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7.3 CODING

One of the mostimportantideas for studying complicated dynamics sounds strange
at first. It involves throwing away some information by tracking orbits only approx-
imately. The idea s to divide the phase space into finitely many pieces and to follow
an orbit only to the extent of specifying which piece it is in at a given time. Thisis a
hit like the itinerary of the harried tourist in Europe, who decides that it is Tuesday,
so the place must be Belgium. Amore technological analogy would be to look at the
records ofacell phone addictand track whichlocal transmitters were used atvarious
times. '

Inn these analogies one genuinely loses information, because the sequence of
European countries or of local cellular stations does not pinpoint the teaveller at
any given moment. However, orbits in a dynamical system do not move around at
whirn, and the deterministic nature of the dynamics has the effect that a complete
itinerary of this sort may (and often does) give all the information about a point.
This is the process of coding of a dynamical system.

7.3.1 Linear Expanding Maps
The linear expanding maps

Bp: §' = St Bplt) = mx (mod 1

from Section 7.1.1 are chaotic (Corollary 7.2.8), that is, they exhibit coexistence
of dense orbits (Proposition 7.2.7) -with a countable dense set of periodic orbits
(Proposition 7.1.3). Thus the orbit structure is both complicated and highly
nonuniform. Now we look at these maps from a different point of view, which in
turn gives a deeper appreciation ofjust how complicated their orbit structure really
is. To simplify notations, assume as before that m= 2.

Consider the binary intervals

A"-:[k k+l] forn=1,... and k=0,1,...,2"— L

t n: rz—.n’ 2”

g

L
t

]

V«r’mb
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Fgure 73, Linear coding.

Figuie 7.4.1 illustrates this for n=2. Letx =0x%2 - be the binary representation
ofx el 1]. Then 2x = X XeXg - T 0.X%3--- (mod 1). Thus

(7.3.1) Ey(x) = 0.30%3 - (mod 1}.

This is the first and easiest example of coding, which We will discuss i1l greater
detail shorily- : ,

732 implications of Coding
We briefly derive a few new facts about linear expanding maps that are pest seeil
via this coding. :

1. proof of Transitivity yia Coding. First we use this representationto give another
proof of topological transitivity by describing explicitly the binary tepresentation‘
of a number whose orbit under the iterates of E, is dense. Consider an integer k,
p<k= an 1. Let ko .- Knt pe the binary representation of k, maybe with several
zeroes at the beginning. Thenx € Akifand onlyif x = Jfori="0,.. -7 1. Theie-
fore we WIite A;Q,_,;k,,ll .= AF fromnow on. Now put the binary representations of all
aumbexs from pio2" -1 (with zexoes in front if necessary) one after another and
form a finite sequence, which we denote by o that is, wn 18 obtained DY concate-
nating alt 2” binary sequences of length 1 Having done this for every ne N, put the
sequences @m = 1,2,... inthat order, call the resulting infinite sequence @ and
consider the number x with the binary representation 0.w. Since by construction
moving o 10 the Jeft and cutting off the first digits produces atvarious ynoments bi-
nary tepresentaﬁons of any n-digit aumber, this means that the orbit of the point *
under the iterates ofthe map B2 intersects every interval M. ke andhencels dense.

This construction extends to any 7 > 2. To construct 2 dense orbit for Em

terates of a square of amap is @ subset of the orbit under the jterates of the map
itself; thus i the former is dense, so is latleT- 5o we apply oW construction 10 the
map Em? and obtain a point with dense orbit under Em-
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2. Exotic Asymptotics. Next we use this approach to show that besides periodic
and dense orbits there are other types of asymptotic behavior for orbits of expand-
ing maps. One can copstruct such orbits for E, but the simplest and most elegant
example appears for the map Ej.

Proposition 7.3.1 There exisis a point x € S! such that the closure of its orbit with
respect to the map Es in additive notation coincides with the standard middle-third
Cantor setK. In particular, K is Ez-invariant and contains a dense orbit.

Proof The middle-third Cantor set K can be described as the set of all points on
the unit interval that have a representation in base 3 with only 0's and 2’s as digits
(see Section 2.7.1}. Similarly to (7.3.1), the map Es acts as the shift of digits to the
left in the base 3 representation. This implies that K is E3-invariant. It remains to
show that Es has a deénse orbit in X.

Every pointin K has a unique representation inbase 3 without 1's. Let x € K and

(7.3.2) 0.X1%%;. ..

be such a representation. Let k(x) be the number whose representation in base 2 is
X1 X% X3
2227

that is, it is obtained from (7.3.2) by replacing 2’s by 1’s. Thus we have constructed a
map h: K —> [0, 1] that is continuous, nondecreasing {that is, x > y implies A(x) =
h(y)], and one-to-one, except for the fact that binary rationals have two preimages
each (compare Section 2.7.1 and Section 4.4.1). Furthermore, ko Es = E; o h. Let
D ¢ [0, 1]1beadensesetof points that does hot containbinaryrationals. Then YD)
is dense in K because, if A is an open interval such that AN K # @, then h(A) isa
nonemptyinterval open, closed, or semiclosed and hience contains points of D. Now
takeanyx & {0, 1) whose Ez-orbitis dense: the Es-orbitof i~{x) ¢ Kisdensein K. [

