DD2431 MACHINE LEARNING LAB 3: BAYES CLASSIFIER &
BOOSTING

September 20, 2016

0. PREFACE

0.1. Introduction. Since this assignment was first introduced, there has been increas-
ing desire to include more real world examples where the surveyed techniques might
be useful. To this end, we are including two more datasets in the same format as the
original data. Preferably, you should analyze these datasets when done with the lab.

You should try out the both the basic Bayes classifier introduced in the lab and the
boosted version on both of the datasets below.

Take the shape of the plotted decision boundaries into consideration when answering the
questions posed in the lab.

NOTE: In the original lab there are only 2 classes. In the Iris and Vowels datasets there
are 3 and 11 classes respectively. You will thus need to keep the code general enough
so that it can accept different numbers of classes. One possible way of doing this is by
adding an extra argument nbr_classes to the relevant functions, with the number of
classes for that dataset.

0.2. Additional Datasets.

F1cURE 1. Example of Iris flower, by David Iliff. License: CC-BY-SA 3.0.

0.2.1. Iris. This dataset contains 150 instances of 3 different types of iris plants. The
feature consists of 2 attributes describing the characteristics of the Iris. Our task is to
classify instances as belonging to one of the types of Irises.

Load the Iris dataset by typing

DD2431 MACHINE LEARNING LAB 3: BAYES CLASSIFIER & BOOSTING 2

load irismat2.mat

This should give you the variables X, which are the datapoints, and y which are the
labels. Getting the individual class datapoints is trivial.

30

20t]

R & o8)
w| o
o s s .o@
gv o o_
[1] 8 fole] Co o 9
o o
a % oo
Y o

[+]

[+

-2
[+ +)

°o X

s

20 |- a
o [+

[+]

- [¢]

=50 b

60 L [+] L
-1000 =500] 500

FIGURE 2. Visualization of the different classes of wines.

0.2.2. Wine. The wine dataset contains the results of chemical analysis of wines grown
in the same region in Italy but from 3 different cultivators. The dataset contains 178
instances, where the feature vector consists of 13 different attributes derived from the
analysis which we have projected down to 2 dimensions. Our task is to classify instances
as to belonging to one of the cultivators.

Load the Wine dataset by typing
load winemat2.mat

This should give you the variables X, which are the datapoints, and y which are the
labels. Getting the individual class datapoints is trivial.

To plot the decision boundary datasets use the following code.

% Plot decision boundary
classes = unique(y);
% Create grid

xmin = min(X(:,1));
xmax = max(X(:,1));
ymin = min(X(:,2));
ymax = max(X(:,2));

ax = [xmin xmax ymin ymax];

DD2431 MACHINE LEARNING LAB 3: BAYES CLASSIFIER & BOOSTING

incx = abs(ax(2)-ax(1))/100;
incy = abs(ax(4)-ax(3))/100;
xgr = ax(1):incx:ax(2);
ygr = ax(3):incy:ax(4);
[z1,z2] = meshgrid(xgr, ygr);

% Create decision boundary mask

image_size = size(zl);

z1 = reshape(zl, size(zl,1)*size(z1,2), 1);

z2 = reshape(z2, size(z2,1)*size(z2,2), 1);

% Your discriminant function with your mu’s and Sigmas
% where g returns the PREDICTED CLASS

g = discriminant(data, mu, sigma, p);

% OR your Adaboost discriminant

% where g returns the PREDICTED CLASS

g = adaboost_discriminant(data, mu, sigma, p, alpha, classes, T)
decisionmap = reshape(g, image_size);

% Plot decision boundary

figure;

imagesc (xgr,ygr,decisionmap) ;

hold on;

set(gca,’ydir’, ’normal’) ;

colormap (getListOfDistinctColors(length(classes)));

% Plot data points
for class = classes

idx = y == class;

plot(X(idx,1), X(idx,2),’x’,’Color’,colorList(3+class,:)); hold on,
end

DD2431 Machine Learning
Lab 3: Bayes Classifier & Boosting

Staffan Ekvall
based on a lab by Frank Hoffmann

September 26, 2010

1 Introduction

In this lab you will implement a Bayes Classifier and the Adaboost algo-
rithm that improves the performance of a weak classifier by aggregating
multiple hypotheses generated across different distributions of the training
data. Some predefined functions for visualization and basic operations are
provided, but you will have to program the key algorithms yourself. Pre-
defined functions and data files for this lab are available in the directory
/info/m110/labs/bayesboost/.

In this exercise we will work with two images. Start by looking at the
images.

