
PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Using PHP in a Web
Application

Internet Applications, ID1354

1 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Contents

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

2 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Section

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

3 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Cookies
I HTTP is stateless. Still there are many

reasons why it is useful for a server to
identify the client.

I Authentication (login)
I Settings
I Advertising
I Shopping basket

I This is solved with cookies.
I A cookie is a name/value pair passed

between browser and server in the HTTP
header.

I A cookie is only passed to the server from
which it originated.

4 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Cookies
I HTTP is stateless. Still there are many

reasons why it is useful for a server to
identify the client.

I Authentication (login)
I Settings
I Advertising
I Shopping basket

I This is solved with cookies.

I A cookie is a name/value pair passed
between browser and server in the HTTP
header.

I A cookie is only passed to the server from
which it originated.

4 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Cookies
I HTTP is stateless. Still there are many

reasons why it is useful for a server to
identify the client.

I Authentication (login)
I Settings
I Advertising
I Shopping basket

I This is solved with cookies.
I A cookie is a name/value pair passed

between browser and server in the HTTP
header.

I A cookie is only passed to the server from
which it originated.

4 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Cookies
I HTTP is stateless. Still there are many

reasons why it is useful for a server to
identify the client.

I Authentication (login)
I Settings
I Advertising
I Shopping basket

I This is solved with cookies.
I A cookie is a name/value pair passed

between browser and server in the HTTP
header.

I A cookie is only passed to the server from
which it originated.

4 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Cookies
I HTTP is stateless. Still there are many

reasons why it is useful for a server to
identify the client.

I Authentication (login)
I Settings
I Advertising
I Shopping basket

I This is solved with cookies.
I A cookie is a name/value pair passed

between browser and server in the HTTP
header.

I A cookie is only passed to the server from
which it originated.

4 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Set a Cookie
I Cookies are set with the setcookie

function. Since cookies are sent as HTTP
headers, this function must be called before
any output is generated.

setcookie (string $name, string $value,
int $expire = 0, string $path,
string $domain, bool $secure = false,
bool $httponly = false)

I name and value is the cookie’s
name/value pair.

I expire tells the instant in time when the
cookie expires. time() returns the
current time, so time()+60*60*24*30
sets the cookie to expire in 30 days.

5 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Set a Cookie
I Cookies are set with the setcookie

function. Since cookies are sent as HTTP
headers, this function must be called before
any output is generated.

setcookie (string $name, string $value,
int $expire = 0, string $path,
string $domain, bool $secure = false,
bool $httponly = false)

I name and value is the cookie’s
name/value pair.

I expire tells the instant in time when the
cookie expires. time() returns the
current time, so time()+60*60*24*30
sets the cookie to expire in 30 days.

5 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Set a Cookie
I Cookies are set with the setcookie

function. Since cookies are sent as HTTP
headers, this function must be called before
any output is generated.

setcookie (string $name, string $value,
int $expire = 0, string $path,
string $domain, bool $secure = false,
bool $httponly = false)

I name and value is the cookie’s
name/value pair.

I expire tells the instant in time when the
cookie expires. time() returns the
current time, so time()+60*60*24*30
sets the cookie to expire in 30 days.

5 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Set a Cookie
I Cookies are set with the setcookie

function. Since cookies are sent as HTTP
headers, this function must be called before
any output is generated.

setcookie (string $name, string $value,
int $expire = 0, string $path,
string $domain, bool $secure = false,
bool $httponly = false)

I name and value is the cookie’s
name/value pair.

I expire tells the instant in time when the
cookie expires. time() returns the
current time, so time()+60*60*24*30
sets the cookie to expire in 30 days.

5 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Retrieve a Cookie

I Cookies are retrieved using the $_COOKIE
superglobal, which is an array containing all
cookies included in the current request.

I The following statement retrieves all
cookies with the name userid.
$_COOKIE["userid"];

I The isset function can be used to check
if a cookie is set.
if (!isset($_COOKIE["userid"])) {

echo ’log in’;
}

6 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Retrieve a Cookie

I Cookies are retrieved using the $_COOKIE
superglobal, which is an array containing all
cookies included in the current request.

