

KTH Informations- och kommunikationsteknik

IE1204 Digital Design

F12: Asynchronous Sequential Circuits (Part 1)

Masoumeh (Azin) Ebrahimi (masebr@kth.se)

Elena Dubrova (dubrova@kth.se) KTH / ICT / ES

This lecture

• BV pp. 584-640

Asynchronous Sequential Machines

- An asynchronous sequential machine is a sequential machine without flip-flops
- Asynchronous sequential machines are constructed by analyzing combinational logic circuits with feedback
- <u>Assumption</u>: Only one signal in a circuit can change its value at any time

Golden rule

Asynchronous state machines

- Asynchronous state machines are used when it is necessary to keep the information about a state, but no clock is available
 - All flip-flops and latches are asynchronous state machines
 - Useful to synchronize events in situations where metastability is/can be a problem

Asynchronous sequential circuit: SR-latch with NOR gates

 To analyze the behavior of an asynchronous circuit, we use ideal gates and summarize their delays to a single block with delay Δ

Analysis of a sequential asynchronous circuit

- By using a delay block, we can treat
 - y as the current state
 - Y as the next state

State table

 Thus, we can produce a state table where the next state Y depends on the inputs and the current state y

State table

From statefunction to truth table

y	S	R	$Y = \overline{R + (\overline{S + y})}$
0	0	0	$0 = \overline{0 + (\overline{0 + 0})}$
0	0	1	$0 = \overline{1 + (\overline{0 + 0})}$
0	1	0	$1 = \overline{1 + (\overline{1 + 0})}$
0	1	1	$0 = \overline{1 + (\overline{1 + 0})}$
1	0	0	$1 = \overline{0 + (\overline{0+1})}$
1	0	1	$0 = \overline{1 + (\overline{0+1})}$
1	1	0	$1 = \overline{0 + (\overline{1+1})}$
1	1	1	$0 = \overline{1 + (\overline{1 + 1})}$

Note: BV uses this binary code

Present	Ne	extsta	te	
state	SR = 00	01	10	11
У	Y	Y	Y	Y
0	0	0	1	0
1	1	0	1	0
	Y = R + (R +	S + 1	$\overline{\overline{y}}$	

Stable states

 Since we do not have flip-flops, but only combinational circuits, a state change can cause additional state changes

0 🔘 (

Y = y

stable

- A state is
 - stable if $Y(t) = y(t + \Delta)$
 - unstable if $Y(t) \neq y(t + \Delta)$

Excitation table

 Stable states (next state = present state) are circled

Terminology

- When dealing with asynchronous sequential circuits, a different terminology is used
 - The state table called *flow table*
 - The state-assigned state table is called excitation table

Flow table (Moore)

Present	Ne	extsta	ite		Output
state	SR = 00	01	10	11	Q
А	A	(A)	В	(A)	0
В	В	А	B	А	1

Flow Table (Mealy)

Present	Ne	ext sta	ite			Outp	out,Q	
state	SR = 00	01	10	11	00	01	10	11
A	A	(A)	В	A	0	0	-	0
В	В	А	B	А	1	-	1	-

Do not care ('-') has been chosen for output decoder since output changes directly after the state transition (basic implementation)

Asynchronous Moore compatible

- Asynchronous sequential circuits have similar structure as synchronous sequential circuits
- Instead of flip-flops one have a "delay block"

Asynchronous Mealy compatible

- Asynchronous sequential circuits have similar structure as synchronous sequential circuits
- Instead of flip-flops one have a "delay block"

Analysis of Asynchronous Circuits

- The analysis is done using the following steps:
 - 1) Replace the feedbacks in the circuit with a delay element Δ . The input of the delay element represents the next state Y while the output y represents the current state.
 - 2) Find out the next-state and output expressions
 - 3) Set up the corresponding excitation table
 - 4) Create a **flow table** and replace the encoded states with symbolic states
 - 5) Draw a state diagram if necessary

D-latch state function

$$Y = D \cdot C + y \cdot \overline{C}$$

Example Master-slave D flip-flop

 Master-slave D flip-flop is designed using two D-latches

Excitation table

• From these equations, we can directly deduce excitation table

$$Y_{m} = CD + \overline{C}y_{m}$$
$$Y_{s} = \overline{C}D + Cy_{s}$$
$$Q = y_{s}$$

