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Chapter 8

FIELD DESCRIPTION
OF MAGNETIC AND
ELECTRIC FORCES

8.0 INTRODUCTION

Chapter 7 is restricted to the effects of mechanical motion on magnetic
and electric fields. In general, electromechanical interactions involve effects
on the mechanical system from the electromagnetic fields as well. These
arise from the mechanical forces of electrical origin.

In Chapters 3 through 6 we were concerned with total forces acting on
rigid bodies. In systems in which the mechanical medium must be represented
by a deformable continuum the details of the force distribution must be
known. Hence in continuum electromechanics we are concerned with
magnetic or electric force densities, which are, in general, functions of space
and time.

Electromagnetic fields are defined by forces composed of two parts:
those exerted on free charges by electric fields and those exerted on free
currents (moving free charges) by magnetic fields. The relative importance of
these forces depends on the type of system being considered. In magnetic field
systems, as defined in Section 1.1, the important field excitation is provided
by the free current density J,. Hence for magnetic field systems the only
important forces arise from the interactions of the free current density J,
with magnetic fields. Similarly, the only forces of significance in electric field
systems, as defined in Section 1.1, are the interactions of free charge density
p, with electric fields. The validity of these assumptions is checked in particular
problems. Following the pattern established in earlier sections, we treat
forces in magnetic field and electric field systems separately. Our object is to
describe electromagnetic forces mathematically in alternative forms that will
prove useful in work with continuum electromechanical systems.



Forces in Magnetic-Field Systems

Two other technically important electromagnetic forces are those resulting
from the interactions of polarization density P with electric fields and
magnetization density M with magnetic fields. In Chapters 3 to 5 we calculate
total forces on polarizable and magnetizable bodies by using an energy method.
We extend this method to account for force densities in polarized or magne-
tized media that are electrically linear, isotropic, and homogeneous. This
limitation in our discussion of polarization and magnetization forces is
imposed because use of an energy method requires a knowledge of the
mechanical and thermodynamic properties of the material.

8.1 FORCES IN MAGNETIC-FIELD SYSTEMS

Consider first the force resulting from the interaction of moving free
charge (i.e., J,) and a magnetic field. The Lorentz force (1.1.28) gives the
total magnetic force on a charge q moving with velocity v as

f = qv x B. (8.1.1)

The force density F (newtons per cubic meter) can be obtained from this
expression by writing

If f qvv, x Bi
F = lim -- - = lim , (8.1.2)

av-.o0V av-o 6V

where f4, qg, and vi refer to all the particles in 6V and Bi is the flux density
experienced by qj. If we can say that all particles within 6V experience the
same flux density B, we can use the definition of free current density (see
Section B.1.2)* to write (8.1.2) as

F = J, x B. (8.1.3)

The general definition of (8.1.2) requires the averaging of products, whereas
the result of (8.1.3) is the product of averages. It is not, in general, true for
variables x and y that

[zY]av = [1]av~Ylav.
The force density expressed by (8.1.3) however, agrees, to a high degree of
accuracy, with all experimental results obtained with common conductors.
The relation (8.1.3) is valid because the volume 6V can be made small
enough to enclose a region of essentially constant magnetic flux density,
although still including many free charges.

In fact, we could have used (8.1.3) rather than (8.1.1) as the definition of
B, for the original experiments of Biot and Savart and later Amphret con-
cerned themselves with relating the force density to the free current density

* J = lim [( qv) 6V

t J. D. Jackson, Classical Electrodynamics, Wiley, New York 1962, p. 133.
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Field Description of Magnetic and Electric Forces

J,. Some writers start with (8.1.3) as the basic definition ofthe magnetic force
on moving free charge.* However, the averaging process used to make
(8.1.2) and (8.1.3) consistent is then inherent to the definition.

It is important to remember that (8.1.3) represents the average of forces
on the charges. This is equivalent to the force on a medium if there is some
mechanism by which each charge transmits the Lorentz force to the material.
For example, in a conductor, the charges can be thought of as particles
moving through a viscous material-in which case the force that acts on
each charge is transmitted to the medium by the viscous retarding force and
(8.1.3) is the force density experienced by the medium.

There are situations in which the charges do not interact individually with
the medium. For example, in a polarized medium, pairs of charges (dipoles)
transmit a force to the medium--each pair being connected through the
structure of an atom or molecule. For these cases it is the dipoles rather than
the charges that transmit a force to the medium. Then it is appropriate to
consider the average of the forces on individual dipoles as equivalent to the
force density on the medium. This class of forces is developed in Section 8.5.

The force density given in (8.1.3) is expressed in terms of source and field
quantities. It is useful to have the force expressed as a function of field
quantities alone because we often solve field problems without calculating
the free current density. We find it useful to define the Maxwell stress tensor
as a function of the field quantities from which the force density can be
obtained by space differentiation. The Maxwell stress tensor is particularly
useful for finding electromechanical boundary conditions in a concise form.
It is useful also for finding the total electromagnetic force on a body.

A tensor has particular properties that are useful in this and the chapters
which follow. We therefore devote Section 8.2 to a discussion of the stress
tensor, using magnetic field stresses as an example.

We can write (8.1.3) in terms of the magnetic field intensity and in a
particularly useful form when the medium has a constant permeability, that
is, with the constituent relationt

B = •IH. (8.1.4)

We can use (8.1.4) and Ampere's law for magnetic field systems (1.1.1)t to
write (8.1.3) in the form

F = p(V x H) x H. (8.1.5)

It is a vector identity that this expression can be written as

F = p(H. V)H -1 V(H H), (8.1.6)
2

* See, for example, Jackson, ibid., p. 137.
t Arguments are given in Section 8.5 to show that (8.1.3) is the force density on free currents
in the presence of a constant permeability y. For now we assume that this is the case.
T Table 1.2, Appendix E.
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There are three components to this vector equation, but we usually do not
write them out unless specific situations are under consideration. There are
manipulations, however, that become easier to perform when the equations
are viewed component by component. They can be carried out without
dealing with cumbersome expressions by using index notation.*

In what follows we assume a right-hand cartesian coordinate system
x1, x2, x. The component of a vector in the direction of an axis carries the
subscript of that axis. When we write F, we mean the mth component of the
vector F, where m can be 1, 2, or 3. The mathematical formalism is illustrated
by using the force density of (8.1.6) as an example. When we write the
differential operator a/8la, we mean a/azx, alax2, or a/axs. When the index
is repeated in a single term, it implies summation over the three values of
the index

aH, aH, aH2  aH,

and

H. H, a + H2  + H H V.
ax. ax, ax2  ax.

This illustrates the summation convention. On the other hand, aHmlax,
represents any one of the nine possible derivatives of components of H with
respect to coordinates. We define the Kronecker delta b.,, which has the
values

1, when m = n,
6,., = (8.1.7)

0O, when m n.

The Kronecker delta has the property (remember to sum on an index that
appears twice)

,mnH, = H,
and

a a
aZ- ax,,'

which can be verified by using the definition (8.1.7).
With these definitions we write the mth component of (8.1.6) as

F. = PH, aH. (HH,). (8.1.8)
ax, 2 ax,

* A. J. McConnell, Applications of the Absolute Differential Calculus, Blackie, London,
1951, Chapter 1.

-- "~"
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We use the property of the Kronecker delta [a/azx = 6m,,(a/ax)] and some
manipulation to write this expression as

Fm Q= a H,,H. - 8m kH,) - H. 'PH (8.1.9)ax P\ 2 ax.,
The last term on the right is

Hm(V • PH) = H,(V - B)= 0;

thus we finally write (8.1.9) in the concise form

Fm = , (8.1.10)
ax.

where the Maxwell stress tensor Tm,, is given by

T,n.= H,H. -- ý,,,HkH. (8.1.11)
2

If we know the magnetic field intensity H in a region of space, we can
calculate the components of the stress tensor Tm,. We need only to calculate
at most six components because the stress tensor is symmetric:

T,, = T,,. (8.1.12)

Differentiation of (8.1.11) with respect to the space coordinate according to
(8.1.10) gives the force density on the current-carrying matter in that region of
space. We should keep in mind that (8.1.10) is simply an alternative way of
expressing the mth component of J, x B. Moreover, we must use the total
H to obtain the correct answer from (8.1.10).

Now suppose we wish to find the mth component of the total force f on
material contained within the volume V. We can find it by performing the
volume integration:

fm Fm dV - f T, d V. (8.1.13)
= fax,

When we define the components of a vector A as

A 1 = T. 1, A 2 = T, 2, As = Tm3, (8.1.14)

we can write (8.1.13) as

fm = dV = VA) d. 8.1.15)
v ax, v

We now use the divergence theorem to change the volume integral to a surface
integral,

f, = A . n da = An, da, (8.1.16)
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The Stress Tensor

where n, is the nth component of the outward-directed unit vector n normal
to the surface S and the surface S encloses the volume V. Substitution from
(8.1.14) back into this expression yields

f, = T•n, da. (8.1.17)

Hence we can find the total force of magnetic origin on the matter within a
volume V by knowing only the fields along the surface of the volume. This
is an important result.

8.2 THE STRESS TENSOR

In the preceding section we introduced the Maxwell stress tensor as an
ordered array of nine functions of space and time T,,(r, t) from which we can
calculate magnetic force densities and total forces. The concept of a tensor
will be useful to us in later chapters for describing mechanical stresses and
deformations in elastic and fluid media. Consequently, we now digress from
our study of electromagnetic forces to develop some tensor concepts.

We first consider the tensor representation of stresses with the object of
attaching physical significance to the components of a stress tensor. Then
mathematical techniques that are used with the stress tensor to find surface
stresses (tractions) and volume force densities are introduced. Finally, we
introduce some mathematical properties of tensors in general. These proper-
ties are introduced in a context in which physical interpretations can be made
easily. It is important to remember that tensor analysis is a mathematical
formalism that is particularly useful for analyzing a wide variety of physical
systems. *

We have remarked that the Maxwell stress tensor is an ordered array of
nine functions of space and time. It is conventional to write this array in
matrix form as

T1l(r, t) T 2(r, t) T18(r, t)

TJ(r, t) = T2 (r, t) T22(r, t) T2 3(r, t) . (8.2.1)

LT3(r, t) Ts,(r, t) TW(r, t)

The first index marks the row and the second, the column in which the element
appears. As indicated by (8.1.11) and (8.1.12), the Maxwell stress tensor is
symmetric. In the matrix of (8.2.1) the symmetry is about the diagonal.
Although the symmetry property has been established only for the Maxwell
stress tensor, we find that all the tensors we use in this book are symmetric.

