DH2323 Computer Graphics and Interaction
Parallel Path Tracing in CUDA
Project Report

Henrik Dahlberg*

KTH Royal Institute of Technology

Figure 1: Rendering showing the final state of the path tracer. It features triangle meshes, spheres, finite aperture sampling depth of field,
anti-aliasing, Fresnel reflection and refraction and isotropic Monte Carlo subsurface scattering. The image was rendered with 42,000 samples

per pixel with a maximum of 40 bounces per ray.

Abstract

We present the implementation of a physically-based parallel path
tracer in CUDA/C++. We utilize the parallel computational power
of modern GPUs to render photo-realistic images of simple, well-lit
scenes orders of magnitude faster than a serial implementation. The
system features a moveable camera allowing interactive navigation
through the scene and is capable of rendering triangles meshes and
spheres, glossy, diffuse, specular and transmissive materials as can
model isotropic participating media and subsurface scattering.

1 Introduction

In the field of computer graphics, global illumination (GI) tech-
niques are a collection of algorithms with the aim of adding realis-
tic lighting to a scene. The algorithms are tasked with computing
measurements of the incident radiance from the light sources as
well as from surfaces and participating media from which light has
been scattered. The methods are used widely to solve light transport
problems in film making and architectural visualization and has be-
gun seeing use in computer games and other real-time applications.

The rendering equation (1) is an integral equation that describes the
exitant radiance L, from a point X on a scene object as the emitted
radiance L. plus the scattered incident radiance L; at that point
from the rest of the scene.

Lo(wo,x) = Le(wo,x) + /M L;(ws, x)du(M) )

The equation was introduced by James Kajiya [1986] who simulta-
neously introduced the path tracing algorithm.

Path tracing is aimed at solving the rendering equation by sampling
light paths of arbitrary length by casting rays from the camera and
tracing them through the scene, successively computing their scat-
tering by sampling the appropriate scattering distribution. The light

*e-mail:hdahlb @kth.se

transport problem is transformed to an integration problem by for-
mulating individual measurements as a path integral over the set of
paths of all lengths €2, where a path x € {2 [Veach 1997].

I = / £ (&) du(®) @

The integrand f; is the measurement contribution function and is
sampled by generating a path X € (2 from some probability dis-
tribution p;(X) and the samples are then combined to generate an
unbiased estimate of the measured radiance /; incident to the cam-
era using the standard Monte Carlo estimator. The estimate I ; for
N path samples can be written as the standard Monte Carlo integral
estimate.

i1 fi(%)
=y ; pi (%) @

CUDA is a parallel computing framework created by Nvidia, allow-
ing the use of CUDA-compatible graphics processing units for gen-
eral purpose computing. GPUs are highly parallel multi-core sys-
tems with the capability of launching thousands of threads tasked
with performing operations in parallel. In the path tracing frame-
work, the individually sampled paths X are independent and the
process of sampling paths to generate an image representation of a
3D scene - an array of pixel measurements I; - is therefore inher-
ently parallel in that we can assign one thread per path.

2 Related Work

In this section we present a selection of a few sources that have been
used directly as sources of inspiration for this project from the vast
amount of references available in this field.

Matt Pharr and Greg Humphrey’s famous book on physically-based
rendering [2004] is concerned with presenting the theory of render-
ing photo-realistic scenes while simultaneously implementing the



theory in a software rendering system. While their presentation
does not include a GPU implementation, it is pedagogical and has
served as a reference for the system design aspects of this project.

The Brigade renderer is a commercial rendering software by OTOY
[Bikker and van Schijndel 2013]. It uses GPU cloud computing
to render path traced images at interactive speeds and their video
demonstrations are an inspiration for where projects like the one
described in this report may end up in the future.

Peter Kutz and Karl Li, current employees of Walt Disney Anima-
tion Studios did a similar project to this [Kutz and Li 2012]. Their
work has served as a guide and an instructive source of inspiration
for this project.