I The following statement retrieves all
cookies with the name userid.
$_COOKIE["userid"];

I The isset function can be used to check
if a cookie is set.
if (!isset($_COOKIE["userid"])) {

echo ’log in’;
}

6 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

To Retrieve a Cookie

I Cookies are retrieved using the $_COOKIE
superglobal, which is an array containing all
cookies included in the current request.

I The following statement retrieves all
cookies with the name userid.
$_COOKIE["userid"];

I The isset function can be used to check
if a cookie is set.
if (!isset($_COOKIE["userid"])) {

echo ’log in’;
}

6 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Third Party Cookies
I Cookies set by a server with a domain

name different from the server’s.
I If many servers set the same third party

cookie, the third party server can track the
user’s surfing.

I Typically used for marketing.
I There are many other ways, beside

cookies, to identify a user for tracking
purposes.

I Flash, Silverlight and HTML5 storages
I HTML5 canvas painting
I content of caches and cach tags like Last-Modified or ETag
I social networks
I fingerprinting mechanisms like supported ciphersuites, DNS content,

HTTP headers, plugins and fonts, clock drift, CPU and GPU
benchmarks, network level information, user behavior

7 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Third Party Cookies
I Cookies set by a server with a domain

name different from the server’s.
I If many servers set the same third party

cookie, the third party server can track the
user’s surfing.

I Typically used for marketing.

I There are many other ways, beside
cookies, to identify a user for tracking
purposes.

I Flash, Silverlight and HTML5 storages
I HTML5 canvas painting
I content of caches and cach tags like Last-Modified or ETag
I social networks
I fingerprinting mechanisms like supported ciphersuites, DNS content,

HTTP headers, plugins and fonts, clock drift, CPU and GPU
benchmarks, network level information, user behavior

7 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Third Party Cookies
I Cookies set by a server with a domain

name different from the server’s.
I If many servers set the same third party

cookie, the third party server can track the
user’s surfing.

I Typically used for marketing.
I There are many other ways, beside

cookies, to identify a user for tracking
purposes.

I Flash, Silverlight and HTML5 storages
I HTML5 canvas painting
I content of caches and cach tags like Last-Modified or ETag
I social networks
I fingerprinting mechanisms like supported ciphersuites, DNS content,

HTTP headers, plugins and fonts, clock drift, CPU and GPU
benchmarks, network level information, user behavior

7 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Third Party Cookies
I Cookies set by a server with a domain

name different from the server’s.
I If many servers set the same third party

cookie, the third party server can track the
user’s surfing.

I Typically used for marketing.
I There are many other ways, beside

cookies, to identify a user for tracking
purposes.

I Flash, Silverlight and HTML5 storages
I HTML5 canvas painting
I content of caches and cach tags like Last-Modified or ETag
I social networks
I fingerprinting mechanisms like supported ciphersuites, DNS content,

HTTP headers, plugins and fonts, clock drift, CPU and GPU
benchmarks, network level information, user behavior

7 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The EU Cookie Law
A person shall not store or gain access to
information stored, in the terminal equipment of
a subscriber or user unless the requirements of
paragraph (2) are met.

(2) The requirements are that the subscriber or
user of that terminal equipment

1. is provided with clear and comprehensive
information about the purposes of the
storage of, or access to, that information;
and

2. has given his or her consent.

8 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Exceptions To The Law

I The cookie is for the sole purpose of
carrying out the transmission of a
communication over an electronic
communications network.

I Not relevant here.

I The cookie is strictly necessary for the
provision of an information society service
requested by the subscriber or user.

I Likely applies to authentication and shopping
baskets.

9 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Exceptions To The Law

I The cookie is for the sole purpose of
carrying out the transmission of a
communication over an electronic
communications network.

I Not relevant here.
I The cookie is strictly necessary for the

provision of an information society service
requested by the subscriber or user.

