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Dynamical Systems and Ergodic Theory Main Examples and Ideas

1.4 Baker’s map

Let [0,1)2 = {0,1) x [0, 1) be the unit square. Consider the following two dimensional map £: [0, 1)2 = [0,1)2
¥

(22 Y) if0<z <4,
F(-’E,'y)—{ (23;_1,1»'_}1) if%_<_:1;<1.

Geometrically, F is obtained by cutting [0,1)? into two vertical rectangles Ro = [0,1/ 2) % [0,1) and Ry =
[1/2,1) x [0, 1), stretching and compressing each to obtain an interval of horizontal width 1 and vertical height
1/2 and then putting them on top of each other. The name baker’s map comes becouse this mimic the

1

Figure 1.4: The action of the baker’s map.

movement made by a baker to prepare the bread dough®. Similar maps are often use in industrial processes
since, as we will see formally later, they are very effective in quickly mizing.

Remark 1.4.1. Notice while the horizontal direction is stretched by by a factor 2, the vertical direction is
contracted by a factor 1/2.

The baker map is invertible. The inverse of the map F° can be explicitely given by

z 9 ifo<y<i
1o [ (5.29) if0<y<s,
F~ (2, y) {%m_'gl,gy_l) if <y<l.

Ceometrically, F~! cuts X into two horizontal squares and stretches each of them to double the height and
divide by two the width and then places them one next to each other (in Figure 1.4, the right square now gives
the departing rectangle decomposition and the left square shows the images of each rectangle under F~1),

Unlike in the case of the doubling map, we now have to be more careful in identifying I as a map on
X =(R/Z)2. Themap F: X = X

{22}, igl) if 0 < {z} < L,

Fla) {2:3},{%35_1) ifl<{e} <L
is well defined; here {y} =y mod 1 denotes the fractional part of y.

If you compare the definition of the baker map F' with the doubling map f in the previous section, you
will notice that the horizontal coordinate is trasformed exactly as f. More precisely one can show that I is
an extenstion of f (i.e. there is a semiconjugacy 9 such that 1 o F' = f 01, see Exercise below). Extensions
of non-invertible maps which are invertible are called intervible extensions or natural extensions.

Exercise 1.4.1. Show that the doubling map f : R/Z — R/Z and the baker map F : (R/Z)* — (R/Z)? are
© semi-conjugated and the semi-conjugacy is given by the projection m : (R/Z)? — R/Z given by n{z,y) = z.

9There are other versions of the baker's map where the dough is not cut, but folded over.
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To study the doubling map, we introduced the one-sided shift on two symbols (o™ : ot — ¥H). To study
the baker map is natural to introduce the bi-sided shift on two symbols, that we now define.
Let ¥ = {0, 1}% be the set of all bi-infinite sequences of 0 and 1:

%= {(@)2 00 @€ 0,1}
A point g € TF is a bi-sided sequence of digits 0,1, for example
..0,0,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0...
The (bi-sided) shift map o is a map ¢ : ¥ — T which maps a sequence to the shifted sequence:
o({a:)i2 00} = (D)2 _ oo where b; = a1, (1.8)

The sequence (b;)%._ . is obtained from the sequence (2:)32_,, by shifting all the digits one place to the left.
For example, if

@) o = ... 0, 0, 1, 1, 0, 1
(b 0, 0, 1, 1, 0, 1, 0,

Note that while the one-sided shift ¢+ was not invertible, because we were throwing away the first digit a4
of the one-sided sequence (a;)$2, before shifting to the left, the map ¢ is now invertible. The inverse o lis
simply the shift to the right. .

One can show that the baker map F and the bi-sided shift ¢ are semi-conjugate if ¢ is restricted to a
certain shift-invariant subspace (see Theorem 1.4.1 below).

In the case of the doubling map, the key was to use binary expansion. What to use now? We can get a
hint of what is the serui-conjugacy using itineraries and trying to understand sets which share a common part
of their itinerary.

Let Ry and R; be the two basic rectangles

Ro — [o,%) <[0,1), Ri= [%1) % [0,1).

(See Figure 1.4, left square: Ry is the left rectangle, R; the right one.)
The (bi-infinite) itinerary of (z,y) with respect to the partition {Ro, R1} is the sequence (a2 e T
given by

? 0’ U! 0} 1) 1! 0? ]‘3 11 1! 1)
0,0 1, 1, 0 1, 1, L 1

ay, =0 if F*{z,y) € Ry,
ay =1 if F*(z,y) e By

In particular, if ...,a_3,a.1, a0, a1, 82,... i the itineary of Op ((x,y)) we have
FMa,y) € Ry, for all ke

Note that here, since F is invertible, we can record not only the future but also the past.

Let us now define sets of points which share the same finite piece of itinerary. Given n,m € N and
ap € {0,1} for —m <k < n, let

Rempn(@om, ..y 0n) = {{z,1) € X| Fe(z,y) € Ry, for —m <k < n}.
These are all points such that the block of the itineary from —m to n is given by the digits
Gy et 1y 003 =1, 30,814 .« , 81, On

To construct such sets, let us rewrite them as

7
R—m,n(aﬁm: ey Op) = ﬂ F_k(RtIk)'

k=—m
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Example 1.4.1. Let us compule F~YRy). Either from the definition or from the geometric action of F~1,
one can see that (see Figure 1.5(a))

Fl(Ry) = [o, }i) X [0,1)U E%) % 10,1).