* For a more detailed discussion of tensor calculus than we need in this book see, for
example, B. Spain, Tensor Calculus, Interscience, New York, 1960.

· ·X··_IIIIIIIIY·I*I·-II - I·-_· __I
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8.2.1 Stress and Traction

A physical interpretation of the stress tensor follows from (8.1.17)
which relates the total force on matter within the volume V enclosed by the
surface S to an integral over the surface S. The integrand T,,n, has the
dimension of a force per unit area and, in view of the summation convention
with a repeated index, Tnn, is the mth component of a vector. The vector
whose components are T,,n, has special significance and is therefore given
the name traction and a symbol r. Thus the mth component of the traction
is written as*

'r, = Tmnn, = Tminl + Tm2ns + Tmns. (8.2.2)

We show subsequently that the traction r, defined by (8.2.2), is actually the
vector force per unit area applied to a surface of arbitrary orientation. For the
moment, however, we use (8.2.2) to attach some physical significance to
the components of the stress tensor.

Assume that the surface integral of (8.1.17) is to be taken over the rec-
tangular volume whose faces are perpendicular to the coordinate axes illus-
trated in Fig. 8.2.1. We can express (8.1.17) as the sum of six integrals taken
over the six plane faces of the volume. As an example, consider the top face,
which has the outward directed normal vector.

n = ix.

The components of this normal vector are

n 1 = 1, n2 = n, = 0.

Consequently, the three components of the traction on the top surface are

1 = T1 1 , '2 = T 2 1, 73 = T31.

These components and the vector T are illustrated in Fig. 8.2.1. Next,
consider the bottom face, which has the outward directed normal vector

n = -- i .

The components of this normal vector are

n- = -1, n2 = n3 = 0.

* Note that the subscript on the traction rm is the same as thefirst subscript on the stress
tensor component Tmn. This choice for the order of subscripts on T,n is a matter of con-
vention. Although the convention used here is prevalent in the literature, the opposite
convention is used. Therefore it is wise to identify the convention used in each case by
inspecting equations of the form of (8.1.10) or (8.1.17).
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,x1

ne V
sed by
rface S

> x3

X2

Fig. 8.2.1 A rectangular volume V, acted on by a stress Tn,.

Thus the three components of the traction on the bottom face are

r1 = -T 1 1, 7 = -T 2 1 , 73 = - T31.

These components and the vector r are illustrated in Fig. 8.2.1.
A similar process can be followed to find the surface traction 7 on each of

the other faces. The vector and its components for the face with outward
directed normal vector n = i3 are also shown in Fig. 8.2.1.

We have shown that the component T,,, of the stress tensor can bephysically
interpretedas the mth component of the traction applied to a surface with a
normalvector in the n-direction. Thus T,] is the x2,-directed component of the
traction applied to a surface whose normal vector is i 3.

We use the ideas developed with Fig. 8.2.1 to construct, in component
form, the tractions on all six faces of a rectangular volume in Fig. 8.2.2.
The faces are perpendicular to the three axes and the position of each face is
defined. The corresponding stresses act in opposite directions on opposite
faces. Consequently, if each component of the stress tensor is a constant
over the whole volume, the stresses exactly oppose one another and no net
force is applied to the material inside the volume. The stress tensor must
vary with space to produce a net force.

To illustrate this mathematically we assume the dimensions of the volume

n = -il
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... .L 1 _ - %

'X1

x2

Fig. 8.2.2 Rectangular volume with center at (xi,X,, ) showing the surfaces and direc-
tions of the stresses T,,.

to be small enough that components of the stress tensor do not vary appreci-
ably over one face. We use (8.1.17) to evaluate the x1-component of the total
force applied to the material within the volume as

.A = T•T •1x + A , X2, x) Ax2Ax 3 - T11. x - - x, X3 2 Ax 3
X x/ x)Ax2

" T1 2 x 1, x2 + X 3 A1,A T12 2 2 X3 1Ax 32 2

+ T3( X1 X21 X3 + Ax,) Ax1 AX2 - T13( iX, X2X3 -) Ax, Ax2 .

(8.2.3)
Here we have evaluated the components of the stress tensor at the centers
of the surfaces on which they act; for example, the stress component T1 1

acting on the top surface is evaluated at a point having the same Xz-and x3-
coordinates as the center of the volume but an xx coordinate Ax1 /2 above the
center.

The dimensions of the volume have already been specified as quite small.
In fact, we are interested in the limit as the dimensions go to zero. Con-
sequently, each component of the stress tensor is expanded in a Taylor series

T33

+ A%
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about the value at the volume center with only linear terms in each series
retained to write (8.2.3) as

f (T n T+4Tl n+ A"x Ax32 x,x 2 ax

( a , T 12 2 __ T12
T + A7_2 - 1 A-Ax 3x

2 ax2, 2 ax2,

+T AxT TT 3 A+ " AX1 AX,2
+ T 3+ a

2 ax3 2 ax3
or

f T= + T•r AxTx1AxA . (8.2.4)

(a.a, ax2 ax31)
All terms in this expression are to be evaluated at the center of the volume

(x1, x2, x3 ). We have thus verified our physical intuition that space-varying
stress tensor components are necessary to obtain a net force.

From (8.2.4) we can obtain the x1-component of the force density F at the
point (x,, x2, xa) by writing

_fi aT 1 aTu,1 2 aT3F, = lim - + + (8.2.5)
Ax1,AX2 AX3 - OAX1 AX2 AX3 ax, ax2 ax3

The limiting process makes the expansion of (8.2.4) exact. The summation
convention is used to write (8.2.5) as

F, = aT_~ (8.2.6)
ax,,

A similar process for the other two components of the force and force density
yields the general result that the mth component of the force density at a
point is

Fm -=aT (8.2.7)
ax"

This is the result obtained in (8.1.10), which was derived for magnetic forces.
Thus we have made the transition from the integral in (8.1.17) to the deriv-
ative in (8.2.7)-the reverse of the process in which we used the divergence
theorem to obtain (8.1.17) from (8.1.10).

Although the formalism presented in this section is based on a result
derived with magnetic forces, the stress tensor has a more general signifi-
cance, as we shall see in later chapters; for example, the rectangular volume in
Fig. 8.2.2 can be a block of elastic material with mechanical stresses applied
to the surfaces. Our derivation and interpretations are still valid with respect
to mechanical forces and force densities. For the moment we restrict our
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examples to consider only magnetic forces because they are the only ones we
have introduced formally.

Example 8.2.1. To illustrate some properties of the stress tensor and the mathematical
techniques used with it, consider the system illustrated schematically in Fig. 8.2.3. The
system consists of a long, cylindrical, nonmagnetic (pt = •o)conductor whose axis coincides
with the x3-axis. The conductor carries a uniform constant current density

J = iJ. (a)

An electromagnet, not shown, produces a uniform magnetic field intensity

Ho = ilHo , (b)

when J = 0. The conductor is long enough that we can ignore any variations with x 3 ; thus
the problem is two-dimensional.

Because the field problem is linear, we can superimpose the field Ho with the field excited
by the current density J. To calculate the two nonzero components H, and H2, due to J,
we establish a cylindrical coordinate system as illustrated in Fig. 8.2.4 and use the integral
form of Ampere's law to obtain

Jr
He =- for r < R, (c)2

JR2

HO- 2- for r>R. (d)
2r

The transformation from cylindrical to cartesian coordinates* is used to find the cartesian
components of this field. We then add the externally applied field Ho to obtain the total
field intensity as

for x1
2 + X22<R2. (e)

H
1

H 2

for x1
2

+ x2
2

> R
2

, (f)

The component H. is zero; thus we use (8.1.11) and (8.2.1) to write the stress tensor

(Tm ) =

) I oHH,

/tO (H 2
2 - Ha 2

)
2

0

(g)

* H. B. Phillips, Analytic Geometry andCalculus, 2nd ed., Wiley, New York, 1946, p. 206.
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The Stress Tensor

Fig. 8.2.3 A cylindrical conductor carrying uniform current density in the presence of a
uniform applied field.

Now (e) or (f) can be used with this expression to find the components of the stress
tensor both inside and outside the conductor. First the force density inside the conductor
is calculated from (8.1.3):

F = J, x B = -- iJpoH, + i2JpoH
or

2 2J

Thus there is a force density term due to the interaction between the current density and
the externally applied field and a term due to interaction of the current density with the
field it produces.

Fig. 8.2.4 Geometry for calculating fields excited by J.
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Field Description of Magnetic and Electric Forces

To calculate this same force density from the stress tensor we use (8.1.10) and write
for the xg-component

aT21 aT,2
F = -+ -. (i)

By substitution of (e) into (g) this expression becomes

TxaL2(H 21+ [ 2-4 - 22) (j

Performance of the indicated differentiations yields the x,-component of (h), as it should.
A similar process can be used to calculate the x1-component of the force density and also
to show that the x,-component of the force density is zero.

It should be evident from a comparison of the effort required to obtain (h) and (j) that the
stress tensor is not normally used to calculate force density in a system such as this. We
present this example to illustrate the correspondence between the two methods and to
illustrate the mathematical processes involved.

It is clear that outside the conductor the force density must be zero because the current
density is zero; however, (f)and (g) show that the stress tensor has nonzero components in
this region. To show that (8.1.10) yields a zero force density in this region we write the
expression for the x2-component of (8.1.10) outside the conductor (X,2 + 2

2) > R 2 :

ax1 2 xi2 + X22 o 2 x2 + 22
2 _o R _ JR(/ x,I
a -IH(J

2R4 ' (k)
ax2 2 4 \ 1 ;+x 2 ) 2o-j + x2 2

The indicated differentiation can be carried out to verify that this component of force
density is zero. A similar process can be used to show that F1 and F3, calculated from the
stress tensor, are zero outside the conductor.