I Likely applies to authentication and shopping
baskets.

9 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Exceptions To The Law

I The cookie is for the sole purpose of
carrying out the transmission of a
communication over an electronic
communications network.

I Not relevant here.
I The cookie is strictly necessary for the

provision of an information society service
requested by the subscriber or user.

I Likely applies to authentication and shopping
baskets.

9 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Exceptions To The Law

I The cookie is for the sole purpose of
carrying out the transmission of a
communication over an electronic
communications network.

I Not relevant here.
I The cookie is strictly necessary for the

provision of an information society service
requested by the subscriber or user.

I Likely applies to authentication and shopping
baskets.

9 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Do Not Track Specification

I Do Not Track, DNT, is a W3C specification
enabling the user to express preferences
regarding tracking.

I Defines a HTTP header, and how to handle
it on the server.

I It is not mandatory in any way to obey the
users preferences.

I Must be implemented by server developer.

10 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Do Not Track Specification

I Do Not Track, DNT, is a W3C specification
enabling the user to express preferences
regarding tracking.

I Defines a HTTP header, and how to handle
it on the server.

I It is not mandatory in any way to obey the
users preferences.

I Must be implemented by server developer.

10 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Do Not Track Specification

I Do Not Track, DNT, is a W3C specification
enabling the user to express preferences
regarding tracking.

I Defines a HTTP header, and how to handle
it on the server.

I It is not mandatory in any way to obey the
users preferences.

I Must be implemented by server developer.

10 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Do Not Track Specification

I Do Not Track, DNT, is a W3C specification
enabling the user to express preferences
regarding tracking.

I Defines a HTTP header, and how to handle
it on the server.

I It is not mandatory in any way to obey the
users preferences.

I Must be implemented by server developer.

10 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture
Question 1

11 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Section

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

12 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Sessions
I A session is the time span during which a particular

browser interacts with a particular server.

I For session tracking, PHP creates and maintains a
session tracking id (Unique ID, UID), for each visitor
and stores variables based on this UID.

I The UID is stored on the client, for example in a
cookie or as part of URLs, and included in each
request to the server.

I The only way to terminate a session is to manually
unset all data related to the session in the
server-side code.

I If a session is not explicitly terminated, it times out
after an interval specified in server configuration,
and session data is removed.

13 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Sessions
I A session is the time span during which a particular

browser interacts with a particular server.

I For session tracking, PHP creates and maintains a
session tracking id (Unique ID, UID), for each visitor
and stores variables based on this UID.

I The UID is stored on the client, for example in a
cookie or as part of URLs, and included in each
request to the server.

I The only way to terminate a session is to manually
unset all data related to the session in the
server-side code.

I If a session is not explicitly terminated, it times out
after an interval specified in server configuration,
and session data is removed.

13 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Sessions
I A session is the time span during which a particular

browser interacts with a particular server.

I For session tracking, PHP creates and maintains a
session tracking id (Unique ID, UID), for each visitor
and stores variables based on this UID.

I The UID is stored on the client, for example in a
cookie or as part of URLs, and included in each
request to the server.

I The only way to terminate a session is to manually
unset all data related to the session in the
server-side code.

I If a session is not explicitly terminated, it times out
after an interval specified in server configuration,
and session data is removed.

13 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Sessions
I A session is the time span during which a particular

browser interacts with a particular server.

I For session tracking, PHP creates and maintains a
session tracking id (Unique ID, UID), for each visitor
and stores variables based on this UID.

I The UID is stored on the client, for example in a
cookie or as part of URLs, and included in each
request to the server.

I The only way to terminate a session is to manually
unset all data related to the session in the
server-side code.

I If a session is not explicitly terminated, it times out
after an interval specified in server configuration,
and session data is removed.

13 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Sessions
I A session is the time span during which a particular

browser interacts with a particular server.

I For session tracking, PHP creates and maintains a
session tracking id (Unique ID, UID), for each visitor
and stores variables based on this UID.

I The UID is stored on the client, for example in a
cookie or as part of URLs, and included in each
request to the server.