Excitation table

Present	Ne	xtsta	te		
state	CD = 00	01	10	11	Output
Y m Y s		Ym Ys	8		Q
00	00	00	00	10	0
01	00	00	(01)	11	1
10	11	11	00	(10)	0
11	(11)	(11)	01		1

Flow table

• We define four states S1, S2, S3, S4 and get the following flow table

Flow table

- Remember: Only one input can be changed simultaneously
- Thus, some transitions never occur!

Flow table (Impossible transitions)

- State S3
 - The only stable state is S3 with input combination 11
 - Only one input can be changed => possible transitions are (11 => 01, 11 => 10)
 - These transitions originate in S3!
 - The input combination 00 in S3 is not possible!
 - The input combination 00 is set to don't care!

Flow table (Impossible transitions)

- State S2
 - The only stable state is S2 with input combination 10
 - Only one entry can be changed => possible transitions are (10 => 11, 10 => 00)
 - These transitions originate in S2!
 - The input combination 01 in S2 is not possible!
 - The input combination 01 is set to don't care!

State Diagram Master-slave D flip-flop

Synthesis of asynchronous circuits

- The synthesis is carried out using the following steps:
 - 1) Create a **state diagram** according to the functional description
 - 2) Create a **flow table** and **reduce the number of states** if possible
 - 3) Assign codes to the states and create **excitations table**
 - 4) **Determine expressions** (transfer functions) for the next state and outputs
 - 5) **Construct a circuit** that implements the above expressions

Example: Serial Parity Generator Step 1: Create a state diagram

- Input x
- Output z
- z = 1 if the number of pulses applied to x is odd
- z = 0 if the number of pulses applied to x is even

Step 2: Flow table

Step 3: Assign state codes

Step 3: Assign state codes Which encoding is good?

Assume \rightarrow A:00, B:01, C:10, D:11

Pres state	Next S	Q	
	X=0	—1	
y 2 y 1	Y ₂ Y	1	
00	00	01	0
01	10	(01)	1
10	10	11	1
11	00	-(11)	0

Bad encoding (HD=2!)

Suppose X = 1 $Y_2Y_1 = 11$ Then $X \rightarrow 0 \rightarrow Y_2Y_1 = 00?$ $11 \rightarrow 10!$ $11 \rightarrow 01 \rightarrow 10!$ $? \rightarrow 00$

We will never reach 00?

Step 3: Assign state codes Which encoding is good?

A:00, B:01, C:10, D:11

Pres state	Next \$	State	Z
	x=0	x=1	
y ₂ y ₁	Y ₂ Y	Y ₁	
00	(00)	01	0
01	10	01	1
10	(10)	11	1
11	00	(11)	0

Poor encoding (HD = 2) If we are in 11 under input w = 1 and input change to w = 0, the circuit should change to 00

A:00, B:01, C:11, D:10

Pres state	Next S	State	Z
	x=0	x=1	
y ₂ y ₁	Y ₂ `	Y ₁	
00	(00)	01	0
01	11	01	1
11	(11)	10	1
10	00	10	0

Good encoding (HD = 1)

Step 4: Draw Karnaugh maps

			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Pres state	Next State	Z	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	x=0 x=1		
y 2 y 1	Y_2Y_1		$Y_2 = \overline{x}y_1 + \overline{y}_2y_1 + \overline{x}y_2 \qquad Y_1 = \overline{x}\overline{y}_2 + \overline{y}_2y_1 + \overline{x}y_2$
00	00 01	0	
01	11 (01)	1	$v_{0} v_{1}^{y_{1}} 0 1$
11	(11) 10	1	
10	00 (10)	0	
			$z = y_1$

They red circles are needed to avoid hazards (see later Section)!

What is a Hazard?

