SF 2720 -Homework assignment 2-due Tuesday 27. 9. 2016.

1. Suppose that $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are topologically semi-conjugate via a continuous onto map $\phi: X \rightarrow Y$. We say $g: Y \rightarrow Y$ is a topological factor of $f: X \rightarrow X$.
a) Prove that if $f: X \rightarrow X$ is topologically transitive then $g: Y \rightarrow Y$ is topologically transitive. Show that the converse implication does not hold by providing a counterexample.
b) Prove that if $f: X \rightarrow X$ is topologically mixing then $g: Y \rightarrow Y$ is topologically mixing. Show that the converse implication does not hold by providing a counterexample.
2. For $\alpha \in \mathbb{R}$, the map F_{α} (often called the skew-shift map) of the 2 dimensional torus \mathbb{T}^{2} is:

$$
F_{\alpha}:(x, y) \mapsto(x+\alpha \bmod 1, x+y \bmod 1) .
$$

Observe that $R_{\alpha}: x \mapsto x+\alpha \bmod 1$, is a topological factor of F_{α} via the map $\phi:(x, y) \mapsto x$.
a) Find necessary and sufficient condition on α which guarantees that F_{α} is topologically transitive. Is F_{α} minimal?
b) Is F_{α} topologically mixing?
c) Is F_{α} an isometry (i.e. does F preserve the distance on the torus which is induced by the Eucledian distance in \mathbb{R}^{2})?
3. Consider the map $G:[0,1)^{2} \rightarrow[0,1)^{2}$ defined by: $F(x, y)=\left(3 x, \frac{y}{3}\right)$ for $0 \leq x<\frac{1}{3}$, $F(x, y)=\left(3 x-1, \frac{y}{3}+\frac{1}{3}\right)$ for $\frac{1}{3} \leq x<\frac{2}{3}$, and $F(x, y)=\left(3 x-2, \frac{y}{3}+\frac{2}{3}\right)$ for $\frac{2}{3} \leq x<1$.
a) Draw a picture to show how this map acts on the square.
b) Show that G is semi-conjugated to the shift $\sigma: \Sigma_{3} \rightarrow \Sigma_{3}$ on the space Σ_{3} of doubly infinite sequences on 3 symbols $\{0,1,2\}$. (Hint: read Handout 5 from 'Readings' section.)
c) Give an example of a periodic point of period 5 for G.
4. An integer 2 by 2 matrix A of determinant one induces a map on the 2 -torus \mathbb{T}^{2} which we denote by F_{A}. The map F_{A} is called a toral automorphism. F_{A} is called hyperbolic toral automorphism if for every eigenvalue λ of A we have $|\lambda| \neq 1$. Consider the following matrices with integer entries:

$$
\text { a) } A_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { b) } A_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \quad \text { c) } A_{3}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \quad \text { d) } A_{4}=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)
$$

a) For each of the matrices above say if the corresponding map $F_{A_{i}}(i=1,2,3,4)$ is: - a toral automorphism? Justify your answer.
-a hyperbolic toral automorphism? Justify your answer.
b) Draw geometrically (as we did in class for the CAT map) how A_{1} and A_{4} transform the unit square. Prove or disprove the mixing property for $F_{A_{1}}$, and for $F_{A_{4}}$.
c) In the class we called a dynamical system chaotic if it has a dense set of periodic points, if it is topologically transitive and has a sensitive dependence on initial conditions. Is either of the two maps $F_{A_{1}}$ and $F_{A_{4}}$ a chaotic map on the 2-torus?
5. a) Exercise A.5.4. from Handout 4. (All the handouts are posted in the 'Readings' section).
b) Exercise A.5.7. from Handout 4.