>>hand = imread(’hand.ppm’, ’ppm’);
>>book = imread(’book.ppm’, ’ppm’);
>>imagesc(hand) ;

>>figure;

>>imagesc (book) ;

One image shows a hand holding a book and the other shows the hand
alone. This example is taken from a computer vision application, in which
the user demonstrates a book to the computer that has to learn to recognize
the book in new images. The best object recognition performance is achieved
when the training image shows the book alone. We would like to remove
the hand holding the book from the image.

The idea is to look at the color of each pixel and then estimate whether
it is more likely to belong to the hand-image than the book-image. If so, we
will set the pixel to black and thereby remove all hand-pixels.

Each pixel is described by two discrete features (z1,x2), corresponding
to normalized red and green color intensities. Each pixel belongs to one of
two classes {0, 1}, corresponding to the classes hand and book.

This exercise consists of two parts. In the first part, you will classify the
data using a simple Bayes classifier. In the second part, you will implement
a boosting algorithm. Begin by viewing the data using the following matlab
code:

>>datal = normalize_and_label(hand, 0);
>>data2 = normalize_and_label(book, 1);
>>test_data = [datal; data2];

>>figure;

>>hold on;

>>plot(data2(:,1), data2(:,2), ’.7);
>>plot(datal(:,1), datal(:,2), ’.r’);
>>legend (’Hand holding book’, ’Hand’);
>>xlabel(’green’);

>>ylabel(’red’);

The function normalize_and_label computes the normalized red and green
intensities.

- g (1)
T = —
norm 7“+g+b 9norm T—i—g—l—b

It also labels each pixel telling which image it belongs to. All black pixels
are discarded. Note that the hand pixels in the book-image are incorrectly
labeled as the class book. We will rely on our classifier to distinguish these
pixels from the correctly labeled pixels.

2 Bayes classifier

In Bayesian learning we are interested in determining the most probable
hypothesis h given the observed training data D. Let us introduce a little
notation. With P(h) (later in the text p(c;)) we denote the prior probability
of a hypothesis/class, before we observe any data. with P(D) (later p(Z)) we
denote the prior probabilty that training data D will be observed. Next we
write P(D|h) (later p(Z|c;)) to denote the probability of observing data D
given that the hypothesis h holds. In Bayesian learning P(D|h) is also called
the likelihood of the data, as it states how likely it is to observe data D given
h. In Bayesian learning we are primarily interested in computing P(h|D),

namely the probability that hypothesis h holds given the observed data D.
P(h|D) (later p(c;|¥)) is called the posterior probability of h, as it reflects our
confidence that A holds after we have seen D. The mazximum a posteriori
(MAP) hypothesis is the most probable among all possible hypotheses.

harap = argmazxpeg P(h|D) (2)

The mazimum likelihood hypothesis (ML) is one that maximizes the likeli-
hood P(D|h) of the data.

har = argmazpe p P(D]h) 3)

Bayes theorem provides a way to calculate the posterior probability
P(h|D), from the prior probability P(h) together with P(D|h) and P(D).

P(D[h)P(h)

P(RID) = =35 @

If there is only one thing that you have to understand and remember about
Bayesian learning, it is that equation.

The structure of a Bayes classifier is determined by the likelihoods p(Z|c;)
as well as the prior class probabilities p(¢;), where Z is the feature vector and
¢; a given class. The most prominent density function is the multivariate
normal or Gaussian density.

We will approximate the data with gaussian functions, and we will as-
sume that the features z1,...,zny are uncorrelated. You will derive the
maximum likelihood estimates for class-conditional Gaussians. We start
with a model for a discrete class ¢; and a real-valued vector of N features
Z = {x1,...,xn}. In the following we use the lower index n to denote the
n-th feature x,,, and the upper index m to denote the m-th training instance
Z™ in the dataset. The prior «; is simply the frequency of class ¢; in the

dataset.
plei) = a; (5)

The likelihood density functions for a model (hypothesis) with diagonal co-
variance matrix are given by

2
; 1T e
p(]e;) = Ty (———=) - e b (6)

Here, o;, denotes o for class i, and feature n. We apply Bayes rule to
compute the posterior probabilties from the likelihoods and the prior prob-
abilties:

~—

Tn —Hin 2
p(cs N 1 -3, Gkl
() = Hn:l() e e ' —
x 2702 p(7)

m

(7)

p(cilZ) = p(Z]ci)

3

This is the posterior for a single feature vector Z. Let us now assume that
we have several independent feature vectors D = {z%,...,#M:} belonging
to class ¢;. M; is the number of instances that belong to class c¢;.

