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5.1.5 Proof of the Minimality Criterion

Now we prove that toral transiations are minimal if and only if the translation
vector is “completely irrational”. This condition implies that yy and ¥y as well
as their ratio are irrational. However, the condition is strbnger than that, as

the simple example of y; = 1 — y1 with any irrational 34 shows.
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The proof is considerably more elaborate than the simple argament from
the proof of Proposition 4.1.1. The main idea, however, is the same: Unless the
points on an orbit are aligned in a particalar fashion, they will crowd all aroumd,
and this produces minimality. The main difference with the one-dimensional case
is that then a “special aligment” simply meant finiteness of the orbit and hence
periodicity, while now we have to capture an intermediate case and show that

it appears ouly if orbits lie on parallel rational lines spiraling around the torus.

Proof of Proposition 5.1.2 We use additive notation. Such a translation is minimal

if and only if the orbit of 0 is dense, because if x € T?, then
T],(x):x—ivy—:()-{—}/ +x=T(0)+= {(mod 1);
(9(0)), and therefore it is dense if and only if

that is, the orbit O(x) of xis T
hism. (This argument is the same as that in

©(0) is because T, is a homeomoryp
the proof of the more general Proposition 4.1.19.)

Pick ¢ > 0 and consider the set De of all iterates
B(0, €) around 0. There are two possibilities:

et D, is linearly dependent (thatis, lies on 2 line).
endent vectors.

T (0) that are in the ¢-ball

(1) For some ¢ > 0 thes
(2) Foranyc >0 the set D, contains two linearly indep

Below we prove three corresponding lemmas.

Lemma 5.1.8 (2) = minimality.
Lemma5.L9 (1)= rational dependence.

Lemma 5.1.10 Rational dependence = (1)-

excludes (1) and hence implies (2), 50 minimality is

Minimality clearly
(2) &= not 1)y & rational

equivalent to (2). Thus minimality <=
independence. [J

1

Proof of Lemma 5.1.8 This argument is similar to the proof of Proposition 4.1.1,
albeit more complicated. Tt cnffices to show that the orbit of 0 is dense. Take

Figure 5.1.3. Dependent versus independent.
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{2), this is the case for

the hypothesis of case

some point of 0(0). According to

any € > 0, that is, O(0) is dense in T2. O

5.1.9 If 0is periodic, then y1'and p; are rational and we are done.

ye=0

rom now on assume that the orbit of is infinite; ‘Then for an

Proof of Lemma
1

L0) such that |lg— pff < e.

my-€R? and Q=ny+keR? such that

0) and ¢
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ue line L through 0 given by an equation ax + by = 0.

Thus D, lies on a unig

Claim O(0) is dense on the projection of L. (See Figure 5.1.4.)

Fgure 5.1.4. Density.
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Since De # 10} for all € <€, there are points O F pe € D, and hence
points P =ny — ke LNBO,¢) (withn & 7, k€ 7). But then {mP | m € Z}
is ¢'-dense in L and projects into 0(0). |

Now « and b are rationally dependent because otherwise the slope of L
is jrrational, so the projection of L to T? is dense and by the claim so is
o). Therefore there exists (f, ) € 72 ~ {0} such that aley — bl = 0. If
a =0 (or b=10), then ax Fhy=0&y=0 {or x =0). Otherwise, multiply
ax -+ by = 0by /b= I/ to get lpx + By = 0, that is, we may take a, b € Z.
If ny —k lies on the line ax +by=0, then any; — ki + bnys — Ip =0 or
any; + bnys = ks + o, which gives rational dependence. a

Proof of Lemma 5.1.70 Suppose Fy: t by, = Nek and divide by v) to get
yafyr = (N = Iy)/ fp =15 ceQ Gf ke #£ 0), that 1s, the iterates (nVi, nys) of 0
under repeated transiation by y lie on the line y = $% with rational.slope s.
This projects to the torus as an orbit of the Yinear flow T¢, which we found in
Section 4.2.3 to be closed and hence not dense when y2/11 € Q. Therefore the
orbit of 0 under T, is not dense either, implying (0. Il =0, then ky 7= 0 and
the same argument works after exchanging x and y.} [J ‘

5.1.6 Uniform Distribution: The Kronecker—Weyl Method
The Kronecker—Weyl method of proving uniform distribution starting from
trigonometric polynomials, then proceeding to continuous functions, and finally
to characteristic functions, deseribed in Section 4.1.6 also works in higher
dimension. Again, to simplify notation we consider the two-dimensional case,
leaving the extension to arbitrary dimension to the reader. o
The characters corresponding to those in Section 4.1.6 are defined as group
" “homomorphisms” of T2 to S', where we view T? as an additive group (as de-
seribed at the beginmng of this chapter) and &t is considered as the group of
" complex numbers of absolute value one with multiplication as the group opera-
tion. A homomorphism is a map that preserves this group structure, that is, the
image of the sum of two clementsis the product of their images. To be specific,if we
use additive notation for the torus, then the characters have the following form:

ari ; . .
le.mz(xla xz) —e rifmymtmanz) — eos 2 (my %y 4 mzxz) 4 i sin 21 (mlxl L mzxz)’

where (my, mg)is any pair of integers. Finite linear combinations of characters
are called trigonometric polynomials beacause they also can be expressed as
finite linear combinations of sines and cosines. Characters are eigenfunctions
for the translation becanse
] L emifun (v K+ __Zwifmyycthmale . ;
Cm.l.mg(Ty(xla xl)) =& (s (1 74 malwetye)) e eyt ZY))le‘mz(J'la 9‘72)-

A crucial observation for our purposes is that, since ¥1, ¥2» and | are rationally
independent, that is, myyy + mzYa is never an integer unless my =ma =0, the
eigenvalue g 2rilmvitmars) £ ] unless nty = M2 = 0.




