

Last lecture (7)

- Particle motion in magnetosphere
- Other magnetospheres

Today's lecture (8)

- Aurora
- How to measure currents in space
- Magnetospheric dynamics

Today

Activity	Date	Time	Room	<u>Subject</u>	Litterature
L1	29/8	13-15	E52	Course description, Introduction, The Sun 1, Plasma physics 1	CGF Ch 1, 5, (p 110-113)
L2	1/9	15-17	L52	The Sun 2, Plasma physics 2	CGF Ch 5 (p 114-121), 6.3
L3	5/9	13-15	E51	Solar wind, The ionosphere and atmosphere 1, Plasma physics 3	CGF Ch 6.1, 2.1-2.6, 3.1-3.2, 3.5, LL Ch III, Extra material
T1	8/9	15-17	D41	Mini-group work 1	
L4	12/9	13-15	E35	The ionosphere 2, Plasma physics 4	CGF Ch 3.4, 3.7, 3.8
L5	14/9	10-12	V32	The Earth's magnetosphere 1, Plasma physics 5	CGF 4.1-4.3, LL Ch I, II, IV.A
T2	15/9	15-17	E51	Mini-group work 2	
L6	19/9	13-15	M33	The Earth's magnetosphere 2, Other magnetospheres	CGF Ch 4.6-4.9, LL Ch V.
T3	22/9	15-17	E51	Mini-group work 3	
L7	26/9	13-15	E31	Aurora, Measurement methods in space plasmas and data analysis 1	CGF Ch 4.5, 10, LL Ch VI, Extra material
L8	28/9	10-12	L52	Space weather and geomagnetic storms	CGF Ch 4.4, LL Ch IV.B-C, VII.A-C
T4	29/9	15-17	M31	Mini-group work 4	
L9	3/10	13-15	E52	Interstellar and intergalactic plasma, Cosmic radiation,	CGF Ch 7-9
T5	6/10	15-17	E31	Mini-group work 5	
L10	10/10	13-15	E52	Swedish and international space physics research.	
Τ6	13/10	15-17	E31	Round-up, old exams.	
Written exami- nation	26/10	8-13	F2		

The aurora

The aurora

The aurora

Homogenous auroral arcs

Rays, curtains

Rays are formed in the direction of the local magnetic field.

Drapes develop from homogenous arcs, often when they increase in intensity.

Auroral spirals

Develop when arcs become unstable

Auroral corona

Geometric effect of perspective when you look towards magnetic zenith. Compare the figure.

Aurora - altitude

Foto from International Space Station

EF2240 Space Physics 2016

Early notions

Woodcut from Böhmen 1570.

Anders Celsius documented that compass needles where strongly affected during auroral activity in 1733.

What causes the aurora?

EF2240 Space Physics 2016

Particle motion in geomagnetic field

longitudinal oscillation

gyration

azimuthal drift

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

mv²/2 constant (energy conservation) $\frac{\sin^2 \alpha}{B} = konst$ particle turns when $\alpha = 90^\circ$ $B_{turn} = B / \sin^2 \alpha$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{max}$$

$$\alpha > \alpha_{lc} = \arcsin \sqrt{B} / B_{max}$$

Particles in *loss cone* :

$$\alpha < \alpha_{lc}$$

Collisions - emissions

Emissions

Oxygen emissions

Why is there no red emissions at lower altitude?

Oxygen emissions

The red emission line is suppressed by collisions at lower altitudes due the its long transition time. (When an excited atom collides with another atom, is is de-excited without any emission.)

Larger scales

Foto från DMSP-satelliten

Auroral ovals

Dynamics Explorer

Polar

The auroral oval is the projection of the plasmasheet onto the atmosphere

Mystery!

The particles in the plasmasheet do not have high enough energy to create aurora visible to the eye.

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

 $mv^2/2$ constant (energy conservation)

 $\frac{\sin^2 \alpha}{B} = konst$

particle turns when $\alpha = 90^{\circ}$

$$B_{turn} = B / \sin^2 \alpha$$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{\max} \quad \Longrightarrow$$

$$\alpha > \alpha_{fl} = \arcsin \sqrt{B / B_{max}}$$

Particles in *loss cone* :

$$\alpha < \alpha_{_{fl}}$$

Why particle acceleration?