3. Nonrecurrent Points. Another interesting example is the construction of a
nonrecurrent point, that is, such a point x that for some neighborhood U of
x all iterates of x avoid U (see Definition 6.1.8). In fact, there is a dense set of
nonrecurrent points for the map Es. ’

Pick any fixed sequence {(wy, ..., wu-1) of 0’s and 1's and add a tail of 0's if
wp_y = 1, or of 1'sif w,,; = 0. Call the resulting infinite sequence . As before, let x
be the number with binary representation 0.w. Thus, x lies in a prescribed interval
Avy...on, and by construction x # 0. On the other hand, Efx = 0 and hence Ef'x = 0
for all m > n, s0 X is a nonrecurrent point.

Thus, we have found that E,, is chaotic and topologically mixing, that its -
periodic and nonrecurrent orbits are dense, and that E3 has orbits whose closure
is a Cantor set.

7.3.3 A Two-Dimensional Cantor Set .

We now describe a map in the plane that naturally gives rise to a two-dimensional
Cantor set (previously encountered in Problem 2.7.5) on which ternary expansion
of the coordinates provides all information about the dynamics. This horseshoe
map plays a central role in our further development.
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Consider a map defined on the unit square [0, 1] x 10, 1] by the following con-
struction: Firstapply the linear transformation (x, y) = (3x, y/3) 10 geta horizontal
strip whose left and right thirds will be rigid in the next transformation. Holding
the left third fixed, bend and stretch the middle third such that the right third falls
rigidly on the top third of the original unit square- This results in a “G”-shape. For
points that are in and return to the unit squAare, this map is given analytically by

(3x, ¥/3) ifx=<1/3

(x, V) &> )
(Bx—2, (y+2/3) if x> 2/3.

The inverse can e written as

N {(x/3,3y) ify<1/3
‘ +2)/3.3y—2 iy=2/3

g M

Geometrically, the inverse jooks like an “e”-shape rotated counterclockwise by 90°.

To iterate this map one triples the x-coordinate repeatedly and always assuInes
that the resulting value is either at most 1/3 or else at least 2/3, that is, that the
first ternary digit is 0 or 2, but not 1. (If the expansion is not unique, one requires
such a choice to be possible.) Comparing with the construction of the ternary
Cantor set in Section 2.7.1, one sees thatthe x-coordinate lies in the texnary Cantor
set C. Looking at the inverse one sees likewise that, in order for all preimages
to be defined, the y-coordinate lies in the Cantor set as well. Therefore this map
is defined for all posiiive and negative iterates on the two-dimensional Cantor
set C x C. There is a straightforward way of using temary expansion to code the
dynamics. For a point (x, ¥} the map shifts the texnary expansion of x one step to
the left, dropping the first term, and shifts the ternary expansion of y to the right.
It is natural to fill in the now-ambiguous first digit of the shifted y-coordinate
with the entry from the x-coordinate that was just dropped. This retains all
information, and the best way of vizualizing the result is to write the expansion
of the y-cooxdinate in revesse and in front of that of the x-coordinate. This gives a
bi-infinite string of (’s and 2's (remermber, NO 1's allowed), which is shifted by the
map. Of course, 0ne should verify that the inverse acts by shifting in the opposite
direction. '

73.4 Sequence Spaces
Now we are ready to discuss the concept of coding in general. We mean by coding
a representation of points in the phase space of a discrete-time dynamical system
or an invariant subset by sequences (not necessarily unique) of symbols from 2
certain "alphabet,” in this case the symbols 0, . ... N-—-1. S0 we should acquaint
gurselves with these spaces.

Denote by 2 the space of sequences o = (w2, whose entries are integers
between 0 and N — 1. Define a metric by

o0

(7.3.3) (o, @) = Z

i=0

8{wi, w})
P
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where §(k, ) = Lifk# 1, 8(k, k) =0, and A > 2. The same definition can be made
for two-sided sequences by summing over ie:
L (i, wy)
(7.3.4) dh(w, &) .:_E —r
. ieZ
for some A > 3. This means that two sequences are close if they agree on a long

stretch of entries around the origin.
Consider the symmetric cylinder defined by

Cor ooy =wefnlwi=a for |1} < n}.

Fixa sequence @ € Cy a1+ ® € Gy, 0,1, then

8o, wi) 8, wi) 1 1 2 1
dife, ) = Z Al = Z Al = Z m = an=la—1 < an-t’

icZ ji|=n li|=n

Thus Cay ,..ay.. C Ba (@, A1), the A1~"-ball around . I & ¢ Car_..c1» then

i (e, w) = Z M P L
ieZ
because a; # «; for some }i| < 1. Thusw ¢ Bg {0, At-m, and the symmetric cylinder
is the ball of radius A'~* around any of its points:’

(7.3.5) Coponans = Ba et A1),

Therefore, balls in Q2 are described by specifying a symmetric stretch of entries
around the initial one. .

For one-sided sequences this discussion works along the same lines fone only
needs A > 2in (7.3.4)] and A1~"-balls are described by specifying a string of ninitial
eniries.