- Hazard is a term that means that there is a danger that the output value is not stable, but it can have glitches at certain input combinations
- Hazard occurs when paths from different inputs to the output have different lengths
- To avoid this, we must add implicants to cover the "dangerous" transitions

Examples of hazard: MUX

During the transition from the $(xy_2y_1) = (111)$ to (011), the output Q has a glitch, as the path from x to Q is longer through the upper AND gate than through the lower AND gate (racing).

MORE ABOUT hazard in the next lecture!

IE1204 Digital Design, Autumn2016

Step 5: Complete circuit

More on state encoding

- In asynchronous sequential circuits, it is impossible to guarantee that the two state variables change value simultaneously
 - Thus, a transition 00 => 11 results in
 - a transition 00 => 01 => ???
 - a transition 00 => 10 => ???
- To ensure correct operation, all state transitions <u>MUST</u> have Hamming distance 1
 - The Hamming distance is the number of bits in which two binary numbers differ
 - Hamming distance between 00 and 11 is 2
 - Hamming distance between 00 and 01 is 1

State encoding

- Procedure to obtain good codes:
 - 1) Draw the transition diagram along the edges of the hypercube defined by the codes
 - 2) Remove any crossing lines by
 - a) swapping two adjacent nodes
 - b) exploiting available unused states
 - c) introducing more dimensions in the hypercube

State encoding Example: Serial Parity Generator

A:00, B:01, C:10, D:11

C = 10 D = 11 x = 1

A = 00 B = 01

Poor coding -Hamming Distance = 2 (Intersecting lines)

State encoding Example: Serial Parity Generator

State encoding Exploiting unused states

10

11

In the transition from B to C (or C to B) has the Hamming distance 2! Danger to get stuck in an unspecified state (with code 11)!

State encoding Exploiting aunused states

 Solution: Introduce a transition state that ensures that you do not end up in an unspecified state!

State encoding: Additional states (more dimensions)

• One can increase the number of dimensions in order to implement stable state transitions

If it is not possible to redraw a diagram for HD = 1, we can add more states by adding extra dimensions. We take the nearest largest hypercube and draw the transitions through the available non steady states.

State encoding: Additional states (more dimensions)

• It's easier to draw a "flat" 3D cube (perspective, is then from the front)

State minimization

- Procedure for minimizing the number of states
 - 1. Form equivalence classes
 - 2. Minimize equivalence classes (state reduction)
 - 3. Form state diagrams either for Mealy or Moore
 - 4. Merge compatible states in classes. Minimize the number of classes simultaneously. Each state can only belong to one classes
 - 5. Construct the reduced flow table by merging rows in the selected classes
 - 6. Repeat steps 3-5 to see if more minimizations can be done

Example

Candy Machine (BV page 610)

- Candy machine has two inputs:
 - N: nickel (5 cents)
 - D: dime (10 cents)
- A candy bar costs 10 cents

- The machine will not return any change if there is 15 cents in the candy machine (a candy bar returned)
- The output z is active if there is enough money for a piece of candy

State Diagram and Flow Chart

• You can't insert two coins at the same time!

A flow table that contains only one stable state per row is called *primitive* flow table.

State Diagram and Flow Chart

State Minimization means that two states may be equivalent, and if so, replaced by one state to simplify the state diagram, and network.

One can easily see that state C and F could be replaced by one state, as a candy always be ejected after a Dime regardless of previous state.

Step 1: Form and minimize equivalence classes

- 1. Forming equivalence classes. To be in the same class, the following should hold for states:
 - Outputs must have the same value
 - Stable states must be at the same positions
 - Don't cares for next state must be in the same positions
- 2. Minimize equivalence classes (state-reduction)

State reduction

- Outputs must have the same value
 P₁ = (ABD)(CEF)
- Stable states must be at the same positions

 $\mathsf{P}_2 = (\mathsf{AD})(\mathsf{B})(\mathsf{CF})(\mathsf{E})$

 Don't cares for next state must be in the same positions
 P₂ = (AD)(B)(CF)(E)