We now turn to the problem of calculating the total magnetic force on a length I of the
conductor. First a volume integration of the force density given by (h) is performed. Because
there are no variations of the fields with x., we use as a volume element

dV = I dx1 dx,

and use (h) and the geometry of Fig. 8.2.4 to writef,-= XR+ i -2oH ]1dx dX
J-RJ- VR-x x,

2 
L 2 2

We integrate this equation with respect to x2, evaluate the result at the limits, and obtain

R
f= [-iPJo 2X1 R2 

- x1
2 + i22pdJH4R-2- x1

2 ]ldx

Evaluation of this integral with the specified limits yields the final result

f = i2JpOHirR 2l. (1)

This is simply the uniform force density due to the externally applied field Ho multiplied by
the volume wR21.That the forces due to the self-field canceled out is a result of the cylindrical
symmetry. Thus the force density due to the self-fields tends to deform the conductor but
produces no net force that tends to move it.
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The Stress Tensor

n= -11 the traction

Fig. 8.2.5 Illustrating the surface for integrating the traction.

To use the stress tensor in calculating this same total force we use (8.1.17) with a surface
that encloses a length I of the conductor. To make it quite clear that we can use a surface
that is totally outside the body we choose a surface of length I and of square cross section
with sides 4R, as shown in end view in Fig. 8.2.5. Because this surface is completely outside
the conductor we must use (f) with (g) to calculate the components of the stress tensor.

None of the quantities varies with x 3 ; consequently, we recognize that the contribution
to (8.1.17) from the two ends perpendicular to the x3 -axis is zero. The contribution from
one end is the negative of that from the other end. We calculate only the x2-component of
the force. A similar process can be carried out for the other two components and (1)indicates
that they integrate to zero.

We use the four lateral surfaces whose normal vectors are defined in Fig. 8.2.5 to write
(8.1.17) for the x2-component as

f2 = T 21 (2R, X2)l dX 2 - T21(-2R,x 2)1 dx 2
2R 2R

+ T 2 2(x 1 , 2R)ldx1 - T22(xl, -2R)Idx1 . (m)
J-2R -2R

The stress components in the integrands are given by (g) and can be evaluated in terms of the
magnetic field components by using (f). Then integration yields the result

f, = Jy0oHo0 R 21.

This is the same as (1)which was obtained by integrating the volume force density throughout
the conductor.

We have verified in an example that we can obtain the total force on current-carrying
material within a volume by integrating the traction over a surface enclosing the volume.
It is illuminating to investigate the nature of the tractions involved in this integration. For
this purpose we refer to Fig. 8.2.2 in which we interpreted the components of the stress
tensor as being the components of the traction. Thus we recognize that the first two integrals
in (m) involve the x2-component of the traction applied to surfaces whose normal vectors

n=
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Sir

Fig. 8.2.6 Stress distribution.

are in the xl-direction. Because these tractions are applied along a surface they are referred
to as shear stresses. The second two integrals in (m) involve components of the traction
that are perpendicular to the surfaces to which they are applied. Such tractions are called
normalstresses.

If we wish to carry our interpretation a step further and say that there are stresses trans-
mitted through space by the magnetic field as indicated by the Maxwell stress tensor, we
can interpret the integrands of (m) as being stresses applied to the four surfaces. We use the
integrands to sketch these stresses in Fig. 8.2.6. The shear stresses are equal on top and bottom
and are in the direction of the net force. The normal stresses are compressive and there is
an excess of stress applied to the left side.

Although the interpretation of the Maxwell stress tensor as representing mechanical
stresses transmitted by fields through empty space is often useful it must be employed with
understanding; for example, we could add a constant to all components of the stress tensor
and not change the results of our calculations of force density and total force. The stress
pattern of Fig. 8.2.6, however, would be changed markedly.

In (8.2.2) we defined the mth component r,m of the traction r as

T. = Tm,n,. (8.2.8)

The traction was interpreted as the vector force per unit area applied to a
surface with components n, of the normal vector n. The integral force
equation (8.1.17) suggests that ,r represents the force per unit area for a
surface of arbitrary orientation. This fact is emphasized by the discussion
which follows.

Figure 8.2.7 is a tetrahedron with three of its edges parallel to x1, x2, x-axes.
One surface of the tetrahedron has a normal vector n and supports the
traction ' (which, in general, is not in the direction of n). Because three of the
surfaces have normal vectors that are in the axis directions, the tractions on
these surfaces can be written in terms of the components Tm,, whereas
the traction on the fourth surface is the unknown r. Although the surface
tractions (and in particular Ta,,) depend on the space coordinates, it has been
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(xI, X2, X3)

Fig. 8.2.7 The small tetrahedron used to find the surface traction r on a surface with
the normal vector n in terms of the components of the stress tensor Tmn.

implicitly assumed that Tmn is a continuous function. Hence, as AxI, Ax,,
Ax, -* 0, the traction Trmust balance the stresses on the negative surfaces.
Here we use the fact that the volume forces are proportional to the volume

AxIAx2 Ax 3, whereas the surface tractions produce forces proportional to
areas, that is, AxlAx 2 , Ax2Ax 3 or AxAx1 . Hence in the limit in which
Ax1 , Ax 2, Ax 3 - 0, the prism of material is not in force equilibrium unless
the surface forces balance.

If the surface with the normal n has the area S, the negative surfaces have
the areas Sni, Sn2, Sn3,* respectively, and continuity of the stresses which act
in the x,-direction gives rise to the equation

"rS- T11Sn1 + T12Sn2 + T,,13Sn3. (8.2.9)

In the limit in which the dimensions of the tetrahedron become small (8.2.9)
becomes exact. Since the equation can also be written for the other compo-
nents of the stress, (8.2.8) follows.

* A proof of this geometric relation can be made by using Gauss's theorem A • n da

f(V - A) dVwith A = i-. The volume integral vanishes and the surface integral (integrated

over the surface of the tetrahedron) becomes -S 1 + Sn 1 = 0, where S1 is the area of the
back surface with the normal -- i1 . Similar arguments hold using A = iz and A = i3.

3
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Fig. 8.2.8 Example of surface traction 'r acting on a particular surface S.

Example 8.2.2. A brief example will help to fix the meaning of (8.2.8). We wish to
derive the traction r on the surface S shown in Fig. 8.2.8, given the stresses T11, Tz, etc.

It is assumed that a lies in the xl-x2 plane, so that from the figure the normal vector is

n = l • 2 + i 2-' (a)

Note that the components of n are not the unit vectors i1, i2, is. According to (8.2.8), the
components of r acting on the surface S are

r N/3 1

-2 = T 21 
+  

2

'-a = 0,

where we have assumed that T,,, Ta2, and Ta are zero or that there are no components of
the stress acting in the xs-direction. This example should make it clear that all we have done
in writing (8.2.8) is to formalize our interpretation of the stress components as forces per
unit area acting on surfaces that are perpendicular to the axis directions. The results could
be derived from inspection of Fig. 8.2.8 without making use of (8.2.8). Try it!

8.2.2 Vector and Tensor Transformations

In our discussion so far we have interpreted the physical properties of the
stress tensor in terms of the vector traction r whose components are defined
by (8.2.2). We now use the mathematical properties of the vector r to describe
some mathematical properties of the stress tensor.

_I 



The Stress Tensor

The traction v is a vector. The components of this vector depend on the
coordinate system in which r is expressed; for example, the vector might be
directed in one of the coordinate directions (xi, xz, x.), in which case there
would be only one nonzero component of r. In a second coordinate system

(x', 4•, ax), this same vector might have components in all of the coordinate
directions. Analyzing a vector into orthogonal components along the co-
ordinate axes is a familiar process. The components in a cartesian coordinate
system (xl, x2, x) are related to those in the cartesian coordinate system

(x1 , x 2, x,) by the three equations

S= ar7,, (8.2.10)

where a,, is the cosine of the angle between the x'-axis and the x,-axis.

Example 8.2.3. Suppose that we wish to use (8.2.10) to compute the components Tr,

of the vector r' in the primed coordinate system shown in Fig. 8.2.9, in terms of the known
components Tm of r in the unprimed coordinate system. (It should be recognized that the
x1 axis in this figure is in the direction of the normal in Fig. 8.2.8, so that we can consider
this example as an extension of the preceding one.) From the geometry the cosine of the
angle between

x1 and x = a - 2 asx and xt = a2

, 11
x1 and x2=a 12=l 2 , x and x,=a,=1,

1
xt and x1 = = -2, all others = 0.

Hence by definition
L3
2

[a,.l = 1
2

0

0

0

1
x2

Fig. 8.2.9 Geometrical relationship between the primed and unprimed coordinate systems
for Example 8.2.3.
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Then (8.2.10) gives

T1- 2 7
1 
+
-

2 72'

T 2- - 1 + -- T2 .

From this example (8.2.10) should be recognized as a simple statement of vector addition.
Again, we could have obtained the result from Fig. 8.2.9 without the formalism of (8.2.10).

Equation 8.2.10 forms the basis for determining how to transform com-
ponents of the stress tensor from one coordinate system to another.

According to (8.2.2), the components of r are

r = T,,n,. (8.2.11)

Now we consider a particular cartesian coordinate system (x, x,, x~)
established in such a way that one of the axes (say x') has the same direction
as n. A pictorial representation of the two coordinate systems is given in
Fig. 8.2.10. The components (n1, n2, na) of the normal vector are the cosines
of the angles between the (x1, X2, zX)axes and the normal direction, which is
also the direction of 4z.Hence from the definition following (8.2.10) (n,,
n2 , n3) = (all,a12, a,,) and (8.2.11) can also be written as

7, = T,,al,. (8.2.12)

X2

xl

Fig. 8.2.10 Relationship between the primed and unprimed coordinates showing the
xl-axis coincident with the normal vector.



The Stress Tensor

Because 4z is perpendicular to the surface, xz and x4 lie in the surface. We
see that (r 1, 7, r•) are just the components of the stress acting on a surface
with a normal in the direction of the x4-axis, that is,

S= T ,, (8.2.13)

but we can also use (8.2.10) to express ra as

7- = a,,77 , (8.2.14)

which by (8.2.12) gives a relation for 7' in terms of the stress components
in the unprimed coordinates.