Samuel Lapere runs a blog on rendering that hosts a series of tutori-
als for path tracing on the GPU with CUDA [Lapere 2016]. While
the examples shown on the blog are not used directly in this work,
they have showcased features and technicalities in the implementa-
tions that are helpful.

3 Implementation and Results

We present the steps taken in the implementation of the GPU path
tracer. An account of the development progress made throughout
the project is readily available at the project blog [Dahlberg 2016].

3.1 Random Number Generation

In order to perform Monte Carlo simulations we need to sample dis-
tributions such as the bidirectional scattering distribution functions
(BSDFs) present in the scene. In our setting it is therefore essential
that we can generate uniformly distributed random numbers on the
GPU. We also want the samples taken to be uncorrelated between
GPU threads and over simulation iterations. If this is not the case
there will be bias and artefacts introduced in the generated image.

Figure 2: Bias and rendering artefacts introduced from passing
correlated seeds to initialize the random number generator.

We use the Thrust library to generate uniformly distributed random
variables [Bell and Hoberock 2011]. When a new direction is sam-
pled for a ray during a scattering event, the ray pixel index, itera-
tion number, time and ray bounce depth are hashed and combined

to generate a seed for the initialization of a thread-specific random
number generator.

3.2 Image Accumulation

In each iteration t = {1,2,..., N}, where N is the final number
of samples per pixel, a path X is sampled for each pixel j and its
contribution to the Monte Carlo estimate of the pixel measurement
1; is updated sequentially.

Y [i(®)
=Dl 0 ®

“

I =

| =

Expanding this recursion for ¢ = N gives expression (3). This
allows us to observe the convergence of the simulation while we are
collecting and incorporating more samples into the image estimate.
A CUDA array is mapped to an OpenGL buffer that is displayed
to the image, and the output of the computations performed on the
GPU is stored in the array.

3.3 Generating Path Samples

When computing the Monte Carlo estimate I ; we need the path
samples X. It is the generation of these samples that are at the core
of the path tracer and that which is responsible for the majority of
the computational intensity. We initialize an array of rays and an
array of pixel indices that each ray is assigned to. We then compute
the ray origins by sampling the aperture and sample a ray direc-
tion through a point on the image plane in the ray initialization step
step. The aperture sampling produces the depth of field effect visi-
ble in Fig. 3 and Fig. 4. The rays are then traced in parallel through
the scene in an iterative fashion, the nearest intersection with the
scene geometry is computed. The material properties are taken into
account after which each ray is scattered from the intersected ge-
ometry point by sampling a new direction. In this work we have
implemented perfectly diffuse samples as well as reflection and re-
fraction using the Fresnel equations. The procedure is summarized
in pseudocode in algorithm (1).

Figure 3: Rendering generated in an early state of the path tracer.
Shows the depth of field effects generated by sampling the ray ori-
gins in the camera ray casting from an aperture of finite non-zero
radius.

3.3.1 Ray Parallelization

The path tracer utilizes ray parallelization as opposed to pixel paral-
lelization. We assign a CUDA thread ¢ to each ray and keep track of
which pixel measurement /; the ray belongs to through an array of
ray pixel indices p = {p1, p2, ..., Pm }, where M is the number
of pixels in the image being computed. The ray pixel indices p is a



Algorithm 1 Path tracing

Input: Scene S and camera specification C'
Output: Path traced image [
1: for each iteration do
2 INITDATA(Color ¢, RayPixellncides p) in parallel
3 INITRAYSFROMCAMERA(T, S, C) in parallel
4 while rays T not all terminated do
5: RAYTRACE(T, S) in parallel
6 SAMPLEBSDF(x, S) in parallel
7 > Mark terminated rays for compaction p; < —1
8 COMPACTTERMINATEDRAYS(F, p)

9: > Remove elements where the ray pixel index p; = —1
10: end while
11: ACCUMULATECOLORTOIMAGE(Z, €) in parallel
12: end for

mapping from the ray/thread index ¢ to the pixel index through the
relation p; = j € {1,2,..., M}, so that the ray rp, contributes
to the measurement estimate 1 ;. This allows us to compact away
terminated rays to avoid having warps with idle threads waiting for
the rest of the threads to finish the computation.