Our examples [see (7.3.1)] suggest to represent points in the phase space by
sequences in such a way that the sequences representing the image of a point are
obtained from those representing the pointitselfby the shift (translation) of the sym-
bols. In this way the given transformation corresponds to the sk ift transformation

o Qy — Qn, ()i = wis1
(7.3.6) _
o f = Qf,  (ofwh=wm.
We often write o for theé shift o on §2y and likewise o/ff for o ® on Q. For invertible
discrete-time systems, any coding involves sequences of symbols extending in
both directions; while for noninvertible systems, one-sided sequences do the job.
Section 7.3.7 studies these shifts as dynamical systems.

Among the shift transformations that arise from coding there is also a new kind
of combinatorial model for a dynamical system that is described by the possibility
or impossibility of certain successions of events.

Definition 7.3.2 Let A = (@)}, be an N x N matrix whose entries a;; are either
0's or 1’s. (We call such a matrix a 0-1 matrix.) Let

(7.3.7) , Q= {0 € U | oy, = LTorne Z}.
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Figure 732 Obtaining @ Cantor set.

The space Qais closed and shift-inVanant, and the restriction

=0
INTa, A

is called the topological Markov chaindetermined‘by A.

Thisisa particular caseola subshift of finite type-

Sequences representing a given point of the called the codes of that
les of coding: for the map E,,on the whole circle by

point. We have geveral examp
ictl themap E3t0 the

sequences from the atp habet{0, .- pml — 1 for the restriction of
5, and for the ternary

middle-third Cantor set K by one-

horseshoe in Section 7.33 by bi-infinite sequenc s and 2's. 1D hoth cases

we used one-sided sequences, odes of some points,
here was; however, an irnportant

and each code.represented only one point. T
difference: In i for positive ma representation in base
y one code.

ihe first case which invoived
m, a point could have gither one of two codes; in the latter there was onk
This shows that the space of binary sequences is a Cantor set (Definition 274,
1n fact, this also hotds for the othet sequence spaces. '

736 Conjugacy and Factors
ihat the shift (Qf.o By 4contains’

This situation can he roughly described by saying
the map f up t© a continuous coordinate change. (We already encountered such

a situation in Theoreim 4.3.20)

ﬁeﬁr’tiﬁon 7.3.3 Suppose thatg: X~ Xand f: ¥~ ¥ axe maps of metric spaces
i s surjective Map XY guch that

x and Y and that there is a continuow

hog=fo h. Then fi8 said to be afactor of gviathe semiconjugacy or factor map h.
1f this his 2 homeomorphism, then f and gare gaid to be conjugate and his said
b be a conjugacy- :

73
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These notions made a brief appearance in Section 4.3.5 in connection with
modeling an arbitrary homeomorphism of the circle by a rotation. The notion
of conjugacy is natural and central; two conjugate maps are obtained from one
another by a continuous change of coordinates. Hence all properties that are
independent of such changes of coordinates are unchanged, such as the numbers
of periodic orbits for each period, sensitive dependence (Exercise 7.2.5), topological
transitivity, topological mixing, and hence also being chaotic. Such properties
are said to be topological invariants. Later in this book we will encounter further
important topological invariants such as topological entropy (Definition 8.2.1).

7.3.7 Dynamics of Shifts and Topological Markov Chains

We now study the properties of shifts and topological Markov chains introduced
in (7.3.6) and Definition 7.3.2 in more detail. These are important because
many interesting dynamical systems are coded by shifts or topological Markov
chains. To such dynamical systems the results of this section have immediate
applications.

Proposition 7.3.4 Periodic points for the shifts oy and o} are dense in Qy
and QE, correspondingly, P(oy) = P.(of) = N", and both oy and of are
topologically mixing.

Proof Periodic orbits for a shift are periodic sequences, that is, (ovy)" v = w
if and only if @, = w, for.all n € Z. In order to prove density of periodic
points, it is enough to {ind a periodic point in every ball (symmetric cylinder),
because every open set contains a ball. To find a periodic point in Cy_, o, ,
take the sequence @ defined by @, = «, for |n’| <m, n’ = n (mod 2m - 1).
It lies in this ¢ylinder and has period 2m 4- 1.

Every periodic sequence @ of period n is uniquely determined by its coor-
dinates @y, ..., @,_1. There are N" different finite sequences {wy, . .., ®,_1).

To prove topological mixing, we show that oy (Co_, . 0, )N Cp_,...p, # & for
n>2m+1,say,n =2m+k+ 1 withk > 0. Consider any sequence w such that

w; = o for |i| < m, w; = Py fori—=—m+k+1,....3m+k+ L

Thenwe€ Cy, . o andoy(w) € Cp_, .-
The arguments for the one-sided shift are analogous. U

Thereis a useful geomelric representation of topological Markov chains. Con-
necti with j by an arrow if a;; = 1 to obtain a Markov graph G 4 with V vertices
and several oriented edges. We say that a finite or inlinite sequence of vertices of
G 4 is an admissible path or admissible sequence if any two consecutive vertices
in the sequence are connected by an oriented arrow. A point of 24 corresponds
to a doubly infinite path in G4 with marked origin; the topological Markov
chain o4 corresponds to moving the origin to the next vertex. The following
simple combinatorial lemma is a key to the study of topological Markov chains:

Lemma 7.3.5 For everyi, j e {0,1,...., N — 1}, the number N,-'}‘ of admissible
paths of length m + 1 that begin at x; and end at x; is equal to the entry o]} of
the matrix A™.
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3
-

o 7
o< >0 QQ
0 1 4

Figure 7.3.3. A Markov graph.

proof We use induetion on m. First, it follows from the definition of the graph
G 4 that Nilj = a;j. To show that

. N-1
(7.3.8) Nz =Y N,
=0

take k€ {0,..., N —1} and an admissible path of length m+1 connecting i
and k. It can be extended to an admissible path of length m - 2 connecting i to
j (by adding j) if and only if apj = 1. This proves (7.3.8). Now, assuming by
induction that Nl’;‘ o= aE'J" for all i j, we obtain N{’j’“ = a?}“ from (7.3.8). 00

Corollary 7.3.6 P, (o) =tr 4"

Proof Every admissible closed path of length m + 1 with marked origin, that
is, a path that begins and ends at the same vertex of G 4, produces exactly one
periodic point of o4 of period m. U '

Because the eigenvalue of largest absolute value dominates the trace, it
determines the exponential growth rate: '

Proposition 7.3.7 plog) = r(A), where r(A) is the spectral radius.

Proof “ <7 is clear. To show = ”» we need to avoid cancellations: If
Aj= re2¥i(1 < j < k) are the eigenvalues of maximal absolate valne then
there is a sequence m, — 00 such that m,@; — 0 (mod 1) for all j (recurrence
for toral translations, Section 5.1),50 2 AL~ e | :

~ Exa_mple 73.8 The Markov graph in Fignre 7.3.3 produces three fixed points,
0,1, and 4. 01 and 23 give four periodic points with period 2. The period-3
orbits are generated by 011, 001, 234. )

Topological Markov chains can be classified according to the recurrence
properties of various orbits they contain. Now we concentrate on those
topological Markov chains that possess the strongest recurrence properties.
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Definition 7.3.9 A matrix A is said to be positive if all its entries are positive.
A 0-1 matrix A is said to be transitive if A™ is positive for some m € N. A
topological Markov chain o4 is said to be transitive if A is a transitive matrix.

Lemma 7.3.10 If A™ is positive, then so is A" for any n > m.

Proof 1f af, > 0 for all i, j, then for each j there is a k such that ap; = 1.
Otherwise, a’ = 0 for every n and i. Now use induction. If & > 0 for all i, j,

ij

then a';“ iv_ﬁl aliar; > 0 because a; = 1 for at least one k. (]

Lemma 7.3.11 If A is transitive and a_y, .. ., oy is admissible, that is, aye,,, =1
for i =—k,...,k—1, then the intersection Q4N Cy , o = Cop a4 15

nonempty and moreover contains a periodic point.
.

Proof Take m such that o] , > 0. Then one can extend the sequence o to

an admissible sequence of length 2k + m + 1 that begins and ends with a_y.
Repeating this sequence periodically, we obtain a periodic pointin Gy, o, 4. U

Proposition 7.3.12 If A is a transitive matrix, then the topological Markov chain
o4 is topologically mixing and its periodic orbits are dense in Q4; in particular,
o4 is chaotic and hence has sensitive dependence on initial cornditions.

“Proof The density of periodic orbits follows from Lemma 7.3.11. To prove

topological mixing, pick open sets U,V C Q4 and nonempty symmetric
eylinders Co_, . 0.4 CU and Cg,  p.a CV. Then it suffices to show
that 03(Co_y 0 d) NCp . pa # @ for any sufficiently large n. Take
n=2k+1+m —I— Lwithl > 0 where m is as in Delinition 7.3.9. Then a""};l >0
by Lemmna 7.3.10, so there is an admissible sequence of length 4k -+ 2 +m +1

whose first 2k + 1 symbols are identical to @, ..., o and the last 2k+ 1

symbols to B_j, ..., Bif. By Lemma 7.3.11, this sequence can be extended to a
periodic element of Q4 which belongs to o (G, 2. 4) NV Cp . pa- U

Example 7.3.13 The matrix (r]) :) is not transitive because all its powers are
upper triangular and hence there is no path from 1 to 0. In fact, the space
34 is countable and consists of two fixed points (...,0,...,0,...) and
(...,1,...,1,...), and a single heteroclinic orbit connecting them (consisting
of the sequences that are 1 up to some place and 0 thereafier).

Example 7.3.14 For the matrix

— e D
— O
DD e
S S
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every orbit alternates between entries from the first group {0, 1} on the one hand
and from the second group {2, 3} onthe other hand, that is, the parity (even—odd}
must alternate. Therefore no power of the matrix bas all entries positive.

B EXERCISES

B Exercise 73.1 Prove that E;hasa nonperiodic orbit all of whose even iterates
lie in the left half of the unit interval.

g Exercise 7.3.2 Prove that E, has 2 uncountably many orbits for which no
segment of length 10 has mote than one pointin the left half of the unit interval.