The posterior probability of ¢; given the entire data D is proportional to
the product of the individual posteriors

P(e|D) ~ 0% pleile™) (8)

The maximum a posteriori hypothesis (MAP) u_%, U_i" that best explains the
data is computed by maximizing equation 8 with respect to j;, 7;.

{ﬁwa } = argmaxpg. P (CI‘D) (9)

We now apply a common transformation, namely rather than maximizing
the above expression we maximize the less complicated logarithm of equation
8.

Mz’ N 2 M; N Mm)
log p(¢;|D) = 5 Z log 270}, — Z Z ~—————+log a;—log p(Z™
n=1 {mlem=c;} n=1 T
(10)
To find the maximum we equate the partial derivatives of log p(¢;|Z) with
respect to pi, and o; with zero. Since the prior of the data log pz™ does not
depend on our model the last term in equation 10 disappears.

1 i | D o n = Min
aluin — Oin
{mlem=ci}
dlog p(c;|D) M; Lo (@ — pin)?
e\l o 7t ~n_ 7 =0 12
0oin o; - {mczzc_} o3 (12)

From these equations we obtain the maximum posterior model (hypothesis)

3 fimlen—ci} T
pa = TR = Bl (13)
) S e —eny (T = 117,)? i
ot = Slmmsed = Bl(@ — it (14)

)

Assignment 1: Write a function bayes(data) that computes the maxi-
mum posterior (MAP) parameters), and o}, for a given dataset D. As-
sume the usual data format for the parameter data, namely that the first N
columns contain the features x1,...xn, and the last N +1-th column contains
the classification c. The signature of the function bayes(data) in Matlab
looks like

function [mu, sigma] = bayes(data)

with return values mu and sigma (CzN-vectors). C denotes the number of
classes and N is the number of features.
Apply your function to the data, set bayes (test_data), where test_data
is the combined data set [datal; data2]. Compute
i =
i = ...
o5y =---
Ohg = ---
=
Wip = ...
oL =...
Oy = ...
Verify that your estimations match the data by plotting a 95%-confidence
interval:

>> [mu sigmal] = bayes(test_data);
>> theta = [0:0.01:2*pi];

>> x1 = 2*sigma(l,1)*cos(theta) + mu(1,1);
>> y1 = 2*sigma(1,2)*sin(theta) + mu(1,2);
>> x2 = 2*sigma(2,1)*cos(theta) + mu(2,1);
>> y2 = 2*sigma(2,2)*sin(theta) + mu(2,2);

>> plot(xl, yi, ’r’);
>> plot(x2, y2);

The next step is to compute the discriminant functions for predicting
the class of a unseen instance £. The most likely classification is the one
that maximizes the posterior p(¢;|Z) from equation 7.

" = argmaz,, p(c|) (15)

As before we will find it easier to work with the logarithm of this expression

. Nlog (2m) N (2 — pin)? .
log(p(c;|Z)) = log ay — Z log ojp, — Z gz T log p(Z)
n=1 m
(16)
We can drop the terms —Nl%(%) and log p(¥) since they do not depend on

«;, 115, 03 and are therefore identical for all classes. We obtain the discrimi-
nant functions

Y (xn - Nin)Q
9i(Z) = log v — Z log oipn — Z g7 (17)

n=1 Tin

Write a function discriminant(data, mu, sigma, p) that computes
the discriminant functions g;. The parameter data is the MxN-matrix of
M feature vectors ™, mu and sigma are the Cx/N-matrices of means and
standard deviations, respectively, and p is an C'z1-vector of prior class prob-
abilities a;. Again, C denotes the number of different classes. Each class ¢; is
associated with one Gaussian described by the pair 1;, 0; and its prior class
probability p(¢;). The signature of discriminant(data, mu, sigma, p)
in Matlab looks like

function g = discriminant(data, mu, sigma, p)

where the return value g is a MxC-matrix.

Assignment 2: Train the Bayes classifier with the dataset test_data,
and compute the classification error. The prior class probabilities are com-
puted by using the Matlab function prior(data). We use the Matlab
function max to compute the maximum discriminant value and the index
class of the optimal class, which we compare with the known classification
test_data(:,3).

>>[M N] = size(test_data);

>>p = prior(test_data);

>>g = discriminant(test_data(:,1:2), mu, sigma, p);
>>[dummy class] = max(g, [1, 2);

>>class = class - 1;

>>error_test = 1.0-sum(class == test_data(:,end))/M

error_test = ...

Note that since the image hand holding book also shows the hand, we
can never achieve error_test = 0. This is not a problem. In fact, it is the
misclassified pixels that we later will set to black, in order to remove the
hand from the image hand holding book.

Overlay the decision boundary X = {Z : go(Z) = g1(¥)} that separates
both classes using the following Matlab code. If you have closed the figure
window, plot the data again with the code from page 2.