3.3.2 Stream Compaction

To increase the occupancy of the GPU in scenes where many of the
rays are terminated early, we want to rearrange the work load so
that only rays that are not terminated are considered and grouped
together, maximising the efficiency of each warp. Example scenes
where rays are terminated early are outdoor scenes where many
rays exit the scene to the surrounding atmosphere.

When the potential radiance contribution of a ray is under a certain
threshold or when the ray exits the scene into the background, the
ray is marked for termination by setting the corresponding ray pixel
index p; = —1. We then perform stream compaction by removing
the elements of the ray pixel index array whose values are negative
through the thrust: : remove_if function of the Thrust library
[Bell and Hoberock 2011]. In table 1 we show the number of live
rays at each propagation step for an iteration in the renderer, and
the number of CUDA thread blocks launched in each step.

Ray depth Liverays Thread blocks
1 786677 3600
2 431576 3073
3 199922 1686
4 106416 781
5 64018 416
6 40786 251
7 26987 160
8 18265 106
9 11389 72
10 5776 45

11 2310 23

Table 1: As the rays are propagated along the path being sampled,
they will eventually terminate. If we compact away the terminated
rays, we can utilize as much of the computational power of the GPU
as possible by dedicating threads only to rays that are still being
propagated.

If we would not compact away the rays that have been terminated,
we would have a large number of blocks that are doing very little
work as most of the threads assigned to the terminated rays may be

waiting idle for the few threads assigned to the live rays to termi-
nate. By performing the stream compaction, we can guarantee that
the GPU is launching thread blocks with threads assigned only to
live rays that are doing useful work.

We can see however that once we reach a certain ray depth along
the path, many rays have terminated and there may be too few rays
alive to fully occupy the GPU. Aila and Laine [2009] uses a large
pool of rays to further increase the occupancy of the GPU, ensuring
that each thread is always tasked with a vast amount of work by
performing computations on the pool of rays. We leave the imple-
mentation of their paper as future work.

3.4 Reflection and Refraction

We implement reflective and transmissive materials by computing
the reflection and transmission directions using Snell’s law when a
ray intersects a surface that exhibits these properties. To allow for
glossy materials as well as purely reflective and transmissive mate-
rials, we utilize Russian roulette sampling to decide if we will take
a reflection sample, a refraction sample or a diffuse sample. This
procedure has the same expected outcome as splitting the ray path
and following each of the sub-paths. To do this, we compute the
probability of reflection R using the Fresnel equations for unpo-
larised light. We generate a uniform random number v ~ U (0, 1)
and propagate the ray along the reflected direction if v < R. If
u > R, we propagate along the transmitted direction if the mate-
rial is transmissive and take a diffuse sample if the material is not,
resulting in the glossy appearance of some spheres in e.g. Fig 4.

Figure 4: Sphere scene rendering showing the depth of field effect
resulting from finite radius aperture sampling as well as reflection,
refraction and glossy materials.

3.5 Isotropic Subsurface Scattering

To render things like milk, marble and skin, the scattering and prop-
agation of light inside the material needs to be considered. In this
renderer we implement isotropic Monte Carlo subsurface scattering
which is a computationally intensive brute-force method to simu-
late these effects. We implement it by letting each ray be aware of
which medium it is propagating through. If the ray has been trans-
mitted through a material, we assign the medium parameters to the
ray, which holds information about the absorption and scattering
properties of the material that ultimately determines the appearance
of the material.