7• = a,,(T 8,ax,) (8.2.15)
Then from 8.2.13

Tl = a•sraa,Tr,. (8.2.16)

Finally, the designation of the normal direction by the xz-axis is arbitrary,
and the preceding arguments could be repeated with 1 replaced by 2 or 1
replaced by 3. Hence we have shown that

TDa = apra,,T,8 . (8.2.17)

This relation provides the rule for finding the components of the stress in the
primed coordinates, given the components in the unprimed coordinates. It
serves the same purpose in dealing with tensors that (8.2.10) serves in dealing
with vectors. In much of the literature a vector orfirst-order tensor is defined
as an array of three numbers that transforms according to an equation in the
form of (8.2.10). In the same way, a second-order tensor is defined as an array
of numbers that transforms according to an equation in the form of (8.2.17).*

Example 8.2.4. Suppose we wish to find the stress component T11 expressed in the
primed coordinate system of Fig. 8.2.9 in terms of the components T,. in the unprimed
system. Then (8.2.17) gives

T71 = a,1 a 11 T11 + au1 a1 2T1 2 + ala,,T1 s + a12a11T21 + a 12a1 2 T22 + a1 2• 1 T 2

+ alsa 11 T3 1 + alsal2 Ta2 + al 2a, , T.3

or, in particular, from the values of am, given in Example 8.2.3,

T12 ±(2)TT, +2 2 2 2 2

A second example provides a useful result.

Example 8.2.5. Given the stress components T,, expressed in a cylindrical coordinate
system with the coordinates r, 0, and z, what are the components of the stress tensor

* See, for example, Spain, op. cit., pp. 6-9.

I·
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I k 12

X3 anu z

Fig. 8.2.11 Geometrical relationship between cartesian and cylindrical coordinate systems.

expressed in a cartesian coordinate system with axes xj, xz, and xa, as illustrated in Fig.
8.2.11.*

The relationship between the unit vectors is shown in Fig. 8.2.11. The cartesian coordinate
system plays the role of the "primed" system. We can see by inspection that the cosine of
the angle between

i1 and i7 = cos 0,

i1 and i- = cos (0 + 900) = - sin 0,

i2 and ir = cos (900 - 6) = sin 0,
i2 and i0 = cos 0,

i. and i- = 1,

all others = 0.
Therefore we can write

[cos 0 -sin

(a ) = sin 0 cos 0 0 "
O 0 11

The components of the stress now follow directly by making use of (8.2.17):

Tx = Trr cos2 0 - 2Tro sin 0 cos 0 + Too sin2 6,

T1 2 = Trr sin 0 cos 0 + Tr0(cos 2 0 - sin 2 
0) - Too sin 0 cos 0,

T,1 = Trz cos 0 - TO, sin 0,

T,2 = T,,sin 2 0 + 2Tro sin 0 cos 0 + Toocos2 0,

T23 = Tr. sin 0 + TzO cos 0,

T33 = Tz.

* When the components of a stress tensor are expressed in polar coordinates or any other
curvilinear coordinates, care must be exercised in taking space derivatives. This is analogous
to taking derivatives of vectors in curvilinear coordinates.
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The Stress Tensor

Before we leave the subject of tensor transformations we must make a
final important observation. The direction cosines a,, which transformed
the vector in (8.2.10) were defined with the understanding that the components
of r were expressed in an orthogonal coordinate system. There were therefore
implicit trigonometric relations between these direction cosines. If we state
them formally, it is possible to extend the concept of a tensor to situations
in which the transformations (8.2.10) and (8.2.17) are not geometrical in
origin.* These relations are easily established by means of (8.2.10).

Equation 8.2.10 is the transformation of a vector r from an unprimed to a
primed coordinate system. There is, in general, nothing to distinguish the two
coordinate systems. We could just as well define a transformation from the
primed to the unprimed coordinates by

7, = b,,4, (8.2.18)

where b,, is the cosine of the angle between the x,-axis and the x'-axis. But
b,,, from the definition following (8.2.10), is then also

b., =- a,,; (8.2.19)

that is, the transformation which reverses the transformation (8.2.10) is

7- = a,,4. (8.2.20)

Now we can establish an important property of the direction cosines ap,,
by transforming the vector r to an arbitrary primed coordinate system and
then transforming the components Tr. back to the unprimed system in which
they must be the same as those we started with. Equation 8.2.10 provides the
first transformation, whereas (8.2.20) provides the second; that is, we sub-
stitute (8.2.10) into (8.2.20) to obtain

7, = a,,a,,,r,. (8.2.21)

Remember that we are required to sum on bothp and r; for example, consider
the case in which s = 1:

T 1 = (a11a 1 1 + a2 la2 l + a 3lal3 )Ta 1

+ (a11a12 + a21a22 + as1a3 2)r•  (8.2.22)
+ (allal + a21a, + aslas33)r.

This relation must hold in general. We have not specified either a,, or r,.
Hence the second two bracketed quantities must vanish and the first must be
unity. We can express this fact much more concisely by stating that in general

a,,a,, = 6,, (8.2.23)

* J. C. Slater and N. H. Frank, Mechanics, 1st ed., McGraw-Hill, New York, 1947,
Appendix V.
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[this is the Kronecker delta as defined in (8.1.7)], for then (8.2.21) is reduced
to the identity -r, = -r,.

8.3 FORCES IN ELECTRIC FIELD SYSTEMS

We now consider the forces that develop in electric field systems. The
Lorentz force (1.1.28) gives the force on a charge q in an electric field E as

f = qE. (8.3.1)

The force density F can be found by averaging (8.3.1) over a small volume:

Sf, I q E ,

F = lim - = lim -- , (8.3.2)
av-. 6V av-0 6V

where q, represents all the charges in 6 V, Ej is the electric field acting on the
ith charge, and f, is the force on the ith charge. It is found experimentally
that free charges are almost never dense enough to make the microscopic
field E, seen by a charge appreciably different from the average (macroscopic)
field E. Consequently, because all charges in the volume 6V experience the
same electric field E, we use the definition p, = lim Y qj/6V to write (8.3.2) as

F = p,E. (8.3.3)

Once again, remember that this is the force density on the charges and (as
for the magnetic force density (8.1.3)) can be construed as the material force
density only if each of the charges transmits its force to the medium.

The constituent relation is

D = EE. (8.3.4)

For this development we assume that E is a constant, but this restriction is
relaxed in Section 8.5*. In this case we write (8.3.3) in terms of the electric
field intensity by using Gauss's law (1.1.12)t:

F = (V. EE)E. (8.3.5)

We now express (8.3.5) as the space derivative of a stress tensor by
recognizing that for electric field systems V x E = 0. Hence (8.3.5) can be
written as

F = (V. eE)E + (Vx E) x eE. (8.3.6)

* Arguments are given in Section 8.5 to show that this is the force density on free charges
embedded in a material with a constant permittivity. For now we assume that the only effect
of a uniform linear dielectric on the free charge force density is to replace eo - E.
t Table 1.2, Appendix E.
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Forces in Electric Field Systems

We now use a vector identity on the last term to obtain*

F = (V EE)E + E(E - V)E - 1E V(E - E). (8.3.7)

Using the index notation introduced in Section 8.1, we combine the first two
terms and write the mth component of this equation as

a E a
F, - (,E.En) (EEk). (8.3.8)

ax, 2 ax.
The Kronecker delta is now used to write

a a
ax. 8,ax

and to put (8.3.8) in the desired form,

F,.-= , (8.3.9)
ax.

where the Maxwell stress tensor Tm,, for electric field systems is given by

T,, = EE,m, -- i•,EE",. (8.3.10)
2

Note that this expression has the same form as (8.1.11) if we replace e
with u and E with H. The stress tensor here has all the general properties
discussed in Section 8.2.2.

Both electric and magnetic forces are usually included in the Maxwell
stress tensort; however, we have not combined these forces because they
usually do not occur in appreciable amounts in the same system. We use the
term Maxwell stress tensor to denote that function from which electro-
magnetic force densities can be obtained by differentiation, as in (8.3.9).
In different systems the Maxwell stress tensor represents different functions.

Example 83.1. To illustrate the use of the different expressions for force density and
total force consider the electrostatic problem defined in Fig. 8.3.1.

The system consists of two regions of vacuum separated by a nonpolarizable (E= c)
slab of thickness 6 in the xz-direction and of infinite extent in the other two directions. The
slab contains a volume charge density

P = Pro1 - (a)

for 0 < x,< d. The electric field in the region

X <0
is constrained to be

E = i'E1
0 + i2E2

0 + i3 ESo. (b)

* (V x A) x A = (A . V)A - IV(A A).
SJ.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, pp. 97-103.
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Fig. 8.3.1 Slab of material supporting a volume charge density.

After finding the electric field in the remainder of the system, we wish to compute in two
ways the total force per unit area on the slab, first by doing a volume integration of the
force density and then by doing a surface integration of the stress tensor.

To find the fields in the system we use the differential equations

V x E =0, (c)

V - eE = p. (d)

Because the slab has infinite extent in the x2-x3 plane, we can (for purposes of illustration)
assume no variation of E in the xz- and xz-directions.

a a
- =0.

aX2 aX3
Then (c) shows that everywhere

E2 = E20,

E3 = E3o
Equations a and d give

aEl, op0

Integration of this expression yields

E = O 2 + C1.-
E 0 x 2 6 + C1

x:
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We use the boundary condition on the normal component of E at zx = 0 to evaluate the
constant of integration.

C, = E.
Thus

E1 =E °+
1

0  x -- 2 , for 0 < <6,

and use of the boundary condition on the normal component of E at ax = 6 yields

El = E +1 , for x > 6.
2co

The only region in which free charge exists is for 0 < x, < 6, where we can write

F = pE = po I - ! i Eo + ( + i2Eo +i3Eo
E -- 11 o- 26 + 2

0 
+

Taking a volume with unit dimension in the az- and as-directions, we write for the total force
per unit area in an x2,-x plane:

f -= F dxi .