- The magnetosphere often seems to act as a current generator.
- The lower down you are
 on the field line, the more particles have been reflected by the magnetic mirror.
- At low altitudes there are not enough electrons to carry the current.

Why particle acceleration?

- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Distribution function

Why particle acceleration?

- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Acceleration regions

Auroral acceleration region typically situated at altitude of 1-3 R_E

EF2240 Space Physics 2016

Auroral spirals

Develop when arcs become unstable

Kelvin-Helmholzinstability – a general phenomenon

Extragalactic jet (M87)

Aero- and fluid dynamics

Kelvin-Helmholz instability Example: water waves

Continuity equation:

 $A_1 v_1 = A_2 v_2$

Bernoulli's equation: $p_1 + \rho v_1^2 = p_2 + \rho v_2^2 = const.$

$$\therefore p_1 > p > p_2$$

Spirals – Kelvin-Helmholz instability

⟨⟩₿

EF2240 Space Physics 2016

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Spirals – Kelvin-Helmholz instability

At what planets do you expect aurora to exist?

Earth, Mercury, Jupiter, Saturn

Yellow

Earth, Venus, Jupiter, Saturn, Uranus, Neptune

Earth, Mars, Jupiter, Saturn, Uranus, Neptune

Earth, Jupiter, Saturn, Uranus, Neptune

What do we need to have an aurora?

- Magnetic field (to guide the plasma particles towards the planet)
- Atmosphere (to create emissions)

At what planets do you expect aurora to exist?

Earth, Jupiter, Saturn, Uranus, Neptune

Mercury

- No atmosphere
- X-ray aurora??? Can possibly be created by electrons colliding directly with the planetary surface and lose their energy in one single collision.

Jupiter aurora

Foto från Hubble Space Telescope

- Jupiter's aurora has a power of ~1000 TW (compare Earth: ~100 GW, nuclear power plant: ~1 GW)
- Note the "extra" oval on Io's flux tube!

Jupiter and lo

The Jupiter moon Io is very volcanically active, and deposes large amounts of dust and gas in Jupiter's magnetosphere. This is ionized by the sunlight, and the charged plasma partícles follow Jupiter's magnetic field lines towards the atmosphere and cause auroral emissions.

Aurora of the other planets

Saturn

Saturnus' aurora: not noticeably different from Jupiter's, but much weaker. (Total power about the same as Earth's aurora.) Uranus: Auora detected in UV. Probably associated with Uranus' ring current/radiotion belts and not very dynamic.

Neptunus: weak UV aurora detected.

Mars, Venus: No aurora.

Prerequisites for...

Life

- Energy source (sun)
- Atmosphere
- Magnetic field
- Water

Aurora

- Energy source (sun)
- Atmosphere
- Magnetic field

On space weather and viewing aurora

Some space weather sites

http://spaceweather.com/

http://www.esa-spaceweather.net/

http://sunearthday.nasa.gov/swac/

http://www.noaawatch.gov/themes/spac e.php

http://www.windows2universe.org/spac eweather/more_details.html Kiruna

Kiruna all-sky camera: http://www.irf.se/allsky/rtasc.php

http://sunearthday.nasa.gov/swac/ tutorials/aur_kiruna.php

Forecasts: http://flare.lund.irf.se/rwc/aurora/ http://www.irf.se/Observatory/?li nk[Allskycamera]=Aurora_sp_statistics

Birkeland currents in the auroral oval

How can you measure currents in space?

Current sheet approximation

Approximate currents by thin current sheets with infinite size in the x- och z-directions.

Current sheet approximation

What will the magnetic field around such a current configuration be? Start by approximating with line currents to get a qualitative picture.

