SF 2720, Homework assignment 2 – due Tuesday 11. 10. 2016.

- (1) (Exercise 3.9, [BV]). Determine whether the maps f and $g : \mathbb{R} \to \mathbb{R}$ are topologically conjugate for
 - a). $f(x) = x, g(x) = x^2;$
 - b). f(x) = x/3, g(x) = 2x;
 - c). $f(x) = 2x, g(x) = x^3$.
- (2) (Exercise 3.16, [BV]). Compute the topological entropy of the endomorphism of the torus \mathbb{T}^2 induced by the matrix

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

(3) (Exercise 3.18, [BV]). Let $f : X \to X$ be a continuous map of a compact metric space, and take $k \in \mathbb{N}$.

This exercise shows that $h(f^k) = kh(f)$.

a). Writing $d_{n,f} = d_n$ and $N_f(n, \varepsilon) = N(n, \varepsilon)$, show that $d_{n,f^k}(x, y) \le d_{nk,f}(x, y)$, and thus

$$N_{f^k}(n,\varepsilon) \le N_f(nk,\varepsilon).$$

- b). Conclude that $h(f^k) \leq kh(f)$.
- c). Show that

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N_f(nk, \varepsilon) \le h(f^k).$$

Hint: By the uniform continuity of f, given $\varepsilon > 0$, there exists a $\delta(\varepsilon) \in (0, \varepsilon)$ such that $d_k(x, y) < \varepsilon$ when $d(x, y) < \delta(\varepsilon)$. Hence it follows from

$$d_{nk,f}(x,y) = \max\{d_k(f^{ik}(x), f^{ik}(y)) : 0 \le i \le n-1\}$$

that

$$d_{n,f^k}(x,y) \ge \delta(\varepsilon)$$
 when $d_{nk,f}(x,y) \ge \varepsilon$,

which yelds the inequality

$$N_f(nk,\varepsilon) \le N_{f^k}(n,\delta(\varepsilon))$$

- d). Use inequality (3.23) and Theorem 3.4 [BV] to conclude that $h(f^k) \ge kh(f)$.
- (4) (Exercise 8.3.7, ["small" KH]). Consider the closed unit disk in ℝ² and the map f_λ on it defined in polar coordinates by f_λ(re^{iθ}) = λre^{2iθ}, where 0 ≤ λ ≤ 1.
 - a). Show that $h_{top}(f_1) \ge \log 2$;
 - b). Show that $h_{top}(f_{\lambda}) = 0$ for $\lambda < 1$.