I The only way to terminate a session is to manually
unset all data related to the session in the
server-side code.

I If a session is not explicitly terminated, it times out
after an interval specified in server configuration,
and session data is removed.

13 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is session data saved?

I We must understand that the lifetime of a
PHP variable is limited to the execution of
the program where it is created.

I This means that a variable created in one
request will not exist in later requests.

I Therefore, the content of $_SESSION
must be stored externally to the PHP
interpreter.

I This storage is called a session save
handler, and is configurable. Normally, and
also normally by default, a file is used.

14 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is session data saved?

I We must understand that the lifetime of a
PHP variable is limited to the execution of
the program where it is created.

I This means that a variable created in one
request will not exist in later requests.

I Therefore, the content of $_SESSION
must be stored externally to the PHP
interpreter.

I This storage is called a session save
handler, and is configurable. Normally, and
also normally by default, a file is used.

14 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is session data saved?

I We must understand that the lifetime of a
PHP variable is limited to the execution of
the program where it is created.

I This means that a variable created in one
request will not exist in later requests.

I Therefore, the content of $_SESSION
must be stored externally to the PHP
interpreter.

I This storage is called a session save
handler, and is configurable. Normally, and
also normally by default, a file is used.

14 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is session data saved?

I We must understand that the lifetime of a
PHP variable is limited to the execution of
the program where it is created.

I This means that a variable created in one
request will not exist in later requests.

I Therefore, the content of $_SESSION
must be stored externally to the PHP
interpreter.

I This storage is called a session save
handler, and is configurable. Normally, and
also normally by default, a file is used.

14 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Session Management

I A session is started with the
session_start function.

I To associate data with a session, use the
$_SESSION superglobal.

I To delete all data from the session, use the
session_destroy function.

15 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Session Management

I A session is started with the
session_start function.

I To associate data with a session, use the
$_SESSION superglobal.

I To delete all data from the session, use the
session_destroy function.

15 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Session Management

I A session is started with the
session_start function.

I To associate data with a session, use the
$_SESSION superglobal.

I To delete all data from the session, use the
session_destroy function.

15 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is a session identified?
I To fill the $_SESSION superglobal with the

current user’s data, the session save
handler must be able to identify the user.

I This is normally done using a cookie.

I After session_start is called, PHP will
look for a cookie named PHPSESSID.

I If it is present, its value will be used as the id
of the current session.

I If it is not present, it will be created and its
value will be set to the id of the current
session.

I We must understand that the PHPSESSID
cookie is the link between a browser and
that browser’s session data on the server.

16 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is a session identified?
I To fill the $_SESSION superglobal with the

current user’s data, the session save
handler must be able to identify the user.

I This is normally done using a cookie.
I After session_start is called, PHP will

look for a cookie named PHPSESSID.

I If it is present, its value will be used as the id
of the current session.

I If it is not present, it will be created and its
value will be set to the id of the current
session.

I We must understand that the PHPSESSID
cookie is the link between a browser and
that browser’s session data on the server.

16 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is a session identified?
I To fill the $_SESSION superglobal with the

current user’s data, the session save
handler must be able to identify the user.

I This is normally done using a cookie.
I After session_start is called, PHP will

look for a cookie named PHPSESSID.
I If it is present, its value will be used as the id

of the current session.

I If it is not present, it will be created and its
value will be set to the id of the current
session.

I We must understand that the PHPSESSID
cookie is the link between a browser and
that browser’s session data on the server.

16 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is a session identified?
I To fill the $_SESSION superglobal with the

current user’s data, the session save
handler must be able to identify the user.

I This is normally done using a cookie.
I After session_start is called, PHP will

look for a cookie named PHPSESSID.
I If it is present, its value will be used as the id

of the current session.
I If it is not present, it will be created and its

value will be set to the id of the current
session.

I We must understand that the PHPSESSID
cookie is the link between a browser and
that browser’s session data on the server.