B Exercise 7.3.3 Prove that linear maps that are conjugate in {he sense of linear

algebra are topologically conjugate I ihe sense of Definition 7.3.3.

& Exercise 7.3.4 Write down the Markov matrix for Figue 7.3.3 and check
Corollary 7.3.6 up to period 3.

@ Exercise 7.3.5 Consider the meiric -

(7.3.9) | dle, )=y ‘E‘Lfmi)ﬂ

icZ

on 2. Show thatfor A > 2N — 1 the cylinder Copan is a Av-0-ball for d;.

& Exercise 7.3.6 Repeat the previous exercise for one-sided shifts (withx > N).
& Exercise 7.3.7 Consider the metric

(7.3.10) & (e, @) = - e = or 73

fand d’ (e, &) = 0} on Q. Show that the cylinder Cay_.an is a ball for ;-

g Exercise 7.3.8 Find the supremum of sensitivity constants for. a transitive
topological Markov chain with respect to the metric &y -

g Exercise 7.3.9 Find the supremum of sensitivity constants for a transitive
topological Markov chain with respect to the metric d;.

B Exercise 7.3.10 Show that for m < n the shift on m is a factor of the shift on Q.

@ Exercise 7.3.11 Prove that the quadratic map fyon [0, 1jisnot conjugate to any
of themaps fiforr € [0, 4}

@ Exercise 7.3.12 Show that the topological Markov chains determined by the

matrices
1
1 ‘
( 1 {1]) and 0
: 1

B Exercise <313 Find the smallest positive value of ploa) for a transitive
topological Markov chain with two states (thatis, witha2 x 2 matrix A}.

e
e R )

are conjugate.
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B PROBLEMS FOR FURTHER STUDY
B Problem 7.3.14 Find all factors of an irrational rotation R, of the circle.

E Problem 7.3.15 Find the smallest value of ploy) for a traﬁsitive topological
Markov chain with three states {that is, with a 3 x 3 matrix A).

74 MORE EXAMPLES OF CODING
We now carry out a coding construction for several familiar dynamical éystems.

74.% Nonlinear Expanding Maps
There is a correspondence between general (not necessarily linear) expanding
maps of the circle (Section 7.1.3) and a shift on a sequence space. The construction
is similar to the one from Section 7.3.1. There is some effort involved, but there is
a beautiful prize at the end: We obtain a complete classification of a large class of
maps in terms of a simple invariant.

To keep notations simple, we consider an expandingmap f: S' — S! of degree
2. By Proposition 7.1.9, f has exactly one fixed point p. (For maps of higher degree,
we could pick any one of the fixed points.) Since deg(f) = 2, there is exactly one
point g # psuch that f{g) = p. The points pand g divide the circle into two arcs.
Starting from pin the positive direction, denote the first arc by Ay and the second
arc by A;. Define the coding for x ¢ §' as follows: x is represented by the sequence
w € QX for which

(7.4.1) Hx) € A,

This representation is unique unless f*(x) € {p, g} = Ap N A;. This lack of unique-

ness is similar to the case of binary rationals for the map E,. Suppose a point x -

has an iterate in {p, g}. Then either x = pand f*x) = pforall n e N, or else the

point g must appear before pin the sequence of iterates, thatis, f™(x) ¢ {p, q} for

all nless than some k and then f*(x} = ¢ and f*¥'(x) = p. In this case we make

the following convention. phas two codes, all 0's and all 1’5, and g has two codes,

01111111...and 1000000.. ., and any x such that F¥(x) = q has two codes given by

the first k — 1 digits uniquely defined by (7.4.1), followed by either of the codes for 4.
Actually, going the other way around is better:

Proposition 74.1 If f: §* — S* is an expanding map of degree 2, then f is a
factor of o® on QF (Definition 7.3.3), that is, there is a surjective continuous map
h: QR — S such that (M) € A,, forallne Ny, thatis, hoo® = foh.

Proof That the domain of is Qf requires that every sequence of 0’s and 1's appears
as the code of some point. First, f maps each of the two intervals Aq and A; onto
S' almost injectively, the only identification being at the ends. Let

A be the core of Ag N f1(Ag),
Agy be the core of Ag N (A1),
Ajg be the core of Ay N FH{Ap),
- VAli be the core of A; N f1{A}).
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74,
Pro
bet
Prc
fi
Figure 7.4.1. Nonlinear coding. If
p =
co
Aab A 01 A u:iél! i1
all
B p+l
by
th
What we mean by “-ore” is that each indicated intersection congists of an interval -
as well as an isolated point (p or q), and we discard this extraneous point. Each of
these four intervals i mapped onto ! by f?, againthe only identification being at ke
the ends. By definition, any point from Aj has ij as the first two symbols ofits code. I
Proceedinginductivelywe constructfor any finite sequencewo, - - w1 the interval P
) t!
(7.4.2) Ae.omy = hE COTE of Ag, N fHAG) 0 P (Apads ¢
C
which is mapped by f*onto 5! with identification of the endpoints. NOw take any . :
infinite sequence o = Wy, € Qg The intersection ﬂ“,;l Doy ootOnet of the nested '

closed intervals Aey,...an is nonempty, and any point in this intersection has the

sequence o as its code. ,
5o far we have only used the fact that fisa monotone map of degree 2. To show

that  is well defined, we use the expanding property to check that Moy Aepenwn
consists of a single point, hence a point with a given code is unique.

g I— st js an injective map of an open interval I with @ nonnegative
derivative, then by the Mea _value Theorem A.2.3 [(gU ) = g x)dx= g &N
for some£ € I. Thus, in out Case, there is a £ such that

L= KSY = f (o de = 6D - oot

Byt 1

y< A" > 0as

since fis expanding 16N 31 for some A > 1, hence [(Aug....ona
well-defined

n - oo and {1 Beo.wont consists of a single point X,. This gives &
surjective map k: QF —» o rr Xo.