>>ax = [0.2 0.5 0.2 0.45];

>>axis(ax) ;

>>x = ax(1):0.01:ax(2);

>>y = ax(3):0.01:ax(4);

>>[z1 z2] = meshgrid(x, y);

>>z1 = reshape(zl, size(zl,1)*size(z1,2), 1);
>>z2 = reshape(z2, size(z2,1)*size(z2,2), 1);
>>g = discriminant([zl z2], mu, sigma, p);
>>gg = g(:,1) - g(:,2);

>>gg = reshape(gg, length(y), length(x));
>>[c,h] = contour(x, y, gg, [0.0 0.0]);
>>set(h, ’LineWidth’, 3);

Finally, we will see how well our classifier serves its purpose. Begin by
normalizing the image hand holding book. This time we keep the black pixels,
so that we later may display the image.

>>book_rg = zeros(size(book,1), size(book,2), 2);
>>for y=1:size(book,1)
>> for x=1:size(book,2)

>> s = sum(book(y,x,:));

>> if (s > 0)

>> book_rg(y,x,:) = [double(book(y,x,1))/s double(book(y,x,2))/s];
>> end

>> end

>>end

Then we classify all pixels in the image, and create a mask of all pixels
that are classified to belong to the other image (hand.ppm).

>>tmp = reshape(book_rg, size(book_rg,1)*size(book_rg,2), 2);
>>g = discriminant (tmp, mu, sigma, p);
>>gg = g(:,1) - g(:,2);

>>gg = reshape(gg, size(book_rg,1), size(book_rg,2));
>>mask = gg < O;

>>mask3D(:,:,1) mask;

>>mask3D(:,:,2) = mask;

>>mask3D(:,:,3) = mask;

Finally, we apply the mask to the original image, so that we can show
the result in color.

>>result_im = uint8(double(book) .* mask3D);
>>figure;
>>imagesc(result_im);

3 Boosting

Boosting aggregates multiple hypotheses generated by the same learning
algorithm invoked over different distributions of training data into a single
composite classifier. Boosting generates a classifier with a smaller error on
the training data as it combines multiple hypotheses which individually have
a larger error. Boosting requires unstable classifiers which learning algorithm
is sensitive to changes in the training examples.

The idea of boosting is to repeatedly apply a weak learning algorithm
on various distributions of the training data and to aggregate the individual
classifiers into a single overall classifier. After each iteration the distribution
of training instances is changed based on the error the current classifier
exhibits on the training set. The weight w" of an instance (2™, ¢") specifies
its relative importance, which can be interpreted as if the training set would
contain w™ identical copies of the training example (2", ¢™). The weights
w™ of correctly classified instances (2™, ™) are reduced, whereas those of
incorrectly classified instances are increased. Thereby the next invocation
of the learning algorithm will focus on the incorrect examples.

In order to be able to boost the Bayes classifier, the algorithm for com-
puting the MAP parameters and the discriminant function has to be mod-
ified such that it can deal with fractional (weighted) instances. Assume,
that w™ is the weight assigned to the m-th training instance. Without go-
ing into a straight forward detailed derivation the equations 14 for the MAP
parameter with weighted instances become:

M;
* Z{mlcm:Cz} wmﬂ?;{n
Hin = M, = Ey[zn]
[3 m
2 fmlem=ci} @

* Z]\f)}), Cm=C; wm(xnm - M;k’l’l)Q = ok
ot = Slmlenmd " = Bl - i)Y (18)
2 fmem=ci} @

Assignment 3: Extend the old bayes function to bayes_weight (data, w)
that handles weighted instances. Again data is M X N-matrix of feature
vectors and w is a Mxl-vector of weights. The signature in Matlab looks
like

function [mu, sigmal] = bayes_weight(data, w)

where the return parameters mu and sigma are identical to the old function
bayes. The function computes the maximum posterior parameters .}, and
oy, for a dataset D according to the equations in 18. Assume the usual data
format for the parameter data, namely that the first N columns contain the
features x1,...xn, and the last (N+1)-th column contains the classification
c. Test your function bayes_weight(data, w), for a uniform weight vector
with w = 1/M. The MAP parameters should be identical to those obtained
with the previous version of bayes.

The Adaboost algorithm repeatedly invokes a weak learning algorithm,
in our case bayes_weight and after each round updates the weights of train-
ing instances (2™, ™). Adaboost proceeds in the following manner.

e Initialize all weights uniformly wi* =1/M.
e train weak learner using distribution wy

e get weak hypothesis h; and compute its error ¢; with respect to the
weighted distribution wy. In case of the Bayes classifier a single hy-
pothesis h; is represented by ;.. 0.

