early ones, could easily go through many generations in a short time. 3 procedure ::
| If the number of cells is finite, then from our perspective of asymptotic : whenever |:
long-term behavior there is not too much to say about the system. It has only : string of {
k finitely many states, so at some point some state must be attained for a second _ found by !
! time. Because the rules are unchanged, the pattern thereafter cycles again through L .
| the same sequence of states since the last time, and again and again. No matter B Exercis
; how interesting the patterns may be that emerge, or how long the cycle, this is a : How does
complete qualitative description of the long-term behavior. i B Exercit
When there are infinitely many celis, however, there is no reason for this kind 1 C g =3/4.
of cycling through the same patterns, and there may be all kinds of long-term
behaviors. ‘ B Exercit
Systems of this kind are called cellular automata. Since the rules are so clearly ; by the Ne
described, one can easily make mathematics out of them. To keep the notation B Exerci
simple we look not at the integer points in the plane, but only those on the line. : and note
Accordingly, a state of the system is a sequence, each entry of which has one of ‘ :
finitely many values (states). If the states are numbered 0, ..., N — 1, then we can B Exerci
denote the space of these sequences by Q. All organisms have the same rule for - initial gu
their development. It is given by a function f: {0,..., N — 19 5 {0, ..., N -1}, | B Exerd K
that is, a function that maps 2# + 1-characters-long strings of states (0,..., N— 1} 1 the succt
to a state. The input consists of the states of all neighbors up to distance r in down a I«
either direction, and the output is the future state of the individual. Therefore, L
each step of the evolution of the whole system is given by a map ¢: Qy — Qn B Exerci
such that (P(@)); = fl@i—n. ..., win). By way of example, take N=n=1 and j Compare

f(x_1, %0, 1) = x;. This means that every individual just chooses to follow its : - Method,
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right neighbor’s lead (today's X, is tomorrow’s xg). You might call this example “the

wave,” because whatever pattern you begin with, it will relentlessly march leftward.
This is a general description of cellular automata, whose interest goes well
beyond the game of life. The same mathematical concept admits a rather different

interpretation. If one thinks of each of these sequences as a stream of data, then

the map ® transforms these data - it is a code. This particutar class of codes is
known as sliding block codes, and this kind is suitable for real-time streaming data
encoding or decoding. For us, it is a transformation on a nice space that can be
repeated, a dynamical system. The general class of dynamical systems whose states
are given by sequences {or arrays) is called symbolic dynamics, and some of our
most useful models are of this kind. “The wave" is actually our favorite, and we call
it the (left) shift. As a class, sliding block codes play an important role, although

under a different name (conjugacies).
Symbolic dynamics is introduced in Section 7.3.4 and studied in Section 7.3.7.

It provides a rich supply of examples that are simple to describe but produce a
variety of complicated dynamical phenomena.

B EXERCISES

B Exercise 1.3.12 Prove that in the binary search for a root the éequences of left
and right endpoints both converge and that they have the same limit.

B Exercise 1.3.13 In the binary search for aroot assune a = 0, b = 1 and that the
procedure never terminates. Keep track of the choices at each step by noting a 0
whenever Case 1 occurs and noting a 1 whenever Case 2 occurs. Prove that the
string of 0's and 1's thus obtained gives the binary representation of the solution
found by the algorithm. '

B Exercise 1.3.14 In the preceding exercise assume that the search terminates.

How does the finite string of 0's and Vs relate to the binaryrepresentation of theroot?

® Exercise 1.3.15 Solve cos x = x with the Newton Method and the initial guess
JC()\ = 3/4. '

B Exercise 1.3.16 Approximate /5 to the best possible accuracy of your calculator
by the Newton Method with initial guess 2.

B Exercise 1.3.17 Use the Newton Method to solve sinx =0 with initial guess 1
and note the pattern in the size of the absolute error.

B Exercise 1.3.18 Try to solve /x = 0 with the Newton Method, ot taking 0 as
initial guess. ‘

B Exercise 1.3.19 For the Greek method of arithmetic/harmonic mear, express
the successive arithmetic means as the iterates of some function, that is, write
down a recursive formula for the first components alone.

B Exercise 1.3.20 Finding the root of a number z can be done in various ways,
Compare the Greek method of .arithmetic/harmonic mean with the Newton

Method, taking 1 as the initial guess.