Give QR the mefiic d, from. (7.3.3). We showed in Section 7.3.4 that if
c=x"and §=47" then dlw, o) <38 implies that @1 = w)fori<n and hence
X — Xl = HAwptona? < 3" == e. Thus his continuous.

That ko ® @) = f (h{w)) is clear from the consiruction. B
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7.4.2. Classification via Coding
Proposition 7.4.1 and the discussion preceding it established a semiconjugacy
between the one-sided 2-shift and the expanding map f on S, that is,

Proposition 7.4.2 Let -f: S' - §' be an expanding map of degree 2. Then
f is a factor of the one-sided 2-shift (2F, o) via a semiconjugacy h: Qf — S
If h{w) = Mw') =: x, then there exists an ne Ny such that f*(x) ¢ {p, q), where
p=f(p)= [l q#p

The last sentence of this proposition says that k is “very close” to being a
copjugacy: There.are only countably many image points where injectivity fails.

An important feature of this coding is that it is obtained in a uniform way for
ali expanding maps, and that the absence of injectivity occurs at points defined
by their dynamics, namely, the fixed point and its preimages. This leads us to

_the prize promised at the beginning:

Theorem 7.4.3 If [, g: S* — §' are expanding maps of degree 2, then f and g are
topologically conjugate; in particular, every expanding map of 8! of degree 2 is con-
Jugate o Ej. _ '

Proof We have semiconjugacies iy, by QFf — S' for f and g. For x € S, consider
the set H,, ;= g(h}1 ({x})). If xis a point of injectivity of /s, that s, h}l {{x}) is asingle
point, then sais Hy. Otherwise, x is a preimage of the fixed point under some iterate
of fand h}l ({x}) consists of a collection of sequences that are mapped under Az to a
single point. Therefore, H, always consists of precisely one point ii(x). The bijective
map h: St — §! thus defined is clearly a conjugacy: ko f = go h. It is continuous
because #; sends open sets to open sets, that is, the image of a sequence and all
sufficiently closeby sequences contains a small interval. Exchanging f and g shows
that A1 is also continuous. UJ

This holds for any degree via an appropriate coding. It is the first major
conjugacy result that establishes conjugacy with a specific model for all maps
from a certain class. The Poincaré Classification Theorem 4.3.20 comes close, but
requires extra assumptions (such as the existence of the second derxivative; see
Section 4.4.3) to produce a conjugacy with a rotaton.

7.4.3 Quadratic Maps
For A > 4 consider the quadratic map

iR R, x— ix{l —x).

Ifx < 0,then f(x) < xand f'{(x} > A > 4,50 f*{x) — —oco.Whenx > 1, f(x) < 0and
hence f*(x) — —co.Thus the set of points with bounded orbits is { .5, /[0, 11).

Proposition 744 If A > 245 and f:R— R, x - Ax(1 — x), then there is a
homeomorphism h: QF — A 1=\, [ "0, 1]) such that ho o = foh, thatis,
£}, is conjugate to the 2-shift.
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Proof Let

1 1 1 1 1 1
= = d =§ = = 1.
Ag \:0, 5 i k} an A [24—1{4 Y ]

Then f(10, 11) = Ag U Ay by solving the quadratic equation f(x) = 1. Likewise,
£7210,11) = Agp U Agt UALU AR consists of four intervals, and so forth. Consider
the partition of A by Ao and A,. These pieces do not overlap and

1 1 1
PRl PR Y g
2 4 A .
:\/;@—4;»\/(2+~/§)2—4(2+J§}=1

on AgU Aj. Thus, for any sequence = (wg, o1, ---}» the diameter of the
intersections

[F 0] = M1 — 22| =24

N
() f 800
=0 .
decreases (exponentiaily) as N — 00. This shows that for a sequence o = (wg,
w1, ...) the intersection
(7.4.3) : hio)) = [ fA)
' nely

consists of exactly one point and this map hi Q) — Aldsa homeomorphism. [

Remark 7.4.5 It turns out that Proposition 7 4.4 holds whenever } > 4 (Proposi-
tion 11.4.1), but this is significantly less straightforWard to prove than the present
result. The situation present in either case, where a map folds an interval entirely
over itself, is referred toasa one-dimensional horseshoe, in analogy to the geometry
seen in the next subsection.

7.4.4 Linear Horseshoe

We now describe Smale’s original “horseshoe,” which provides one of the best
examples of perfect coding. (In Section 7.3.3 a special case was constructed, in
which ternary expansion provides the coding.)