M
e =1— Z w0 (he (™), ™) (19)
m=1

where hy(z™) is the classification of instance "™ made by the hypothe-
sis hy. The function §(h(2™), ™) is 1 if hy(2™) = ¢™ and 0 otherwise.
e choose ay = 1/21In(1=%)

€t

e update weights according to

(20)

m Wi e” ifhy(x™) =c™
Wit1 =

7, F) eot ifhy(x™) £ e

where Z; is a normalization factor, chosen such that w;1; becomes a distri-
bution },, wit; = 1.

The overall classification of the boosted classifier of an unseen instance x
is obtained by aggregating the votes casted by each individual Bayes classi-
fier hy = p;,,, 03;. As we have higher confidence in classifiers that have a low
error (large ay), their votes count relatively more. The final classification
H(x) is the class ¢, that receives the majority of votes

T

H(x) = oz = argmaz,, Z at 6(he(z), c;) (21)
t=1

Assignment 4: Implement the Adaboost algorithm and apply it to the
Bayes classifier. Design a Matlab function adaboost(data, T) that gen-
erates a set of boosted hypothesis, where the parameter T determines the
number of hypotheses. The signature in Matlab looks like

function [mu, sigma, p, alpha, classes] = adaboost(data, T)

where mu, sigma and p contain the T sets of MAP parameters and priors.
The return parameter «; holds the classifier vote weights «; and classes
the set of unique classes. In particular mu and sigma are TaxCxN-arrays,
prior is a TxC-array, alpha is a Tx1-vector and classes is a Cx1-vector.
Note that also the priors have to be weighted with w. Use prior(data, w),
this time with the optional argument, the weights w.

Design a function
adaboost_discriminant(data, mu, sigma, p, alpha, classes, T) that
classifies the instances in data by means of the aggregated boosted classifier
according to equation 21. The signature in Matlab looks like

function ¢ = adaboost_discriminant(data, mu, sigma, p, alpha, classes, T)

where c is a Mxl-vector that contains the class predicted for the MxN-
feature vector data. The other parameters have the same dimensions as in
adaboost.

Notice, that you have to compute and store all the hypothesis generated
with bayes_weight(data, w) for each of the different distributions w41
and later aggregate their classifications to obtain the overall classification.
Compute the classification accuracy of the boosted classifier and compare it
with those of the basic classifier (see assignment 2).

10

>>T = 6;

>>[mu sigma p alpha classes] = adaboost(test_data, T);

>>class = adaboost_discriminant(test_data(:,1:N-1), mu,
sigma, p, alpha, classes, T);

>>boost_error_test = 1.0-sum(class == test_data(:,end))/M

boost_error_test = ...

Plot the decision boundary of the boosted classifier using the Matlab
code.

>>figure;

>>hold on;

>>plot(data2(:,1), data2(:,2), ’.7);
>>plot(datal(:,1), datal(:,2), ’.r’);
>>legend (’Hand holding book’, ’Hand’);

>>ax = [0.2 0.5 0.2 0.45];

>>axis(ax);

>>x = ax(1):0.01:ax(2);

>>y = ax(3):0.01:ax(4);

>>[z1 z2] = meshgrid(x, y);

>>z1 = reshape(zl, size(zl,1)*size(z1,2), 1);
>>z2 = reshape(z2, size(z2,1)*size(z2,2), 1);
>>g = adaboost_discriminant([zl z2], mu, sigma, p, alpha, classes, T);
>>gg = reshape(g, length(y), length(x));
>>[c,h] = contour(x, y, gg, [0.5 0.5]);
>>set(h, ’LineWidth’, 3);

Compare the decision boundary of the boosted classifier with that of the
basic Bayesian classifier. Explain why the decision boundrary of the origi-
nal classifier is much smoother than the decision boundrary of the boosted
classifier.

View the performance of the boosted classifier on our hand removal prob-
lem. If book_rg somehow has vanished from the computer’s memory, recom-
pute it with the code described in the first part of the lab.

>>tmp = reshape(book_rg, size(book_rg,1)*size(book_rg,2), 2);

>>g = adaboost_discriminant(tmp, mu, sigma, p, alpha, classes, T);
>>gg = reshape(g, size(book_rg,1), size(book_rg,2));

>>mask = gg > 0.5;

11

>>mask3D(:,:,1) = mask;
>>mask3D(:,:,2) = mask;
>>mask3D(:,:,3) = mask;

>>result_im = uint8(double(book) .* mask3D);
>>figure;
>>imagesc(result_im) ;

12