Performance of the indicated integration yields

oE'oS po06s +ipP Ed pyOEod
f = ixPo + O + i2 + i 22 "

2 Se0 2 2

We can obtain this same result by using the stress tensor, which we need only along the
surface that encloses the slab.

The surface selected for integrating (8.1.17) is the one shown in Fig. 8.3.1 which has unit
area in the x.-. plane and thickness 6 in the xi-direction. Because the fields are independent

of x, and x3 , the contributions from the surfaces perpendicular to 2s and x. add to zero. We
need only consider the surfaces of unit area perpendicular to zx . Thus we have

fi = T11(6) - T11(0),

f = T21 (6) - T1(0O),

fa = T3 (6) - T31 (0).

Using the components Tn, defined with the fields derived earlier, we have [remember that

Eg(0) = Eg(6) and E3(0) = E3(6)]

f, = o [E, 2 (6) - Eý2(0)] = 0

f = eo[E1 (d) E2(0) - E1(0) E(0)1 = oE2o -Pf
2co

f = ej[E1 (6) E3(6) - E1(0) E3(0)] = %oE3o Po0
2 ,E

Thus the result is the same as that obtained by the volume integration. Note that in the
surface integration we needed only the fields outside the space occupied by the charge.
The fields, of course, are affected by the presence of the charge.
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The most significant advantages of a formulation that uses the stress tensor
arise because forces on the material within a volume can be determined
without knowing the details of the volume force distribution (i.e., the
distribution of currents or charges). Moreover, in many problems we are at
liberty to choose the surface of integration and this can further simplify the
computation. The next example illustrates how the choice of the surface of
integration that is most convenient (or makes the integration possible)
depends on symmetry and boundary conditions and further shows how the
stress tensor can be used to obtain a total force in a situation in which a
more direct approach would be difficult if not impossible.

Example 8.3.2. A pair of perfectly conducting plates at the potential difference Vo is
shown in Fig. 8.3.2. One of these plates is flat and the other has a step at the middle, as
shown. Both plates extend far enough in the z,-direction that we can consider the problem as
two-dimensional (alax3 = 0). We wish to find the force in the xz-direction on a section of
length I (in the x3-direction) of the bottom plate, including the effect of the fringing fields.
To do this it is assumed that both c > a and d > b, so that the regions of nonuniform
electric field near the ends and near the step are separated by regions of essentially uniform
electric field intensity.

To carry out the surface integration [the xz-component of (8.1.17)]

f= Tlnn da (a)

we choose the surface shown in Fig. 8.3.2. Surfaces (1), (3) and (5) have the normal vector
n = i2 , whereas surfaces (2) and (4) have the normal n = TFi, respectively. Hence we can
write (a) as

A =f T2da + f• T1 2 da- f Tllda + f Tida +f Tiln, da. (b)
J 1){(5) J3() J 2) J (4) J 6)

Vo

/\ I~r.nf xl

\& integration X3

!~u)

Fig. 8.3.2 Conducting plates at the potential difference Vo.

'I-,



The Surface Force Density

The contributions from the surfaces with normals ±is have been ignored, for they cancel.
Because the surface of integration (6) is far from the plates (at infinity), we expect the
contribution of the last integral to be zero. We can argue that this is the case by making (6)
the surface of a cylinder of radius R, with the plates at the origin. Far from the plates the
electric field distribution isessentially that ofa dipole.* Hence E]I 1/R2 and IT . I| 1/R'.
It follows that although the surface area of integration is proportional to R2 the integral (6)
decreases as 1/R2 and vanishes as R -- cn. From (8.3.10)

T1 = EEIE2. (c)

Surfaces (1) and (5) are half way between the plates where by symmetry E1 = 0. Hence
the first term in (b) is also zero. Moreover, because E1 = 0 along the perfectly conducting
plate where surface (3) is located, the second integral vanishes also.

From (8.3.10)
T11 = je(E,2 - E,

2 
- E82 ). (d)

Surfaces (2) and (4) are in regions of uniform electric field intensity. Hence

E = -- i2; on surface (2),
a

(e)
E = i2 ; on surface (4).

Because these surfaces make the only contribution to the surface integral, (b), (d), and (e)
become

(2) () (4)

The stresses are constant over the surfaces of integration and therefore the integral is
performed by multiplication of the appropriate areas:

A = EyO2 "E(- \' (g)

or

fj 2 ). (h)

The electric force on the lower plate (for a < b, as shown in Fig. 8.3.2) tends to pull in
the x1-direction. If we had closed the surface above the top plate, the signs of the normal
vectors involved would have been reversed to give an equal and opposite force on the top
plate.

8.4 THE SURFACE FORCE DENSITY

Magnetic and electric fields in many situations are found by modeling the
current or charge distributions by surface currents or surface charges. In
these systems surface forces of electrical origin must be considered; for

* R. M. Fano, L. J. Chu, and R. B. Adler, Electromagnetic Fields, Energy, andForces,
Wiley, New York, 1960, p. 92.
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Rpoinn (nl

Region (b)

Fig. 8.4.1 Small thin volume V which encloses a section A of a surface S supporting the
surface current K,.

example, if the surface S supports a surface current density Kf, as shown in
Fig. 8.4.1, and is immersed in a magnetic field H, we expect a surface force
similar in form to (8.1.3) with K, playing the role of J,.

The surface force density T (newtons per square meter) is defined in terms
of the force f on the material within the small thin volume shown in Fig. 8.4.1.
It is the force per unit area A on the surface S intersected by the volume V
in the limit in which first the thickness 6 and then the area A become small.
The stress tensor provides a convenient means of evaluating T, for the total
force can be written as a surface integral (8.1.17). In the limit in which
S-- 0 the contribution to this integral along the sides (of height 6) of the
volume V becomes vanishingly small and the only contributions come from
the tractions acting on the surfaces Sa and Sb . In the limit Sa -+ Sb -+ A we
have

T,= r," + 7,b, (8.4.1)

where r• and rb are the tractions acting on the surfaces Sa and Sb, respec-
tively.

If we define n as the unit vector normal to the surface S and directed from
region (b) to region (a), the surface tractions can be evaluated by using (8.2.8):

Tm = (T,,m - T,,b)n,a. (8.4.2)

Remember that in (8.2.8) n is the unit vector normal to a surface that encloses
the volume of integration in Fig. 8.4.1. Over the top surface the normal
vector is n, but over the bottom surface it is -n. Hence the minus sign in
(8.4.2).



The Surface Force Density

The Maxwell stresses T.,, are functions of either the magnetic or electric
fields. Therefore (8.4.2) is a convenient expression for the surface force
density on either a surface current or a surface charge.

8.4.1 Magnetic Surface Forces

As already pointed out, the magnetic surface force should be equivalent
to the cross product of the surface current with a magnetic field. In this
cross product, howyever, do we use the value of H from region (a) or from
region (b)? In fact the average value of H should be used and the force per
unit area T acting on a surface current K, is

(HI + Hb)T = K x + H (8.4.3)
2

We can prove that this relation is, in fact, valid by showing that it is equiv-
alent to (8.4.2).

The surface current density from (6.2.14)* is

K, = n x (Ha - H b) (8.4.4)

and (8.4.3) becomes

T = u[n x (H" - H)] x (H (8.4.5)
2

We now use a vector identityt to rewrite this expression in component
form as

T, = u(Hina H,-)n -(H" + H b) a- (Ha . H0 - Hb . H). (8.4.6)
2 2

The first term of this equation can be simplified by using (6.2.7)* n. pHa =
n. pH- , whereas we replace n,, with n1 ,,, in the second term.

T, = (PHHan - 16.t.jH,"Hka)n, - (pHbHf -_ 6~ 1nPHbHke)n..

(8.4.7)

Our expression is now identical with (8.4.2), if we note that the magnetic
stress is given by (8.1.11). We can alternatively write the surface force in
terms of the fields alone (stresses) by using (8.4.2) or in terms of surface
currents and an average magnetic field (8.4.3).

8.4.2 Electric Surface Forces

The surface force in an electric field system can be expressed as the product
of the surface charge density ao and the average electric field intensity.

(Ea + Eb)T = a E, (8.4.8)2
* Table 6.1, Appendix E.
t (A X B) x C = B(A. C) - A(C-B).



Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static
Magnetic and Electric Field Systems*

Stress Tensor Tmn
Force Density aT Surface Force Density*

Description F F,(8.1.10) Tm = ETm,,]n, (8.4.2)

Force on media carrying Jf X B Tmn = PHmHn - 6 mnpHkHke T = Kf X pL(H)
free current density J1, K- = n X [H]
p constant (8.1.3) (8.1.11) (8.4.3)

Force on media supporting pyE Tn = EEmEn - 6 mnEEkEk T =-- (E)
free charge density py, a -=n . [eE]
e constant (8.3.3) (8.3.10) (8.4.8)

Force on free current plus Jf X B - JH H Vp Tmn = jPHmH,
magnetization force in
which B = uH both before + I H Hp - - P
and after media are apP ap
deformed

(8.5.38) (8.5.41)

Force on free charge plus pfE - JE . E VE Tmn = EEmE npolarization force in which
D = eE both before and + vE-(Ep 6). C - P )EkEk
after media are deformed ap - pl

(8.5.45) (8.5.46)

A' + Ab
* (A> --

2
[A] --A - A



The Surface Force Density

This result expresses the surface force in a form that is similar to that of the
force density (8.3.3). We can show that this equation is correct by demon-
strating that it is equivalent to (8.4.2). First, we write (8.4.8) in terms of the
electric fields, using Gauss's law to express of (6.2.33)*

(E" + Eb)T = En (E - Eb) (8.4.9)
2

By use of a vector identity,t this becomes

(Ea + Eb) ( E(Ea +( Eb)
T = En(Ea - E) 2 (E' - E ) x nx 2 (8.4.10)

This looks like the long way to go about it, but in this form the expression
can be factored by using the condition (6.2.31)*, n x Ea = n x Eb.

T = ½En(E'" E - E- E. ) - E[Ea x (n x E ) - Eb x (n x E')]. (8.4.11)

If we now use this same vector identity again,j

T = E[Ea(n . Ea) - Eb(n - E')] - 1En(EaU E a - Eb • Eb), (8.4.12)

and this equation is equivalent to the traction in terms of the stress (8.4.2),
as can be seen by writing the mth component of T from (8.4.12)

Tm = [(EEmaEn. - '6rmEEkEk ) - (EEmbEb - idm.EEkbEkb)]n (8.4.13)

and using (8.3.10). Surface forces and their corresponding stresses are
summarized in Table 8.1.