The implementation consists of a scattering step and an absorption
step. We use the reduced scattering coefficient o5, which is the
inverted reduced mean free path to determine how far the ray is
scattered before an absorption event. The reduced mean free path
is the equivalent of a series of mean free path steps that precede an
absorption event. Since we only consider homogeneous materials



(a)os = 64 (b)os =16

(©os =4 dos =1

Figure 5: Four renderings of the Stanford bunny [Levoy et al. 2005] for reduced scattering coefficients o s of (a) 64, (b) 16, (5¢) 4, and (d) 1.
In (d), the absorption coefficient has been reduced, resulting in a brighter blue color. A higher scattering coefficient is equivalent to a shorter
mean free path of the particles being scattered and results in less transparency in the material, and the color of the material is determined by

the absorption.

in this project, we can compute the distance d travelled by the ray
before an absorption event by sampling a uniform random variable
u ~ U(0,1) and set d = —log(u)/os. This can be derived from
the cumulative probability density function of a photon interaction
with a participating medium at a position along a direction [Jensen
and Christensen 1998].

In addition to propagating the ray after being scattered, we compute
the absorption. This is done using the Beer-Lambert law that relates
the absorption with the properties of the medium that a light ray is
travelling through [Swinehart 1962].

T = exp (— /Od ,u(z)dz) ©)

T is the fraction of light that is transmitted in an absorption event
for a ray that has travelled a distance d and pu(z) is the absorption
coefficient. In this project we only consider materials with uniform
absorption coefficient 14(z) = u, and the Beer-Lambert law is re-
duced to T' = e~*<. For a more complete derivation and account on
the theory of radiation scattering, see the work by Chandrasekhar
[1960].

Fig. 5 displays the visual properties of subsurface scattering for dif-
ferent parameter values. In (a) the reduced scattering coefficient o5
is high which leads to a low expected value for the sampled trav-
elled distance of the ray d. As a result, a ray will most likely not
travel far into the material before it is scattered back out through
the surface again, resulting in the almost solid appearance. As the
reduced scattering coefficient o reduced, the the sampled scattered
distance will be longer on average, and more rays will exit the ob-
ject through a point on the surface that is farther away from where
it entered. Note also how the color of the object appears darker the
more transparent it is, since a larger d gives a larger negative expo-
nent in the Beer-Lambert law (5). In (d) the absorption coefficient
1 has been reduced as well, resulting in a bright transparent blue.

4 Future Work

When the triangle meshes exhibit finer detail, the triangle count
grows very large and the procedure of checking each ray for inter-
section with each triangle quickly becomes infeasible. A common
strategy to circumvent this is to introduce an acceleration structure
such as k-d trees, octrees or bounding volume hierarchies. The
overarching strategy is to reduce the number of ray-triangle inter-

Figure 6: Scene consisting of 300 spheres with randomly generated
diffuse color, emission, position and radius.

section tests needed by instead testing for intersection against a vol-
ume that conservatively encapsulates all the other objects. If a ray
misses the conservative volume, then trivially there is no reason to
check if the ray would intersect any of the objects that the volume
contains. The volume is then successively partitioned further so
that the majority of the ray-triangle intersections can be avoided. It
is essential to implement such an acceleration structure to improve
the real-time performance of the renderer if the scenes are allowed
a higher complexity than those used in this project.

In this project we have only sampled paths starting from the cam-
era, scattering and propagating throughout the scene until they are
terminated. This works well for well-lit scenes such as in Fig. 8,
where most paths contribute to the final image due to the emission
of the background. If a path does not hit a source that emits light,
the path will not contribute to the final image. In cases where the
light sources of a scene are small or highly occluded, the variance
in the computed image will be high because of this and the im-
age will require far more samples to converge. To reduce variance
and increase the efficiency of the renderer, it is beneficial to sample
light sources directly and trace paths starting from the light sources.
One can then use multiple importance sampling to combine paths
sampled from the light sources with paths sampled from the cam-
era, connecting vertices of camera paths with vertices from light
paths and computing their contribution to the final image [Veach
and Guibas 1995]. This method is known as bidirectional path trac-
ing and has been shown to significantly reduce variance, especially
in scenes with complex light paths involving reflections, refractions
and other indirections between the camera and light sources [Veach



Figure 7: A comparison between a reference image of the Cornell box scene generated from measured data (left) and an image generated
in the path tracer developed in this project (right). The scene geometry and camera is modelled after the measured data. The exact colors
of the wall, the emission of the light source and the camera field of view is unknown and the right image was thus generated after selecting
colors and camera parameters that generated an image resembling the reference by inspection. The image and scene data was retrieved from
http://www.graphics.cornell.edu/online/box/data.html (accessed: 2016-09-24).

and Guibas 1995; Veach 1997].