16 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is a session identified?
I To fill the $_SESSION superglobal with the

current user’s data, the session save
handler must be able to identify the user.

I This is normally done using a cookie.
I After session_start is called, PHP will

look for a cookie named PHPSESSID.
I If it is present, its value will be used as the id

of the current session.
I If it is not present, it will be created and its

value will be set to the id of the current
session.

I We must understand that the PHPSESSID
cookie is the link between a browser and
that browser’s session data on the server.

16 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

How is a session identified?
I To fill the $_SESSION superglobal with the

current user’s data, the session save
handler must be able to identify the user.

I This is normally done using a cookie.
I After session_start is called, PHP will

look for a cookie named PHPSESSID.
I If it is present, its value will be used as the id

of the current session.
I If it is not present, it will be created and its

value will be set to the id of the current
session.

I We must understand that the PHPSESSID
cookie is the link between a browser and
that browser’s session data on the server.

16 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Session Example

At session start
const USER_KEY = ’user_key’;
session_start();
//Assuming $user is an object with user data.
$_SESSION[USER_KEY] = serialize($user);

During the session
if (isset($_SESSION[USER_KEY])) {

$my_data = unserialize($_SESSION[USER_KEY]);
}

At session end.
session_destroy();

17 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Session Example

At session start
const USER_KEY = ’user_key’;
session_start();
//Assuming $user is an object with user data.
$_SESSION[USER_KEY] = serialize($user);

During the session
if (isset($_SESSION[USER_KEY])) {

$my_data = unserialize($_SESSION[USER_KEY]);
}

At session end.
session_destroy();

17 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Session Example

At session start
const USER_KEY = ’user_key’;
session_start();
//Assuming $user is an object with user data.
$_SESSION[USER_KEY] = serialize($user);

During the session
if (isset($_SESSION[USER_KEY])) {

$my_data = unserialize($_SESSION[USER_KEY]);
}

At session end.
session_destroy();

17 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture
Question 2

18 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Section

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

19 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

HTTP Parameters

I The $_GET and $_POST superglobals are
used to retrieve HTTP parameters, for
example user input in a form.

I $_GET is an array with all parameters in a
HTTP GET request, $_POST is a similar
array for a POST request.

20 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

HTTP Parameters

I The $_GET and $_POST superglobals are
used to retrieve HTTP parameters, for
example user input in a form.

I $_GET is an array with all parameters in a
HTTP GET request, $_POST is a similar
array for a POST request.

20 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

HTTP Parameter Example

The following code retrieves the value of the
address parameter, which might originate
from an HTML form.
//The text field where the user types the address
//must have the attribute name=’address’

const ADDRESS_KEY = ’address’;
if (isset($_POST[ADDRESS_KEY])) {

$address = $_POST[ADDRESS_KEY];
}

21 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture
Question 3

22 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Section

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

23 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Application Scope Data
I As opposed to other server-side

technologies, PHP does not have
something like a $_SESSION superglobal
that is shared between different users.

I If data is to be shared between different
users, such a mechanism must be
constructed.

I A simple approach is to store data with
application scope in a file.

I Other alternatives are a database, an xml
file or a plug-in such as memcached,
http://www.memcached.org/, which
stores key/value pairs in memory.

24 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Application Scope Data
I As opposed to other server-side

technologies, PHP does not have
something like a $_SESSION superglobal
that is shared between different users.

I If data is to be shared between different
users, such a mechanism must be
constructed.

I A simple approach is to store data with
application scope in a file.

I Other alternatives are a database, an xml
file or a plug-in such as memcached,
http://www.memcached.org/, which
stores key/value pairs in memory.

24 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Application Scope Data
I As opposed to other server-side

technologies, PHP does not have
something like a $_SESSION superglobal
that is shared between different users.

I If data is to be shared between different
users, such a mechanism must be
constructed.

I A simple approach is to store data with
application scope in a file.

I Other alternatives are a database, an xml
file or a plug-in such as memcached,
http://www.memcached.org/, which
stores key/value pairs in memory.