Example 8.4.1. The three plane parallel electrodes of Fig. 8.4.2. provide an example of a
force on a surface charge. The plates are assumed to be perfectly conducting, with the outer
plates connected together. If we ignore the fringing fields, we have

Ea Y IV,
d-- I

(a)
-v

Eb --

(.

for the fields between the plates.
We now use several methods to compute the force acting on the middle plate.
First, we use the stress, as given in (8.4.2). The force of electrical origin on the middle

plate in the it-direction is
fe = AT1 = A(T 1 la - T1 lb), (b)

which in view of (a) becomes

AAso A u2 92
fe [(ELa)2 

- (Elb) 2
] 2 L(d ) (c)

2 2 (d - x)2

* Table 6.1, Appendix E.

t (C A)B = C(A B) - A x (C x B).
$ A x (B x A) = B(A . A) - A(A . B).
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X2

Fig. 8.4.2 Plane-parallel electrodes with Area A.

This same force can be calculated from (8.4.8). We first compute the surface charge
density as

of = -o(E-- Eb)i- il o=E + (d)

and then use (8.4.8)

fe = AT = -- + -- = . (e)
2 d-z x d-x 2 (d -)2 02

This is the same expression as in (c).
Finally, we use the energy method introduced in Chapter 3* to find the force on the

middle plate by noting that the system has one mechanical terminal pair (fe, x). The
capacitance of the electrical terminal pair (v, q) (Fig. 8.4.2) is

C "+A (f)
X d-x

Hence the stored coenergy (which is the same as the energy, since the system is electrically
linear) is

W'(v, X)- Cv 2J = 
+

A
o I+ 1 v2, (g)

and we have
SW' A 1 11aw ( •) v2, (h)

where we have used (h) of Table 3.1; of course, this result is also the same as given by (c).

8.5 THE MAGNETIZATION AND POLARIZATION FORCE

DENSITIES

So far in this chapter the discussion has been limited to electric and mag-
netic forces on media that support free charges and free currents. In Chapter 3
examples often involve forces on magnetized or polarized media. In these
examples the electric or magnetic fields are excited by means of free charges

* See Table 3.1, Appendix E.
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or free currents. However, in many cases, the media subjected to the forces
of electric origin do not themselves support free charges or free currents.
Such forces, which are found by means of the energy method, must be attrib-
uted to the magnetization or polarization of the media.

When an atom or molecule of a substance is subjected to an external
electric or magnetic field, the physical microscopic structure is distorted.
Although the medium may be electrically neutral on a macroscopic scale,
on an atomic scale it is composed in part of charged particles. It is the reaction
of these charged particles to the Lorentz force that gives rise to the distortion
of the microscopic structure. On a macroscopic level these effects are observed
as a magnetization or polarization of the medium. For a wide range of
substances it is possible to characterize the magnetization or polarization by
simple constitutive laws,such as those introduced in Section 1.1.1; for example,
certain isotropic materials can be characterized by a linear relation between
the magnetic flux density B and the field intensity H, B = pH. Similarly,
for many isotropic dielectrics, D = cE.

In Chapter 3 we found forces of electrical origin by first establishing the
electrical terminal relations for the system, then computing the electrical
energy (or coenergy) stored in the system and finally using the energy function
and the principle of conservation of energy to find the force of electric origin.
In problems involving magnetization or polarization the first step in this
procedure is made possible by knowing the appropriate electrical constitutive
law.

In this section we wish to derive the force density by using the energy
approach introduced in Chapter 3. Hence the derivation begins with the
constitutive laws. Because these laws hold only for particular classes of
material, the resulting force expressions are also restricted in validity. In
particular, we consider media that are isotropic both before and after the
magnetic or electric field is applied. Liquids and gases are most clearly in this
category, some types of interaction with solids can be so modeled. Attention
is given first to magnetization forces. The derivation is then easily revised to
account for polarization forces.

8.5.1 Examples with One Degree of Freedom

Two simple examples help to establish the nature of the magnetization
force density and show how its derivation relates to the energy method of
Chapter 3. Figure 8.5.1 shows a slab of magnetizable material that is free to
slide between the pole faces of a magnetic yoke. The force of electric origin
tends to make the slab move into the region between the pole faces. This
problem involves the rigid body motion of the material. By contrast, a
second example (in Fig. 8.5.2) involves a medium that has an interface at $

...... ... ...
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Fig. 8.5.1 A magnetic field intensity H is produced in the gap of the magnetic yoke. As
a result, a magnetization force tends to pull. the slab of magnetic material into the region
between the pole faces.

but is otherwise surrounded by rigid walls. Hence a deflection of the interface
must lead to a change in the volume occupied by the material. For the present
purposes we assume that the material can deform only in the x,-direction.

These two examples have been selected for discussion because they char-
acterize situations in which the magnetization force density is commonly
operative. In the first case the force arises because the region occupied by the
magnetic field includes a magnetically inhomogeneous material (the air and
the magnetic solid). In the example of Fig. 8.5.2 there is an additional contri-
bution to the force, caused by the change in volume of the material. This
contribution is called the magnetostriction force.

The force in these examples can be computed by using the energy method of
Chapter 3, since in each case there is only one degree of freedom. We first

A-
a

T

Depth d into
paper

Fig. 8.5.2 The gap in the magnetic yoke of Fig. 8.5.1, with an experiment that demon-
strates the magnetostrictive force. The surface at ý is free to move. Because the material
is otherwise surrounded by rigid walls, the motions of the surface must involve a compres-
sion or expansion of the medium.

i 
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review the energy approach by finding the force in each case associated with
the displacement 4. Then in the next section the same technique is extended
to find the continuum force density and we return to these examples to
illustrate its significance.

In each of the examples conservation of energy in the electromechanical
coupling requires that

2 6i = 6W' - f64, (8.5.1)

where W' is the total coenergy, as defined in Chapter 3*, and fis the total
force of electrical origin associated with the displacement 4. The symbol 6
is used to indicate incremental changes in the independent variables i and 4.
It has the same significance as d in Chapter 3 and is introduced to avoid
confusion with integration symbols such as da and dV, which indicate surface
and volume elements.

We can establish the coenergy W' by integrating (8.5.1) in such a way that
it is not necessary to knowf. First we integrate on 4 (put the system together
mechanically) with i = 0, but because the force of electrical origin is then
zero, this integration makes no contribution. Here, of course, we preclude the
possibility that the material is initially magnetized. The remaining integration
takes the familiar form

W' = 2 6i. (8.5.2)

If the magnetic material is electrically linear, 2 and i are related by the
inductance and (8.5.2) yields

W'= ½i2L(4). (8.5.3)

Hence we have established the function W' from information about the
electrical system, essentially the A-i relation.

We now hold the independent electrical variable i fixed (say by means of a
constant current source). Then the left-hand side of (8.5.1) makes no contri-
bution to the energy balance and this equation becomes,

i2 f ) 6 = 0. (8.5.4)

Here it is important to recognize that in this context 4 is an independent
variable. Incremental displacements 64 are arbitrary.It therefore follows from
(8.5.4) that the quantity in parentheses is zero.

f = i2 . (8.5.5)

In the next section we use this procedure to find the continuum force
density at each point in the movable medium. Before embarking on that

* See Tables 2.1 and 3.1, Appendix E.



Field Description of Magnetic and Electric Forces

development we consider the specific examples shown in Figs. 8.5.1. and
8.5.2.

In the example of Fig. 8.5.1 the yoke is assumed to be perfectly permeable,
hence in the gap H = Ni/a. In addition, B = pH in the movable slab.
It follows that the inductance L is

L =- N d [bPo + C(u - Po)]. (8.5.6)
a

Then from (8.5.5) the force is

f = (da)½Hnu- go). (8.5.7)

In deriving this expression we have assumed that p in the movable slab is
independent of the displacement ý. This is reasonable as long as the material
moves as a rigid body. In the example in Fig. 8.5.2 a displacement of the
interface at $ clearly is accompanied by a change in the density ofthe material.
We expect that there is an associated change in the permeability which can be
expressed as

g = g(p), (8.5.8)

where p is the density (mass per unit volume) of the material. It is clear that
p is in turn a function of ý, for conservation of mass requires that

p$ad = total mass of material = constant. (8.5.9)

Differentiation of this expression with respect to $ gives

ap _ p
- =(8.5.10)

which shows how changes in density arise from motions of the surface at $.
We now use (8.5.6) to find the total force, including the dependence of /Z

on $ (through the density p).

f = daH'I(p - ao) + ,a (8.5.11)

From (8.5.10) this force can also be written as

f = daH'[ (P - •o) - P i (8.5.12)

The compressibility of the material gives rise to an additional term, as can be
seen by comparing (8.5.7) and (8.5.12). This magnetostrictive force is signifi-
cant when material deformations that lead to changes in the density are
important.
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We have considered these special cases to fl
make it clear that the basic thermodynamic --
techniques introduced in Chapter 3 provide the
fundamental means by which magnetization f 2

and polarization forces can be derived. The i
derivations of the next two sections are some- t

thing new in our development only because the +---o
objective is a force density rather than a finite x

--- +
number of total forces. One way to consider the - p
continuum situation is shown schematically in
Fig. 8.5.3. A magnet is excited by a current i .
and a magnetizable material is subjected to the tr"
resulting magnetic field. Now, if we divide the --- o-
material into small volume elements, deforma-
tions can be described by simply indicating the Fig. 8.5.3 Schematic repre-
displacement ý' of each element. sentation of electromechanical

There are three degrees of freedom for each coupling in which deform-
ations of a continuum are

volume element and therefore the ith displace- represented by m vector dis-
ment must be represented by three terminal placements.
pairs, which are summarized by vector terminal
variables ýi and fi. Say that the medium has been divided into m regions.
Then conservation of energy for the electromechanical coupling requires that

i ~2 = 6W +± f ti 6'; (8.5.13)
i=1

that is, an increment of energy i 62 introduced through the electrical terminals
either increases the magnetic energy stored by the amount 6W or does work
f. - gi on one or more of the elements of volume.

