SF 2720 -Homework assignment 2 - due Tuesday 27. 9. 2016.

- 1. Suppose that $f: X \to X$ and $g: Y \to Y$ are topologically semi-conjugate via a continuous onto map $\phi: X \to Y$. We say $g: Y \to Y$ is a topological factor of $f: X \to X$.
 - a) Prove that if $f: X \to X$ is topologically transitive then $g: Y \to Y$ is topologically transitive. Show that the converse implication does not hold by providing a counterexample.
 - b) Prove that if $f: X \to X$ is topologically mixing then $g: Y \to Y$ is topologically mixing. Show that the converse implication does not hold by providing a counterexample.
- 2. For $\alpha \in \mathbb{R}$, the map F_{α} (often called the skew-shift map) of the 2 dimensional torus \mathbb{T}^2 is:

$$F_{\alpha}: (x,y) \mapsto (x+\alpha \mod 1, x+y \mod 1).$$

Observe that $R_{\alpha}: x \mapsto x + \alpha \mod 1$, is a topological factor of F_{α} via the map $\phi: (x,y) \mapsto x$.

- a) Find necessary and sufficient condition on α which guarantees that F_{α} is topologically transitive. Is F_{α} minimal?
- b) Is F_{α} topologically mixing?
- c) Is F_{α} an isometry (i.e. does F preserve the distance on the torus which is induced by the Eucledian distance in \mathbb{R}^2)?
- 3. Consider the map $G:[0,1)^2 \to [0,1)^2$ defined by: $F(x,y)=(3x,\frac{y}{3})$ for $0 \le x < \frac{1}{3}$, $F(x,y)=(3x-1,\frac{y}{3}+\frac{1}{3})$ for $\frac{1}{3} \le x < \frac{2}{3}$, and $F(x,y)=(3x-2,\frac{y}{3}+\frac{2}{3})$ for $\frac{2}{3} \le x < 1$.
 - a) Draw a picture to show how this map acts on the square.
 - b) Show that G is semi-conjugated to the shift $\sigma: \Sigma_3 \to \Sigma_3$ on the space Σ_3 of doubly infinite sequences on 3 symbols $\{0,1,2\}$. (Hint: read Handout 5 from 'Readings' section.)
 - c) Give an example of a periodic point of period 5 for G.
- 4. An integer 2 by 2 matrix A of determinant one induces a map on the 2-torus \mathbb{T}^2 which we denote by F_A . The map F_A is called a *toral automorphism*. F_A is called *hyperbolic* toral automorphism if for every eigenvalue λ of A we have $|\lambda| \neq 1$. Consider the following matrices with integer entries:

a)
$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 b) $A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ c) $A_3 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ d) $A_4 = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$

- a) For each of the matrices above say if the corresponding map F_{A_i} (i = 1, 2, 3, 4) is:
- a toral automorphism? Justify your answer.
- -a hyperbolic toral automorphism? Justify your answer.
- b) Draw geometrically (as we did in class for the CAT map) how A_1 and A_4 transform the unit square. Prove or disprove the mixing property for F_{A_1} , and for F_{A_4} .
- c) In the class we called a dynamical system chaotic if it has a dense set of periodic points, if it is topologically transitive and has a sensitive dependence on initial conditions. Is either of the two maps F_{A_1} and F_{A_4} a chaotic map on the 2-torus?
- 5. a) Exercise A.5.4. from Handout 4. (All the handouts are posted in the 'Readings' section).
 - b) Exercise A.5.7. from Handout 4.