24 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Application Scope Data
I As opposed to other server-side

technologies, PHP does not have
something like a $_SESSION superglobal
that is shared between different users.

I If data is to be shared between different
users, such a mechanism must be
constructed.

I A simple approach is to store data with
application scope in a file.

I Other alternatives are a database, an xml
file or a plug-in such as memcached,
http://www.memcached.org/, which
stores key/value pairs in memory.

24 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

File Handling

I Simple file handling can be done with
file_put_contents, which writes to a
file, and file_get_contents, which
reads.

\file_put_contents($path_to_file,
$data, FILE_APPEND);

\file_get_contents($path_to_file));

25 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

File Handling

I Simple file handling can be done with
file_put_contents, which writes to a
file, and file_get_contents, which
reads.

\file_put_contents($path_to_file,
$data, FILE_APPEND);

\file_get_contents($path_to_file));

25 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture
Question 4

26 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Section

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

27 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Problem

I There is a list with buttons
(or links) for multiple items,
like the chat application
example to the left.

I How can we know which
button the user clicked? In
this chat example, how
can we know which entry
Stina wants to delete?

28 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Problem

I There is a list with buttons
(or links) for multiple items,
like the chat application
example to the left.

I How can we know which
button the user clicked? In
this chat example, how
can we know which entry
Stina wants to delete?

28 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Hidden Field

I Make a form for each item in the list.
I In this chat example, that means one form for

each entry that has a Delete button.

I Each form includes a hidden field, which
holds an identifier for the list item where the
form is placed.

I In this example, we use the time when the
entry was written as identifier.

29 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Hidden Field

I Make a form for each item in the list.
I In this chat example, that means one form for

each entry that has a Delete button.
I Each form includes a hidden field, which

holds an identifier for the list item where the
form is placed.

I In this example, we use the time when the
entry was written as identifier.

29 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Hidden Field

I Make a form for each item in the list.
I In this chat example, that means one form for

each entry that has a Delete button.
I Each form includes a hidden field, which

holds an identifier for the list item where the
form is placed.

I In this example, we use the time when the
entry was written as identifier.

29 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Hidden Field

I Make a form for each item in the list.
I In this chat example, that means one form for

each entry that has a Delete button.
I Each form includes a hidden field, which

holds an identifier for the list item where the
form is placed.

I In this example, we use the time when the
entry was written as identifier.

29 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Hidden Field

I A hidden field is not displayed in the
browser, but included when the form is
submitted.

I The HTML for the chat conversation is listed
below.

30 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Hidden Field
I A hidden field is not displayed in the

browser, but included when the form is
submitted.

I The HTML for the chat conversation is listed
below.

30 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Server Code
I On the server, we simply read the

timestamp of the submitted form and delete
the entry with that timestamp.

I Code is not complete, just illustrates the
principle. Complete code is found on
course web page.

for ($i = count($entries) - 1; $i >= 0; $i--) {
$entry = unserialize($entries[$i]);
if ($entry->getTimestamp() ==

$_GET[CHAT_TIMESTAMP_KEY]) {
$entry->setDeleted(true);
$entries[$i] = serialize($entry);
break;

}
}

31 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

The Solution, Server Code
I On the server, we simply read the

timestamp of the submitted form and delete
the entry with that timestamp.

I Code is not complete, just illustrates the
principle. Complete code is found on
course web page.

for ($i = count($entries) - 1; $i >= 0; $i--) {
$entry = unserialize($entries[$i]);
if ($entry->getTimestamp() ==

$_GET[CHAT_TIMESTAMP_KEY]) {
$entry->setDeleted(true);
$entries[$i] = serialize($entry);
break;

}
}

31 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture
Question 5

32 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Section

Cookies

HTTP Sessions

HTTP Parameters

Application Scope and File Handling

To Identify a List Item

Architecture

33 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Remember Object Oriented
Design?

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

34 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Remember Object Oriented
Design?

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

34 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Remember Object Oriented
Design?

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

34 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

Remember Object Oriented
Design?