In terms of the coenergy (as discussed in Section 3.1.2b)* this statement of
conservation of energy becomes

2 6i = 6W' - i. 6. (8.5.14)
i=1

Now, if we used a large number of elements m, the force f divided by the
volume of the ith element would constitute the force density acting in the
neighborhood of the ith element. Hence it should be clear that in principle
we can find the force density by using this familiar energy method. Rather
than using the summation, we take the limit in which m -+ oo at the outset
and represent the summation by an integration.

One significant point can be made without further mathematical develop-
ments. In Section 8.1 we claim (without proof) that the force density J, x B
on free currents remains valid even if the currents are immersed in a material

* See Table 3.1, Appendix E.
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with a uniform and constant p. We can use the energy method of finding
forces to see that this must be true.

Suppose for a moment that we had a system that did not involve magnetiza-
tion and used the energy method to find the force density F = J,f x B.
Now, we do not need to carry out this formalism because we already know the
answer. The point is this. Consider the same system, but with a uniform
permeability p. The energy function W', from which the force density is
found, is computed from an electrical terminal relation that in turn is found
by using Maxwell's equations. The only change in the laws governing the
fields is thaty, •-I~ . Hence the only change in the energy function W' is
that P/ -o - , and the force density remains the same as in the form without
the uniform p: J, x B. Of course, B is computed by using Maxwell's equations
with P P.

Note that this conclusion is consistent with the derivation of the Maxwell
stress tensor given in Section 8.1. In what follows we concern ourselves with
finding the magnetization force on material in which J, = 0.

8.5.2 The Magnetization Force Density

The force density on magnetizable material can be found by following the
same procedure outlined in Section 8.5.1. For this purpose we consider the
experiment shown in Fig. 8.5.4. A perfectly permeable magnetic yoke is
excited by the current i. Our experiment is carried out in the region between
the rigid pole faces, where the magnetic field is concentrated (just as it was in
Fig. 8.5.1). In this region a deformable magnetic material has a displacement
from the coordinate position r given by bg(r).

We define the force per unit volume F(r) as acting on the material at
r + 6e. This makes it possible to write (8.5.14) as

Ai = fd Sw'dV - F.6- F dV. (8.5.15)

The function w' is defined as the coenergy density and can be integrated
over the volume V to find the total coenergy W'. Although the specific
geometry of the magnetic circuit is superfluous, it does help to fix attention on
a physically reasonable system. For convenience we have included only a
single one-turn electrical excitation in the system, with the magnetic circuit
arranged to concentrate the magnetic field in the volume V. It is convenient
to define this volume V as being enclosed by three surfaces S', S", and S",
shown in Fig. 8.5.4. The surface S' is bounded by the current path for i and
encloses the magnetic circuit to the left. (It covers the pole face to the left
like a sock on a foot with the current path i as the garter.) The surface S"
plays a similar role for the remaining section of magnetic circuit to the right
(the other foot). Finally, the surface S" encloses the entire system, with a slit

I
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S"_

+i

Fig. 8.5.4 Perfectly permeable magnetic circuit excited by the current i. A deformable
magnetic material with permeability p(r) is subjected to the concentration of magnetic
field intensity between the pole faces.

left open for the electrical terminals. These three surfaces, taken together,
enclose the volume V occupied by the deformable magnetizable material.
Note that the normal vector n is directed into the volume V.

We require a field representation of the electrical input 2 bi for the purpose
of writing all the terms in (8.5.15) as volume integrals. There is no free current
J, in the volume V, hence V x H = 0. It is therefore convenient to write
H = -- V. We are free to define 0 as zero on the right-hand pole face in
Fig. 8.5.4; hence since H = 0 inside the magnetic yoke

i = H dl = -- V dl = - + = , (8.5.16)

where a is any point on the left pole face, as shown in Fig. 8.5.4. Remember
that by definition

2 =sB. n da = -s V -n da. (8.5.17)

The surface S' used to compute the flux 2 is bounded by the conductor
carrying the current i. In Fig. 8.5.4 this surface is defined so that it is coinci-
dent with the surface of the perfectly permeable magnetic circuit. Since 0. is
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the potential evaluated on the surface S', these last two equations are used
to write the incremental input of coenergy as

A bi= - ps V . n da. (8.5.18)

The surface S" shown in Fig. 8.5.4 also has the current path for i as its
periphery but is coincident with the remaining part of the magnetic circuit.
The integration of (8.5.18) over S" gives no contribution because 4 is defined
as zero over the surface S". A similar integration over S" makes no contri-
bution, for S" is greatly removed from the magnetic circuit and n- B = 0
in the neighborhood of S" and the terminals. We can just as well use a
surface of integration S in (8.5.18) that completely encloses the volume V.
It follows that

A bi =f V [(pu Vq)(6)] dV. (8.5.19)

Here the surface integral has been converted to a volume integral by using
Gauss's theorem. Note that there is a sign change in going from the surface
integral to the volume integral. The normal vector n in Fig. 8.5.4 points
into the volume V rather than outward as required in the usual statement of
Gauss's theorem.

Because V B = -V -IVW = 0, we can use an identity* to convert
(8.5.19) to

A bi =f p j (VO)2 dV. (8.5.20)

It is now possible to write all the terms of (8.5.15) as volume integrals and
express conservation of energy as

fvp d(VO)2 dV = fvw' dV -f, F * d d (8.5.21)

We now put the system together, first mechanically and then electrically
to find w'. As in Section 8.5.1, the last term in (8.5.21) makes no contribution
to the coenergy stored during this process. We must remember that because
the material is deformable the permeability at a given point is a function of
deflection (e.g., the permeability at a given point in the gap of the magnetic
circuit shown in Fig. 8.5.1 could be i or yo, depending on the position of the
slab); that is, p = p(g). Once the system is assembled mechanically, however,
Iu is constant and the remaining integration of (8.5.21) becomes

fv[½p(V)2] dV =fv W' dV. (8.5.22)

* V Ap = V .A + A V.

__I _·I_
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Rather than carrying out the integration, it serves our purpose to recognize
that if we integrate the quantity

6w' = 6[LU(V )2 ] (8.5.23)

over the volume V, the incremental change in total coenergy will have been
computed. This completes the first step in finding the force density F in that
the coenergy has been found from the electrical properties of the material.
Note that we have assumed that B = uH both before and after the material
is deformed.

As in the preceding section, the next step uses the coenergy density to
determine the force density. This is done by constraining the current i
to be a constant so that the left-hand side of (8.5.15), and hence (8.5.21), is
zero. From (8.5.16) this means that 0 is held constant on S'. Changes in
coenergy now occur because of changes 64 in the material displacement.

A few manipulations on 6w' make the remaining terms assume a familiar
form. From (8.5.23)

6w' = 1 (Vq) 2 6,u + I-u 6(VO)2. (8.5.24)

The integral over the volume of the second term in this equation vanishes,
as can be seen by first using an identity to write it as

½ 6(V )2 = It V - V(60) = V. (601t VO) - 60 V . (y V). (8.5.25)

Because V • B = 0, the last term is zero, whereas the integral over the volume
of the remaining term can be transformed by Gauss's theorem to an integral
over S, where 0 is constant, hence 60 = 0.

Because the last term in (8.5.24) makes no contribution, the conservation
of energy equation (8.5.15) becomes (remember, H = -VO)

f(1H HH 61u - F. 6) dV = 0. (8.5.26)

This equation is the generalization of (8.5.4). Note that the permeability
plays the same role as the inductance in determining the dependence of the
coenergy on the displacement of the material. To determine the force density
we must relate the permeability yu to the material displacement. (This is
analogous to finding the inductance L of (8.5.6) as a function of $.)

There are two ways in which the permeability at a point r can change.
Either the material is initially inhomogeneous, in which case a displacement
can transport material of different permeability into the region of r, or the
density of the material can change with a resulting change in permeability.

Consider first the effect of inhomogeneities. After the displacement 64, the
permeability at r is that of the material that was at r - 6i before the dis-
placement. Hence

6Zu = lim [,u(r - dg) - y(r)].
bg-O

(8.5.27)
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Taylor's expansion makes it possible to write this as

61s = lim p(r) - 6ý (r) + (8.5.28)

In the limit
6P = -- -. Vu. (8.5.29)

If this is the only mechanism by which the permeability can change, (8.5.26)
becomes

f (-H . H Vp - F). -6 dV = 0. (8.5.30)

It is now crucial to recognize that the displacement ~b is arbitrary, in that
p is an independent variable in the same sense as in the analogous lumped
parameter derivation [see (8.5.4)]. Hence to satisfy (8.5.30) the quantity in
parentheses must vanish.

F = -- H H Vip. (8.5.31)

This contribution to the magnetization force density results because of
inhomogeneities in the magnetic material. An example involving a force of
this type, considered in Section 8.5.1 (Fig. 8.5.1), serves to illustrate the
significance of (8.5.31).

Example 8.5.1. The slab of magnetic material and adjacent pole faces for the problem
of Fig. 8.5.1 is shown in Fig. 8.5.5. Here the distribution of / in the gap is plotted asa function
of X1 with the transition from u to yo at the surface (s) expanded over a thickness A. The
magnetic field intensity H is uniform throughout the gap. The gradient of / in the z1-
direction is zero in the bulk of the slab but has the value

VR = iP (a)
Bt

pth d
paper

xl

Fig. 8.5.5 Magnetic slab of Fig. 8.5.1 free to slide in the xl-direction. Near the surface s
the permeability undergoes a rapid change. This region is shown (expanded) to have a
thickness A over which the permeability varies linearly from y to o-.

I
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in the expanded region of the surface (s). Hence the force per unit volume acting near the
surface s is constant and given by

F, = - AH2 ( i1 .  (b)

The total force is the integral of the force density over the volume of the slab. Because VI
is constant over the volume Aad and zero elsewhere, this integration reduces to

f = - H  (0 (Aad)i. (c)

Note that this result is in agreement with (8.5.7). We may view the force density given by
(8.5.31) as the generalization of (8.5.5). The force on the slab does not depend on the thick-
ness A, as can be seen from (c). We could have used a distribution of /(xz) other than that
shown in Fig. 8.5.5 to arrive at the same answer. Certainly the answer holds in the limit
in which A - 0. This point is easily seen if the force density is represented in terms of a
stress tensor, a point to which we return in the next section.