Figure 8: Rendering of a scene with materials exhibiting sub-
surface scattering, reflections and refraction in a well-lit environ-
ment. The simulation converges faster when the scene background
is brighter and most light paths contribute to the final image.

Ultimately, the list of improvements to a system like the one im-
plemented in this project can be made arbitrarily long. In addi-
tion to the above as well as performing code restructuring, opti-
mizations and implementing efficient hand-tuned ray tracing frame-
works [Aila and Laine 2009; Laine et al. 2013], some potential ex-
tensions are

e Microfacet models

e Anisotropic subsurface scattering using the Henyey-
Greenstein phase function [Henyey and Greenstein 1941]

e Texture, normal, displacement and environment mapping

e Metropolis light transport [Veach and Guibas 1997]

Acknowledgements

Peter Hedman at University College London for discussions on
modern acceleration structures. Samuel Lapere at the University
of Auckland for clarifications regarding color conversion. Samuel
Lapere, Peter Kutz and Karl Li for implementation details and ex-
amples.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proceedings of the conference on high
performance graphics 2009, ACM, 145-149.

BELL, N., AND HOBEROCK, J. 2011. Thrust: A productivity-
oriented library for CUDA. GPU computing gems Jade edition
2,359-371.

BIKKER, J., AND VAN SCHUNDEL, J. 2013. The Brigade ren-
derer: A path tracer for real-time games. International Journal
of Computer Games Technology 2013.

CHANDRASEKHAR, S. 1960. Radiative transfer. Courier Corpo-
ration.

DAHLBERG, H., 2016. Portfolio. http://henrikdahlberg.
portfoliobox.net/dh2323projectblog. Accessed: 2016-09-23.

HENYEY, L. G., AND GREENSTEIN, J. L. 1941. Diffuse radiation
in the galaxy. The Astrophysical Journal 93, 70-83.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scenes with participating media using


http://www.graphics.cornell.edu/online/box/data.html
http://henrikdahlberg.portfoliobox.net/dh2323projectblog
http://henrikdahlberg.portfoliobox.net/dh2323projectblog

photon maps. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, ACM, 311-320.

KAJYA, J. T. 1986. The rendering equation. In ACM Siggraph
Computer Graphics, vol. 20, ACM, 143-150.

KuTtz, P., AND LI, K. 2012. Peter and Karl’s GPU path tracer.
University of Pennsylvania.

LAINE, S., KARRAS, T., AND AILA, T. 2013. Megakernels con-
sidered harmful: wavefront path tracing on GPUs. In Proceed-
ings of the 5th High-Performance Graphics Conference, ACM,
137-143.

LAPERE, S., 2016. Ray Tracey’s blog. http://raytracey.blogspot.
com. Accessed: 2016-09-23.

LEvoy, M., GERTH, J., CURLESS, B., AND PULL, K. 2005.
The stanford 3d scanning repository. URL http://www-graphics.
stanford. edu/data/3dscanrep.

PHARR, M., AND HUMPHREYS, G. 2004. Physically based ren-
dering: From theory to implementation. Morgan Kaufmann.

SWINEHART, D. 1962. The Beer-Lambert law. J. Chem. Educ 39,
7,333.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining sam-
pling techniques for Monte Carlo rendering. In Proceedings of
the 22nd annual conference on Computer graphics and interac-
tive techniques, ACM, 419-428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light trans-
port. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 65-76.

VEACH, E. 1997. Robust Monte Carlo methods for light transport
simulation. PhD thesis, Stanford University.


http://raytracey.blogspot.com
http://raytracey.blogspot.com