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

34 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.

I This means using one PHP file for each
possible HTTP request.

I However, handling everything related to a
particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.
I High coupling since code for view handling,

database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.
I This means using one PHP file for each

possible HTTP request.

I However, handling everything related to a
particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.
I High coupling since code for view handling,

database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.
I This means using one PHP file for each

possible HTTP request.
I However, handling everything related to a

particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.
I High coupling since code for view handling,

database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.
I This means using one PHP file for each

possible HTTP request.
I However, handling everything related to a

particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.

I High coupling since code for view handling,
database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.
I This means using one PHP file for each

possible HTTP request.
I However, handling everything related to a

particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.
I High coupling since code for view handling,

database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.
I This means using one PHP file for each

possible HTTP request.
I However, handling everything related to a

particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.
I High coupling since code for view handling,

database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Very Simple Architecture
I Server-side architecture is covered

extensively later in the course.
I For now, we will use a very simple

architecture.
I This means using one PHP file for each

possible HTTP request.
I However, handling everything related to a

particular HTTP request in a separate file
has big disadvantages:

I Low cohesion since that file will do everything.
I High coupling since code for view handling,

database access, etc, will be placed in the
same file.

I Duplicated code since similar code will appear
in several such files.

35 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Slightly Better Architecture
I Fragments (header, footer, etc) are

placed in a separate directory and
included in each page.

I View (HTML code) is placed in separate
files, chat.php and index.php.

I Entry.php is a class that represents
an entry in the conversation. It is
included where needed in the HTTP
request handling PHP files.

I keys.php holds some constants that
are used in multiple places. It is included
where needed in the HTTP request
handling PHP files.

I The files handling HTTP requests are login.php,
store-entry.php and delete-entry.php

36 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Slightly Better Architecture
I Fragments (header, footer, etc) are

placed in a separate directory and
included in each page.

I View (HTML code) is placed in separate
files, chat.php and index.php.

I Entry.php is a class that represents
an entry in the conversation. It is
included where needed in the HTTP
request handling PHP files.

I keys.php holds some constants that
are used in multiple places. It is included
where needed in the HTTP request
handling PHP files.

I The files handling HTTP requests are login.php,
store-entry.php and delete-entry.php

36 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Slightly Better Architecture
I Fragments (header, footer, etc) are

placed in a separate directory and
included in each page.

I View (HTML code) is placed in separate
files, chat.php and index.php.

I Entry.php is a class that represents
an entry in the conversation. It is
included where needed in the HTTP
request handling PHP files.

I keys.php holds some constants that
are used in multiple places. It is included
where needed in the HTTP request
handling PHP files.

I The files handling HTTP requests are login.php,
store-entry.php and delete-entry.php

36 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Slightly Better Architecture
I Fragments (header, footer, etc) are

placed in a separate directory and
included in each page.

I View (HTML code) is placed in separate
files, chat.php and index.php.

I Entry.php is a class that represents
an entry in the conversation. It is
included where needed in the HTTP
request handling PHP files.

I keys.php holds some constants that
are used in multiple places. It is included
where needed in the HTTP request
handling PHP files.

I The files handling HTTP requests are login.php,
store-entry.php and delete-entry.php

36 / 36

PHP

Cookies

HTTP Sessions

HTTP Parameters

Application Scope
and File Handling

To Identify a List Item

Architecture

A Slightly Better Architecture
I Fragments (header, footer, etc) are

placed in a separate directory and
included in each page.

I View (HTML code) is placed in separate
files, chat.php and index.php.

I Entry.php is a class that represents
an entry in the conversation. It is
included where needed in the HTTP
request handling PHP files.

I keys.php holds some constants that
are used in multiple places. It is included
where needed in the HTTP request
handling PHP files.

I The files handling HTTP requests are login.php,
store-entry.php and delete-entry.php

36 / 36

	Cookies
	HTTP Sessions
	HTTP Parameters
	Application Scope and File Handling
	To Identify a List Item
	Architecture