Primitive flow table

State reduction

• Successors must be in the same class

$$\begin{array}{l} \begin{array}{c} C, F_{00} \rightarrow (\textbf{AD}), (\textbf{AD}) \\ C, F_{01} \rightarrow -, - \\ C, F_{10} \rightarrow (\textbf{CF}), (\textbf{CF}) \\ C, F_{11} \rightarrow -, - \end{array} \qquad \begin{array}{l} \begin{array}{c} A, D_{00} \rightarrow (\textbf{AD}), (\textbf{AD}) \\ A, D_{01} \rightarrow (\textbf{B}), (\textbf{E}) \\ A, D_{10} \rightarrow (\textbf{CF}), (\textbf{CF}) \\ A, D_{11} \rightarrow -, - \end{array}$$

$$P_2 = (AD)(B)(CF)(E)$$

 $P_3 = (A)(D)(B)(CF)(E)$
 $P_3 = P_4$

Primitive flow table

Resulting flow table

Step 2: Merging states

- 3. Construct state diagram either for Mealy or Moore
- 4. Merge **compatible states** in groups. Minimize the number of groups simultaneously. Each state may belong to one group only.
- Construct the reduced flow table by merging rows in the selected groups
- 6. Repeat steps 3-5 to see if more minimizations can be done

Merging states

- Two states are compatible and can be merged if the following applies
 - 1. at least one of the following conditions apply to all input combinations
 - both S_i and S_i have the same successor, or
 - both S_i and S_i are stable, or
 - the successor of S_i or S_j, or both, is unspecified
 - 2. For a Moore machine, in addition the following should hold
 - both S_i and S_j have the same output values whenever specified (not necessary for a Mealy machine)

Merging states

Resulting flow table

Pres	Next State		Q
state	X=00 01 10	11	
A	(A) B C	-	0
В	D (B) -	-	0
С	A - C	-	1
D	D E C	-	0
E	A (E) -	-	1

Each row will be a point in a compatibility graph

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

IE1204 Digital Design, Autumn2016

An illustrative example

	Pres	Next State	Q
	state	X=00 01 10 11	
r	→ A	AFC -	0
Н	→ В	А 🛞 - Н	1
Ш	С	G - (Ĉ) D	0
Ш	D	- F - D	1
Ш	E	G - 🖹 D	1
	F	- (F) - К	0
լլ	→ G	<u> </u>	0
	⊢→ H	- L E (H)	1
	J	G - () -	0
	Ьĸ	- в е (К)	1
	→ L	А 🗋 - К	1

Equivalence classes

 $P_1 = (AG) (BL) (C) (D) (E) (F) (HK) (J) \\ P_2 = (A) (G) (BL) (C) (D) (E) (F) (HK) (J) \\ P_3 = P_2$

Reduced flow table

Pres	Next State	Q
state	X=00 01 10 11	
A	AFC-	0
В	АВ- Н	1
С	G - 🔘 D	0
D	- F - D	1
E	G - 🖹 D	1
F	- 🕞 - н	0
G	<u> </u>	0
н	- ве 🕀	1
J	G - () -	0

An illustrative example (cont'd)

Reduced flow table

Pres	Next State	Q
state	X=00 01 10 11	
A	AFC -	0
В	A (B) - H	1
С	G - C D	0
D	- F - D	1
Е	G - 🕑 D	1
F	- (F) - H	0
G	GBJ-	0
Н	- B E (H)	1
J	G - (J -	0

Pres	Next State	Q
state	X=00 01 10 11	
А	A A C B	0
В	A B D B	1
С	G - 🔘 D	0
D	G A (D) (D)	1
G	<u></u> В	0

An illustrative example (cont'd)

Reduced flow table

Pres	Next State	Q
state	X=00 01 10 11	
A	A A C B	0
В	A B D B	1
С	G - 🔘 D	0
D	G A D D	1
G	<u></u> G В G -	0

Final flow table

Pres	Next State	Q
state	X=00 01 10 11	
А	Α A C B	0
В	A B D B	1
С	©в© D	0
D	С А (D) (D)	1

Summary

- Asynchronous state machines
 - Based on analysis of combinational circuits with feedback
 - All flip-flops and latches are asynchronous state machines
- A similar theory as for synchronous state machines can be applied
 - Only one input or state variable can be changed at a time!
 - We must also take into account the problem with hazards
- Next lecture: BV pp. 640-648, 723-724