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Remote invocation / indirect communication
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identify and locate the server
encode/decode the message
send reply to the right client
attach reply to request

Request / Reply
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client server

find server
encode
send message

receive reply

receive message
decode
handle
send reply
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What do we do if request is lost?

Lost request
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client server

find server
encode
send message
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need to detect that message is 
potentially lost
wait for a timeout (how long)
or error from underlying layer
resend the request
simple, problem solved

Resend request
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client server

find server
encode
send message

resend request
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client will wait for timeout
and re-send request
not a problem

Lost reply
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client server

find server
encode
send message

receive message
decode
handle
send reply
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a problem 
server might need a history 
of all previous request
might need

Problem
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client server

find server
encode
send message

receive reply

receive message
decode
handle
send replyssresend request

receive message
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Idempotent operations
• add 100 euros to my account
• what is the status of my account
• Sweden scored yet another goal!
• The standing is now 2-1!
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History
If operations are not idempotent, the server must make sure 
that the same request is not executed twice.
Keep a history of all request and the replies. If a request is 
resent the same reply can be sent without re-execution.
For how long do you keep the history?
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Request-Reply-Acknowledge
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client server client server

Request-Reply (RR) Request-Reply-Acknowledge (RRA)
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At-most-once or At-least-once
How about this:
If an operation succeeds, then..
at-most-once: the request has been executed once.

Implemented using a history or simply not re-sending 
requests.

at-least-once: the request has been executed at least once.
No need for a history, simply resend requests until a reply is 
received.
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At most or At least
How about errors:
Even if we do resend messages we will have to give up at 
some time.
If an operation fails/is lost, then..
at-most-once:

at-least-once:
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At most or At least
Pros and cons:
• at-most-once without re-sending requests:

simple to implement, not fault-tolerant
• at-most-once with history:

expensive to implement, fault-tolerant
• at-least-once:

simple to implement, fault-tolerant

Can you live with at-least-once semantics?
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UDP or TCP

Should we implement a request-reply protocol over UDP or TCP?

14ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Synchronous or Asynchronous
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Asynchronous Synchronous
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RR over Asynchronous
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send request
continue to execute
suspend if not arrived
read reply
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Hide the latency
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HTTP
A request reply protocol, described in RFC 2616.

Request = Request-Line *(header CRLF) CRLF [ message-body ]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

GET /index.html HTTP/1.1\r\n foo 42 \r\n\r\nHello
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HTTP methods
• GET: request a resource, should be idempotent
• HEAD: request only header information
• POST: upload information to a resource, included in body, 

status of server could change
• PUT: add or replace a resource, idempotent
• DELETE: add or replace content, idempotent
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Wireshark
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HTTP GET
GET / HTTP/1.1
Host: www.kth.se
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:40.0) Gecko/20100101 
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept.Encoding: gzip, deflate
Cookie: ......
Connection: keep-alive
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HTTP Response
HTTP/1.1 200 OK
Date: Tue, 08 Sep 2015 10:37:49 GMT
Server: Apache/2.2.15 (Red Hat)
X-UA-Compatible: IE=edge
Set-Cookie: JSESSIONID=CDC76A3;Path=/; Secure; HttpOnly
Content-Language: sv-SE
Content-Length: 59507
Connection: close
Content-Type: text/html;charset=UTF-8
<!DOCTYPE html>
<html lang="sv">
<title>KTH | Valkommen till KTH</title>
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The web
On the web the resource is often a HTML document that is 
presented in a browser.

HTTP could be used as a general-purpose request-reply 
protocol.
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REST and SOAP
Request-reply protocols for Web-services:

• REST (Representational State Transfer)
• content described in XML, JSON, . . .
• light weight,

• SOAP (Simple Object Access Protocol)
• over HTTP, SMTP . . .
• content described in SOAP/XML
• standardized, heavy weight
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HTTP over TCP

HTTP over TCP - a good idea?
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Masking a request-reply

Could we use a regular program construct to hide the fact 
that we do a request-reply?
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Masking a request-reply

Could we use a regular program construct to hide the fact 
that we do a request-reply?
• RPC: Remote Procedure Call
• RMI: Remote Method Invocation
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Procedure calls
What is a procedure call:

• find the procedure
• give the procedure access to arguments
• pass control to the procedure
• collect the reply if any
• continue execution

How do we turn this into a tool for distributed programming?
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int x, n;
n = 5;
proc(n);
x = n;

Operational semantics

29

int x, arr[3];
arr[0] = 5;
proc(arr);
x = arr[0];
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Call by value/reference
Call by value

– A procedure is given a copy of the datum
Call by reference

– A procedure is given a reference to the datum 

What if the datum is a reference and we pass a copy of the datum?
Why is this important?
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RPC: Remote Procedure Call

31ID2201 DISTRIBUTED SYSTEMS / REMOTE INVOCATION

Client Server

.

.
inc();
.
.

void inc() {
g = g+1;

}

g: 13

v

}

RPC: Remote Procedure Call
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Client Server

.

.
inc(x);
.
.

void inc(i) {
g = g+i;

}

g: 13

v

}

x: 3

3



RPC: Remote Procedure Call
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Client Server

.

.
inc(a);
.
.

void inc(int[] h) {
g = g+h[2];
h[2] = g;

}

g: 13

v

a: {1,2,3,4}

?

Open Network Computing (ONC) RPC (SunRPC)

• targeting intranet, file servers etc
• at-least-once call semantics
• procedures described in Interface Definition Language 

(IDL)
• XDR (eXternal Data Representation) specifies message 

structure
• used UDP as transport protocol (TCP also available)
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Java RMI (Remote Method Invocation)
• similar to RPC but:

• we now invoke methods of remote objects
• at-most-once semantics

• Objects can be passed as arguments, how should this be 
done?
• by value
• by reference
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Java RMI
We can do either:

A remote object is passed as a reference (by reference) i.e. it 
remains as at the original place where it was created.

A serializable object is passed as a copy (by value) i.e. the 
object is duplicated.
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Finding the procedure/object
How do we locate a remote procedure/object/process?

Network address that specifies the location or..

a known “binder” process that keeps track of registered 
resources.
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Remote invocation design decisions
• failure handling: maybe / at-most-once / at-least-once
• call-by-value / call-by-reference
• message specification and encoding
• specification of resource
• procedure binder
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Examples
• SunRPC: call-by-value, at-least-once, IDL, XDR, binder
• JavaRMI: call-by-value/reference, at-most-once, interface,

JRMP (Java Remote Method Protocol), rmiregistry
• Erlang: message passing, maybe, no,

ETF (External Term Format), local registry only
• CORBA (Common Object Request Broker Architecture): 

call-by-reference, IDL, ORB (Object Request Broker), tnameserv
• Web Services: WSDL (Web Services Description Language), 

UDDI (Universal Description, Discovery, and Integration)
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Summary
Implementations of remote invocations: procedures, methods, 
messages to processes, 

have fundamental problems that needs to be solved.

Try to see similarities between different implementations.

When they differ, is it fundamentally different or just 
implementation details.
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