B j O O

The closer you place the line currents, the more the magnetic fields between the line currents will cancel

Current sheet approximation and Ampére's law

Ampére's law (no time dependence):

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

Current sheet - example

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

Blue

$$j_{z} = -\frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial y} \qquad \frac{\partial B_{x}}{\partial y} = \frac{\partial B_{East}}{\partial y} > 0$$
$$\Rightarrow \qquad j_{z} < 0$$

Into the ionosphere

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

1)
$$\frac{\partial B_x}{\partial y} > 0 \implies j_z < 0$$
 Into the ionosphere
2) $\frac{\partial B_x}{\partial y} < 0 \implies j_z > 0$ Out of the ionosphere
3) $\frac{\partial B_x}{\partial y} > 0 \implies j_z < 0$ Into the ionosphere
4) $\frac{\partial B_x}{\partial y} < 0 \implies j_z > 0$ Out of the ionosphere

Birkeland currents in the auroral oval

Mercury

- No atmosphere
- X-ray aurora??? Can possibly be created by electrons colliding directly with the planetary surface and lose their energy in one single collision.

Jupiter aurora

Foto från Hubble Space Telescope

- Jupiter's aurora has a power of ~1000 TW (compare Earth: ~100 GW, nuclear power plant: ~1 GW)
- Note the "extra" oval on Io's flux tube!

Jupiter and lo

The Jupiter moon Io is very volcanically active, and deposes large amounts of dust and gas in Jupiter's magnetosphere. This is ionized by the sunlight, and the charged plasma partícles follow Jupiter's magnetic field lines towards the atmosphere and cause auroral emissions.

Aurora of the other planets

Saturn

Saturnus' aurora: not noticeably different from Jupiter's, but much weaker. (Total power about the same as Earth's aurora.) Uranus: Auora detected in UV. Probably associated with Uranus' ring current/radiotion belts and not very dynamic.

Neptunus: weak UV aurora detected.

Mars, Venus: No aurora.

Prerequisites for...

Life

- Energy source (sun)
- Atmosphere
- Magnetic field
- Water

Aurora

- Energy source (sun)
- Atmosphere
- Magnetic field

At what planets do you expect aurora to exist?

Earth, Mercury, Jupiter, Saturn

Yellow

Earth, Venus, Jupiter, Saturn, Uranus, Neptune

Earth, Mars, Jupiter, Saturn, Uranus, Neptune

Earth, Jupiter, Saturn, Uranus, Neptune

What do we need to have an aurora?

- Magnetic field (to guide the plasma particles towards the planet)
- Atmosphere (to create emissions)

At what planets do you expect aurora to exist?

Earth, Jupiter, Saturn, Uranus, Neptune

On space weather and viewing aurora

Some space weather sites

http://spaceweather.com/

http://www.esa-spaceweather.net/

http://sunearthday.nasa.gov/swac/

http://www.noaawatch.gov/themes/spac e.php

http://www.windows2universe.org/spac eweather/more_details.html Kiruna

Kiruna all-sky camera: http://www.irf.se/allsky/rtasc.php

http://sunearthday.nasa.gov/swac/ tutorials/aur_kiruna.php

Forecasts: http://flare.lund.irf.se/rwc/aurora/ http://www.irf.se/Observatory/?li nk[Allskycamera]=Aurora_sp_statistics

Birkeland currents in the auroral oval

How can you measure currents in space?

Current sheet approximation

Approximate currents by thin current sheets with infinite size in the x- och z-directions.

Current sheet approximation

What will the magnetic field around such a current configuration be? Start by approximating with line currents to get a qualitative picture.

B j O O

The closer you place the line currents, the more the magnetic fields between the line currents will cancel

Current sheet approximation and Ampére's law

Ampére's law (no time dependence):

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

Current sheet - example

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

Blue

$$j_{z} = -\frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial y} \qquad \frac{\partial B_{x}}{\partial y} = \frac{\partial B_{East}}{\partial y} > 0$$
$$\Rightarrow \qquad j_{z} < 0$$

Into the ionosphere

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

1)
$$\frac{\partial B_x}{\partial y} > 0 \implies j_z < 0$$
 Into the ionosphere
2) $\frac{\partial B_x}{\partial y} < 0 \implies j_z > 0$ Out of the ionosphere
3) $\frac{\partial B_x}{\partial y} > 0 \implies j_z < 0$ Into the ionosphere
4) $\frac{\partial B_x}{\partial y} < 0 \implies j_z > 0$ Out of the ionosphere

Birkeland currents in the auroral oval

