Minigroupwork 2, solutions, 2016

a)

$$
\begin{aligned}
& \quad \psi=\arctan \frac{\omega_{\text {suu }} r}{u_{s w}} \\
& \omega_{\text {sun }}=2 \pi / \mathrm{T}=2.9 \cdot 10^{-6} \mathrm{~s}^{-1}(\mathrm{~T}=25 \text { days at equator) } \\
& \mathrm{r}=1 \text { A.U. }=1.496 \cdot 10^{11} \mathrm{~m} . \\
& \left.\tan \psi=\left|\mathrm{B}_{\mathrm{sw}} / \mathrm{B}_{\mathrm{X}}\right| \approx 3.6 / 2.6 \text { (from figure }\right) \quad\left(\psi=54^{\circ}\right) \\
& \tan \psi \\
& \text { With these figures I get } \mathrm{u}_{\mathrm{sW}}=313 \mathrm{~km} / \mathrm{s} \\
& \text { b) }
\end{aligned}
$$

The magnetic Reynolds number is calculated by using typical plasma flow velocities v_{c} and typical length scales of magnetic field variations l_{c}

Use solar wind velocity obtained in a) for typical flow velocity. To obtain l_{c}, multiply the time t it takes the magnetic field structure (indicated in the figure), to pass over the satellite and use $l_{c},=v t$. I get $l_{c}=2.8 \cdot 10^{8} \mathrm{~m}$.

Using a temperature of $5 \cdot 10^{4} \mathrm{~K}$, we can evaluate the conductivity, remembering that the temperature should be given in eV . We get the conversion from
$W=\frac{3}{2} k_{B} T$
which gives the result that 1 eV corresponds to a temperature of 7729 K . We then get $T=6.5$ $e V$, and
$\sigma=3.1 \cdot 10^{4} \mathrm{~S} / \mathrm{m}$
Putting in the numbers I get
$R_{m}=\mu_{0} \sigma v_{c} l_{c} \approx 3.5 \cdot 10^{12} \gg 1$
So the solar wind magnetic field is frozen into the plasma to a very good approximation.
c)
$\rho=n_{e} m_{p}=6.1 \cdot 10^{6} \cdot 1.67 \cdot 10^{-27}=1.02 \cdot 10^{-20}$
Then the kinetic energy density is ($v=313 \mathrm{~km} / \mathrm{s}$):
$\rho v^{2} / 2=5 \cdot 10^{-10} \mathrm{Jm}^{-3}$

The magnetic energy density is (using values of figure)

$$
\frac{B^{2}}{2 \mu_{0}}=\frac{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}{2 \mu_{0}}=\left(2.6^{2}+3.6^{2}+1.7^{2}\right) \cdot\left(10^{-9}\right)^{2} / 2 \mu_{0}=9.0 \cdot 10^{-12} \mathrm{Jm}^{-3}
$$

The ratio between the kinetic and magnetic energy densities is approximately 50 , thus the plasma motion determines the magnetic field configuration, and not the other way around.