There remains the task of computing the force density that results from
changes in the density of the material. As we saw in Section 8.5.1, compression
of the material leads to a magnetostriction force. There it was accounted for
by including the effect of changes in density on the inductance L. Here it is
incorporated as it leads to a change in p; that is, in addition to the change in
p given by (8.5.29), there is a change

by = 6p. (8.5.32)
ap

The decrease in density -- p is proportional to the density p and the increase
in the volume occupied by the material V. - 4. Hence*

-6p = pV. - •. (8.5.33)

Now, if we combine these last two equations, the first term in (8.5.26) can
be written as

f H -H 6/z dV = f- H . L pV - 4 dV. (8.5.34)

In order to find the force density, we must write the integrand of this expres-
sion in the form ( ) . 6g. With this end in mind, we use an identityt to write

* A statement that the decrease in mass within the volume Vc is equal to the mass transported

out of the volume through the surface S. is given by -V pdV= p adg n da.

Gauss's theorem converts the surface integral to a volume integral. To first order in 6 p and
69, V . p 6• = p V 69 and (8.5.33) follows.
t VV . A = V - A - A * Vip.

· · ·- UIIIWI·-^-~·IIII~··~-~I-
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(8.5.34) as

f½H'HbydV = --fvv (H'H.H Lp 6) dV

+f V(½H.HLH p) b dV. (8.5.35)

The first integral is in a form in which by Gauss's theorem it can be written
as an integral over the surface S of the volume V. On the surface S either the
fields H are zero (the surface is outside the field region in Fig. 8.5.4) or
bg- n is zero (because the surface is adjacent to the rigid pole faces). Hence
the first term in (8.5.35) makes no contribution and the last term is in the
desired form.

It is now possible to write (8.5.26) with the effects of inhomogeneity and
changes in density included. There is a contribution to b6 from (8.5.29)
(due to inhomogeneity) and from (8.5.32) which has already been incorporated
into (8.5.35):

f[H--iH.HVy + V (H. H p) - F] - 6dV =O. (8.5.36)

As before, we use the arbitrary nature of b6 to conclude that the force density
is

F =- -H H.HVp + V (H H p ). (8.5.37)

Of course, the first term is the same as that given by (8.5.31). The second
term is added to account for forces that accompany (or cause) changes in the
density of the material and is referred to as the magnetostrictionforcedensity.

8.5.3 The Stress Tensor

It is often convenient to express the force density in terms of a stress
tensor. This is done in this section, with both forces on free currents and
magnetization forces included. Thus the appropriate force density is the
superposition of (8.1.3) and (8.5.37):

F = Jf x #H - ½H.HVVy + V (H. H p). (8.5.38)

The mth component of this equation can be written [using (8.1.8) to express

J, x B] as

F. = p2H. HkHk - JHH, + a \H HZ P
ax. 2 . ax (ax. 8ap )

(8.5.39)
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Because apHdax,, = 0, the first term in this equation can be written as
a8HH,H/ax,. The second and third terms combine. Then, by introducing
the Kronecker delta 6,,, (8.1.7), (8.5.39) can be written as

F. = - , (8.5.40)
ax"

where

T,. = PHH,H - 6 •,HHk( p- p p). (8.5.41)

Note that except for the magnetostriction term the stress tensor takes the
same form as it did in Section 8.1, in which only the force on the free current
J, is considered. This similarity is deceptive unless it is remembered that the
magnetic field intensity H [in (8.5.41)] is not the same with and without the
current density J,. Moreover, p in (8.5.41) is a function of position rather
than a constant, as it was in (8.1.11).

Example 8.5.2. The problem shown in Fig. 8.5.2 serves as an illustration for the appli-
cation of the stress tensor. In this example the slab of magnetic material is free to slide in the
x1-direction but is constrained at •1 = 0 so that the left end of the slab is fixed. The magnetic
field intensity H is uniform throughout the slab and adjacent region of free space. It is
therefore apparent from (8.5.38) that the force density in the xz-direction is present only at
the left and right extremes of the slab in which the permeability p and magnetostriction
constant p l8 pula undergo rapid variations. Deformations are independent of forces at the
left end because it is fixed. At the right end there is a surface force that can be found by
using the stress tensor. From (8.4.2) the force per unit area acting on the right end of the
slab is

T1 = T1l
a - T1 1b, (a)

where (a) and (b) indicate the regions to the right and left of the surface. From (8.5.41)
(a) becomes

T" = -•ioH 2 + aP )2. (b)

Here we have taken the 8p/ 8p as zero in the free-space region (a). The total force on
the end of the slab is (b) multiplied by the area ad, and this result agrees with that found in
Section 8.5.1 (8.5.12) by using a model with a single degree of freedom.

Force densities, stress tensors, and surface force densities in magnetic
field systems are summarized in Table 8.1. Note that the superposition of the
free current force density and the magnetization force density leads to the
same stress tensor as for the magnetization force density alone.

8.5.4 Polarization Force Density and Stress Tensor

So far we have limited our discussion to forces induced in magnetic mate-
rials by magnetic fields. Polarization forces, induced in dielectric materials
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Fig. 8.5.6 A voltage v applied to perfectly conducting electrodes leads to a polarization
force that tends to draw the block of dielectric into the region between the plates.

subjected to electric fields, are similar to magnetization forces. The lumped-
parameter example shown in Fig. 8.5.6 is analogous to that shown in Fig.
8.5.1. A potential between the perfectly conducting electrodes induces a
polarization force in the dielectric material which tends to draw it into the
region between the plates. We could find this force by again using the energy
methods introduced in Chapter 3* and writing a conservation of energy
equation analogous to (8.5.1).

q 6v = 6W' -- f 6. (8.5.42)

Now, W' is the electric coenergy, q is the charge on the upper electrode, and
v is the potential of the upper electrode with the potential of the lower
electrode defined as zero.

We are interested here in finding the polarization force density and so
generalize (8.5.42) to write a conservation of energy expression analogous to
(8.5.15) (the physical system is shown in Fig. 8.5.7).

q 6 v = 6w' dV - F bg dV. (8.5.43)

If we define the potential O(E = -VO) as being zero on the lower electrode,
then v = 0 evaluated on the upper electrode, whereas the total charge q
is the integral of the surface charge -- En VO over the surface of the upper
electrode. Hence (8.5.43) becomes

I- EV nd da = w'dV - FBg dV. (8.5.44)

As in Section 8.5.2, the surface of integration S' can be extended to enclose
a volume V that includes all the deformable material with no further contri-
bution to the integral. This is true because 0 is zero on the lower electrode
which is enclosed by a surface S". Moreover, there is no contribution to an
integration over a surface S" that encloses the entire system, for this surface

* Table 3.1, Appendix E.
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Fig. 8.5.7 A pair of perfectly conducting rigid electrodes imposes an electric field E =
-V 4 on a polarizable deformable dielectric medium. The surface S' encloses the upper
electrode which is at the potential 0 = v.

is either far from the system or arranged (in the neighborhood of the ter-
minals) so that n D = 0. The surface S = S' + S" + S"' completely
encloses the volume V, and we can make use of Gauss's theorem to convert
the left-hand side of (8.5.44) to a volume integral over V.

As a consequence of these manipulations, the left-hand side of (8.5.44)
takes the same form as (8.5.19) with It - E.Of course, 0 now has the physical
significance of being the potential for the electric field rather than for the
magnetic field. All of the mathematical steps following (8.5.19) are valid,
however, and we are led to a polarization force density with the same form
as (8.5.37), with H - E and I -- E.If we superimpose on this force density,
the force density on free charges p,,the force density is

F = pfE - E -EEVe + V (E E P. (8.5.45)

The first term is the free charge force density, the second is due to inhomo-
geneities in the dielectric, and the last results from changes in the material
density. This last term is called the electrostrictionforce density.
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Manipulations of (8.5.45) that incorporate the irrotational nature of the
electric field intensity show that the stress tensor representation of combined
free charge and polarization force densities is

T., = EE,E, - ½drEnEE,[ - (dO/dp)pJ. (8.5.46)

Note that without the electrostriction term this expression is as obtained
for the free charge alone (8.3.10). Of course, the difference now is that e can
be a function of space. At the same time the electric field intensity that must
be used in (8.5.46) is affected by the presence of free charge in the material,
for V -E = pr.

Force densities, stress tensors, and surface force densities in electric field
systems are summarized in Table 8.1.

8.6 DISCUSSION

There have been two objectives in this chapter. One was the development
of a field description of magnetic and electric forces. This led to the concept
of a stress tensor, which was convenient in determining total forces from a
knowledge of the fields over a surface enclosing the volume of interest. The
stress tensor is also useful in describing singular force distributions such as
surface forces. The stress tensor, as developed here, is of interest as a basic
mathematical representation. As illustrated in the chapters that follow, it
can be used to represent a variety of physical quantities.

Our second objective has been to develop a picture of the distribution of
forces due to magnetization and polarization. This was done while illustrating
the important fact that the energy methods which form the theme ofChapter 3
are of equal significance in formulating a continuum description of electro-
mechanical interactions.

From our derivations and discussion it should be clear that attention has
been confined to a simple class of materials but that similar techniques can be
used to determine force densities in more complicated media; for example,
extensions of the energy method should allow us to find the force density in
materials that are electrically nonlinear. Certainly the energy methods of
Chapter 3 are not confined to electrically linear systems. Most solids do not
exhibit the simple linear isotropic constitutive laws used here. Nonetheless,
energy methods can be employed to find the force density in such situations,*
although the formalisms used may be somewhat different from those used
here.t

* J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, p. 140.
t P. Penfield and H. Haus, Electrodynamics of Moving Media, M.I.T. Press, Cambridge,
Mass., 1967; W. F. Brown, Jr., "Theory of Magnetoelastic Effects in Ferromagnetism,"
J. AppL. Phys., 36, 994 (1965).