Let A be a rectangle in R? and f: A — R? a diffeomorphism of A onto its
image such that the intersection A N f(A) consists of two “horizontal” rectangles
Ag and A; and the restriction of f to the components Al= FUAY), i=0,1,
of f~'(A)is a hyperbolic linear map, contracting in the vertical direction and
expanding in the horizonta direction. This implies that the sets Al and A! are
“yertical” rectangles. One of the simplest ways to achieve this effect is to bend A
into a “horseshoe’;, or rather into the shape of a permanent magnet (Figure 7.4.2},
although this method produces some inconveniences with orientation. Another
way, which is better from the point of view of orientation, is to bend A roughly '
into a paper clip shape (Figure 7.4.3). This is an exaggerated version of the ternary
horseshoe in Section 7.3.3, which also leaves some extra margin. if the horizontal
and vertical rectangles lie strictly inside A, then the maximal invariant subset
A=N2 o fMA)oEATS contained in the intexior of A.

Proposition 7.4.6 f s topologically conjugate to o2.
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Figure 7.4.2. The horseshoe.,

——, |
R

e
 EE——— T

Figure 7.4.3, The paper dip.

Proof We use A® and A" as the “pieces” in the coding construction and start with
positive iterates. The intersection A N S(AYN f2(A) consists of four thin horizon-
tal rectangles: Ay =A;N f(A}) = f(Ah N F2AD), i, je 10,1} (see Figure 7.4.2).
Continuing inductively, one sees that Miso F1(A) consists of 27 thin disjoint
horizontal rectangles whose heights are exponentially decreasing with ». Each such
rectangle has the form A,,,..., = (%, f/(A), where wie{0,1)jfori=1,. .  n
Each infinite intersection (M1 [™A™), w, € {0, 1}, is a horizontal segment, and
the intersection (N2, f(A) is the product of the horizontal segment with a Cantor
set in the vertical direction, Similarly, one defines and studies vertical rectangies
A®on = (VL £HA%), the vertical segments ().°) f~"(A®»), and the set
(Ve F7™A), which is the product of a segment in the vertical direction with a
Cantor set in the horizontal direction.

The desired invariant set A = (Moo S™™(4) s the product of two Gantor sets

and hence is a Cantor set itself (Problem 2.7.5), and the map

o0
RS = A, ko) = ) A%
=—c0
is a homeornorphism that conjugates the

shift o5 and the restriction of the
diffeomorphism f to the set A. 1 '

Since periodic points and topological mixing are invariants of topological
conjugacy, Proposition 7.4.6 and Proposition 7.3.4 immediately give substantial
information about the behavior of fon A.
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Corollary 7.4.7 Periodic points of [ are dense in A, Pul 1) = 2" and the
restriction of f to A is topologically mixing.

Remark 7.4.8 Any map for which there is a perfect coding is defined on a Cantor
set, because the perfect coding establishes a homeomorphism between the phase
space and a sequence space, which is a Cantor set.

7.4.5 Coding of the Toral Automorphism

The idea of coding can be applied to hyperbolic toral automorphisms. To
simplify notations and keep the construction more visual, we consider
the standard example. Among our examples, this is the first where the coding
is ingenious, even thongh it is geometrically simple. Section 10.3 deseribes a
construction whose dynamical implications are quite similar to those obtained
here, but where the geometry is complicated and almost always fractal.

Theorem 7.4.9 For the map
F(x,y) = (2x+ 5, 2+ ) (mod 1)

of the 2-torus from Section 7.1 4 there is a semiconjugacy h: 24 — T2 with

Foh:ho%rﬂ , where
A

(7.4.4)

0 1

Proof Draw segments of the two eigenlines at the origin until they cross suffi-
ciently many times and separate the torus into disjoinl rectangles. Specilically,
extend a segment of the contracting line in the fourth quadrant until it intersects
the segment of the expanding fine twice in the first quadrant and once in the third
quadrant (see Ligure 7.4.4). The resulting conliguration is a decomposition
of the torus into two rectangles RV and R®. Three pairs among the seven
vertices of the plane configuration are identified, so there are only four different
points on the torus that serve as vertices of the rectangles; the origin and three -
jutersection points. Althongh RY and R are not disjoint, one can apply the
method used for the horseshoe, using R® and R® as basic rectangles. The
expanding and contracting eigendirections play the role of the “horizonial”
and “vertical” directions, correspondingly. Figurc 7.4.5 shows that the image
F(R®Y (i =1,2) consists of several “horizontal” rectangles of full length.
The union of the boundaries R U gR® consists of the segments of the two
eigenlines at the origin just described. The image of ihe contracting segment is
a part of that segment. Thus, the images of R and R® have to be “anchored”
at parts of their “vertical” sides; that is, once one of the images “enters” either
R® or R, it has to stretch all the way through it. By matching things up along
the contracting direction one sees that F(RW) consists of three components,
two in R and one in R®. The image of R® has two components, one in each
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rectangle (see Figure 7.4.5). The fact that F(RY) has iwo components in R
would canse problems if we were to use RY and R® fox coding construction
(more than one point for some sequernices), but we use these five components
Ao, A1, D, Ag, Ay (or their preimages) as the pieces in our coding construction.
There is exactly one vectangle Ay . o001 defined by ﬂ’;____)_a F~"(Ag,), 0ot
several. (As in the case of expanding maps in Section 7.3.1, we have to discard
exlraneous pieces, in this case line segments.) Due to the contraction of F in the