Thus, (see Figure 1.5(b))

_ 13
R{),l(l,O) iR}ﬂF 1(R0) = [E,Z) X [0,1)
1 1 1]
b 14 12 34 1 0 14 2 34 1 0 1/8 1/43/8 1/2 5/8 314118 |
{a) F~(Ro) (b) Ro,1(1,0) (c) Roz2{as,a1,a2)

Figure 1.5: Examples of rectangles determined by future itineraries.

One can prove that all rectangles deterimed by forward itineraries, i.e. of the form Ron{ag,a1,...,0n), are
thin vertical rectangles of width 1/27*! and full height, as in Figure 1.5(c), and as ao, ..., on changes, they
cover X. More precisely, recalling the intervals (o, . ..,an) defined for the doubling map'®, we have

E+1
Ronlag,a1,...,0n) = I{ag,...,an) % [0,1) = [ﬁ%*%t—l) % [0,1} for some <k < ontl,

Let us now describe a set which share the same past itinerary.
Example 1.4.2. The image F(Rp) is the bottom horizontal rectangle in the left square in Figure 1.4. The
image F2(Ry) is shown in Figure 1.6(a) and is given by

FYHR) =[0,1) X [o, i) u,1) x BZ) |

{Try to convince yourself by imagining the geometric action of F' on these sets (or by writing an explicit
formula)]. Hence, for example (see Figure 1.6(b))

Rﬁz,_l(o, 1} = FQ(R()) NF{BR1) = [0,1) x [%, %) .

In general, one can verify that each set of the form
Ry i{0op,..y0-1)

(dependend enly on the past itinerary) is a thin horizontal rectangle, of height 1/2" and full width, as in
Figure 1.6(c}).

. Fixercise 1.4.2. Draw the following sets:

(a) R—l,O(O, 1)

10 hig is because the future history of F, iLe. whether Fk(z,vy) with k > 0 belongs to Hp or Ry, is completely deterimed by
the doubling map.,
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(8) F2(Ro) (b) R—9,-1(0,1) (c) R-3,—1(a—3,a-2,0-1)

Figure 1.6: Examples of rectangles determined by past itineraries.

(b) B_1,1(0,1,1)
(C) R_Q,U(l, 0, 1)

In general R o n(G_m,...,ax) IS a rectangle of horizontal width 1/27%1 and height 1/2™.

The more we precise the backwards itinerary 6—1,8-2,...,8-n, the thinner the precision with which
we determine the vertical component y. Moreover, from the geometric picture, you can guess that as
40,81, -+, 0n, ... give the digits of the binary expansion of 2, a—1,8-2,...,8-n,..- Give the digits of the
binary expansion of y. This is exactly the insight that we need to construct the semi-conjugacy with the full
shift.

Now we are ready to construct a semi-conjugacty beteween the baker map and the full shift which is a
conjugacy outside a measure zero set of points.

Denote by .

Ty = {a € £ : iy € Z such that a; = 1Vi > io}

the set of sequences with forward tails consisting only of 1s. We have o(T}) = T, i.e., T} is a shift-invariant
subspace. Hence its complement 2 = ¥\ T} is also shift-invariant.

Theorem 1.4.1. The baker map is semi-conjugated to the full shiff o £ 5% vio the map ¥ : T S X given
by

mod 1.

oo o0
’ a1 42
B((0){2 ) = (m,y) where z=) -0 modl, y=3 o7
=1 i=1
As for the doubling map, binary expansions turns out to be crucial to build the map ¥. While the future
(a;)%2, of the sequence (a:)52 o, Will be used to give the binary expansion of z, the post (a;}ol ., of the
sequence {a;)° ., turns out to be related to the binary expansion of the vertical coordinate y.

Proof of Theorem 1.4.1. For every point (z,7), both  and y can be expressed in binary expausion. If z has
a binary expansion of the form ag,..., i, 0, L, 1L 1, 1L, .. (i.e., with a forbidden tail), then z also has the
binary expansion @, . .., @i, 1,0,0,0,0,0,... (exercise!). This shows that ¥ is surjective.

Thus it remains to check that ¥o = F'U. Let us first compute

0o [oa]
@ (0((a)F200)) = ¥ ((a:11){2200) = ( % mod 1,y a;jl mod 1) '
i=1

i1

%
Let og be the first digit of the binary expansion of z. We have that g9 = 0if 0 < = < % and ap = 1 if
% <z <l Forz= % we have either ag = 1 {then g; =0 fori > 1)orap =10 (then a; = 1 for 4 > 1). The
latter has a forbidden tail and thus does not occur. Therefore ag = 0if 0 < z < z and ap = 1 if % <z <1,

- which allows us to write
Flz,y) = (2:1: mod 1, Y -;aﬂ) .
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