“yertical” direction, Ao g6 has “height” less than ((3 — \/g)/2)g, and
due to the contraction of F ~t in the “horizonial” direction Agp_y..o0.0; .- has
“yidth” less than ((3 — V5)/ 2)*. These go to Zex0 as £ — oo and k—» 00,80 the
intersection { ez I “t(A,,) defines at most one point k(®)- On the other hand,
because of the “Markov” property described previously, thatis, the images going
fall length through rectangles, the following is true: If we 2 and F “L(Ap,)
overlaps Aa,,, fOr afl n € Z, then there is such a point h{w} in Mpez F (A,
Thus, we have a coding, which, however, is not defined for all sequences of €.

Instead, we have to restricl attention to the subspace £24 of Qs that contains
only those sequences where any two sucoessive entries constitute an “allowed
{ransition”, that is, 0, 1, 2 can be followed by 0, 1, or 3, and 3 and 4 can be
followed by 2 or 4. This is exactly the topological Markov chain (Definition 7.3.2)
for (7.4.4). 1

‘Theorem 7.4.10 The semiconjugacy betweern os and F is one-to-one on all
periodic points except for the fixed points. The number of preimages of any
point not negatively asymptolic to the fized point is bounded.

Proof We describe carefully the identiﬁcatioﬁs arising from ouar semiconjugacy,
that is, what poinis on the torus have more than one preimage. First, obviousty,
the topological Markov chain 04 has three fixed points, namely, the constant
sequences of 0%, 1’s, and 4%s, whereas the toral automorphism F has only one,
the origin. It is easy 10 5€€ that all three (ixed points are indeed mapped 1o
the origin. As we have seen in Proposition 7.1.10, PAF) =M+ A2, and
accordingly Pu(oa) = At =M= P(F)+2 (Corollary 7.3.6), where
M=+ J/5)/2 is the maximal eigenvalue for both the 2 X 2 mairix (2l 1) and
for the 5 x 5 matrix (7.4.4). To see that the eigenvalues are the same, consider
A — A1d, subtract column 4 from the first two columns and column 5 from the
third, and then add rows 1 and 2 to row 4 and row 3 to row 5:

1-A o 0 1
' - 0 1
1

—X
0
G
A
0
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Furthermore, one can see that every point q € T? whose positive and
negative iterates avoid the boundaries 3 R and 8 R® has a unigue preimage,
and vice versa. In particular, periodic points other than the origin (which have
rational coordinates) fall into this category. The points of 24 whose images
are on those boundaries or their iterates under F fall into three categories
corresponding to the three segments of stable and nnstable manifolds through 0
that define parts of the boundary. Thus sequences are identified in the following
cases: They have a constant infinite right (future) tail consisting of 0’s or 4’s,
and agree otherwise - this corresponds to a stable boundary piece — or else
an infinite left (past) tail {of 0’s and U’s, or of 4’s), and agree otherwise - this
corresponds to an unstable boundary piece. O

B EXERCISES

B Exercise 7.4.1 Prove that for A > 1 every bounded orbit of the quadratic map f;
isin [0, 11

B Exercise 74.2 Give a detailed argument that (7.4.3) defines a homeomorphisin.

B Exercise 74.3 Construct a Markov partition for (i (1}) that consists of two
squares. '

B Exercise 74.4 Construct a Markov partition and describe the corresponding
topological Markov chain for the automorphism Fy, where 1, = (; i).

& Exercise 74.5 Given a 0-1 n x n-matrix A, describe a system of n rectangles
A1, ..., 8, in R? and map f: A =[], A; - R? such that the restriction of f to
the set of points that stay inside A for all iterates of f is topologically equivalent to
the topological Markov chain o 4.

Bf Exercise 7.4.6 Check that the process (7.4.2) of discarding extraneous points

in the coding construction amounts to taking A, ..., = (Vo It(f~(A,)), and
Eh(a’)} = ﬂnem Awn.---_wu-l .

E PROBLEMS FOR FURTHER STUDY

B Problem 7.4.7 Show that the assertion of Theorem 7.4.3 remains true for any
map f of degree 2 such that f’ > 1 and f’ = 1 only at finitely many points.

B Problem 7.4.8 Prove the assertion of Theorem 7.4.9 for some 0-1 matrix A for
any automorphism ’

Fp:T? -» T2, x> Lx (mod 1},

where L is an integer 2 x 2 matrix with determinant +1 or —1 and with real
eigenvalues different from -t 1. '

7.5 UNIFORM DISTRIBUTION

We now investigate whether the notion of the uniform distribution of orbits that
appeared in previous chapters for rotations of the circle and translations of the
torus has any meaning for the group of examples discussed in the present chapter,
such as linear or nonlinear expanding maps of the circle, shifts, and automoiphisms
of the torus. '




