
Constraint Programming

Mikael Z. Lagerkvist

Tomologic

October 2016

Mikael Z. Lagerkvist (Tomologic) Constraint Programming

[flickr.com/photos/santos/]

1 Introduction

2 Solving Sudoku with CP

3 Constraint programming basics

4 Examples

5 Constraint programming in perspective

6 Summary
Mikael Z. Lagerkvist (Tomologic) Constraint Programming Introduction

Who am I?

Mikael Zayenz Lagerkvist
Basic education at KTH 2000-2005

I Datateknik

PhD studies at KTH 2005-2010
I Research in constraint programming systems
I One of three core developers for Gecode, fast and

well-known Constraint Programming (CP) system.

http://www.gecode.org

Senior developer R&D at Tomologic
I Optimization systems for sheet metal cutting
I Constraint programming for some tasks

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Introduction

http://www.gecode.org
http://tomologic.com

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Introduction

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Introduction

Tomologic

Mostly custom algorithms and heuristics

Part of system implemented using CP at one point
I Laser Cutting Path Planning Using CP

Principles and Practice of Constraint Programming 2013
M. Z. Lagerkvist, M. Nordkvist, M. Rattfeldt

Some sub-problems solved using CP
I Ordering problems with side constraints
I Some covering problems

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Introduction

http://link.springer.com/chapter/10.1007%2F978-3-642-40627-0_58

Sudoku - The Rules

Each square gets one value between 1 and 9

Each row has all values different

Each column has all values different

Each square has all values different

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1
4
5

2

1

8 9

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {2, 3, 6, 7, 8, 9}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {2, 3, 6, 7, 8, 9}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {2, 3, 6, 7, 8, 9}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {3, 6, 7}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {3, 6, 7}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {3, 6, 7}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 X
4
5

2

1

8 9

X = {6}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 6
4
5

2

1

8 9

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

9 7

3

5

6
1
8

8
3

9
7
6

2
4

1 6
4
5

2

1

8 9

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Example

8
3
9 7

3

5

6
1

3 8

8
3

9
7
6

2
4

1 6
4 9
5 2

2

1 9

8 9
2
4

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Solving with CP

Solving Sudoku using CP

Defining the variables

Defining the constraints

I will use the MiniZinc modelling language
I http://www.minizinc.org/
I High level modelling for CP
I Model in MiniZinc solvable using many different systems

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

http://www.minizinc.org/

Sudoku - Defining the variables

array[1..9,1..9] of var 1..9 :
puzzle = [|

_, _, _, _, _, 3, _, 6, _|
_, _, _, _, _, _, _, 1, _|
_, 9, 7, 5, _, _, _, 8, _|
_, _, _, _, 9, _, 2, _, _|
_, _, 8, _, 7, _, 4, _, _|
_, _, 3, _, 6, _, _, _, _|
_, 1, _, _, _, 2, 8, 9, _|
_, 4, _, _, _, _, _, _, _|
_, 5, _, 1, _, _, _, _, _|

|];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Rules for rows and columns

% In all columns, all values different
constraint forall (col in 1..9) (

all_different (row in 1..9)
(puzzle[row, col])

);

% In all rows, all values different
constraint forall (row in 1..9) (

all_different (col in 1..9)
(puzzle[row, col])

);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Rules for squares

% In all squares, all values different
constraint forall (row,col in {1,4,7}) (

all_different (i,j in 0..2)
(puzzle[row+i, col+j])

);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Search and output a solution

solve satisfy;

output [show(puzzle[i,j]) ++
if j = 9 then "\n"
else " "
endif

| i,j in 1..9];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Full program
include "globals.mzn";
array[1..9,1..9] of var 1..9 : puzzle = [|

_, _, _, _, _, 3, _, 6, _|
_, _, _, _, _, _, _, 1, _|
_, 9, 7, 5, _, _, _, 8, _|
_, _, _, _, 9, _, 2, _, _|
_, _, 8, _, 7, _, 4, _, _|
_, _, 3, _, 6, _, _, _, _|
_, 1, _, _, _, 2, 8, 9, _|
_, 4, _, _, _, _, _, _, _|
_, 5, _, 1, _, _, _, _, _|

|];
% In all columns, all values different
constraint forall (col in 1..9) (

all_different (row in 1..9) (puzzle[row, col]) :: domain
);

% In all rows, all values different
constraint forall (row in 1..9) (

all_different (col in 1..9) (puzzle[row, col]) :: domain
);

% In all squares, all values different
constraint forall (row,col in {1,4,7}) (

all_different (i,j in 0..2) (puzzle[row+i, col+j]) :: domain
);

solve satisfy;
output [show(puzzle[i,j]) ++ if j = 9 then "\n" else " " endif

| i,j in 1..9];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Solution

$ mzn-gecode -a -s sudoku.mzn
1 8 5 9 2 3 7 6 4
2 3 4 6 8 7 5 1 9
6 9 7 5 1 4 3 8 2
4 7 1 3 9 8 2 5 6
9 6 8 2 7 5 4 3 1
5 2 3 4 6 1 9 7 8
3 1 6 7 4 2 8 9 5
7 4 9 8 5 6 1 2 3
8 5 2 1 3 9 6 4 7

...

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Statistics

...
%% runtime: 0.001 (1.412 ms)
%% solvetime: 0.000 (0.411 ms)
%% solutions: 1
%% variables: 81
%% propagators: 27
%% propagations: 379
%% nodes: 12
%% failures: 5
%% peak depth: 4
%% peak memory: 100 KB

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

Sudoku - Search tree

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Solving Sudoku with CP

What is Constraint programming?

A way to model combinatorial (optimization)
problems

Systems for solving such problems

A programming paradigm

Theoretical model used in complexity

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming for modelling

Modelling combinatorial (optimization) problems

Problems are typically complex (NP-hard)

Language for describing models and instances

Solving using different techniques
I dedicated constraint programming systems most common

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming systems

Uses modeled structure for smart search

Problems are typically complex (NP-hard)
A CP system is no silver bullet

Often implemented as libraries
I Commercial: IBM CP Optimizer (C++), Xpress Kalis,

Opturion CPX (C++), Sicstus Prolog (C), . . .
I Free: Gecode (C++), Choco (Java), OscaR (Scala),

Google or-tools (C++), Minion (C++), Jacop (Java),
. . .

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming as a paradigm

Constraint Logic Programming
I Mix of libraries and language
I Search through Prolog search
I Sicstus Prolog, ECLiPSe, BProlog, . . .

Constraint Handling Rules
I Language for expressing constraints

Other languages such as Mozart/Oz
I Constraints embedded into base language
I For example, used as synchronization mechanism

between threads

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming as
theoretical model

Using theoretical models of constraint problems for
complexity research

Not interesting for solving practical problems

Not my area

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming in my view

Both models and systems

Strong and structured way for modelling problems

Systems turn-key solution in many cases

Algorithmic middleware connecting smart
independent components

Base for implementing custom solutions

Interesting research topic

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming use cases
Combinatorial problems

I Puzzles, combinatorial design problems, . . .

Scheduling and rostering
I Manufacturing, Railways, Air-line plane assignments, Air-line

crews, Hospital staff, . . .

Planning
I Vehicle routing, Laser cut path planning, Disaster evacuation, . . .

Bioinformatics
I Protein folding, Gene sequencing, . . .

Testing
I Hardware verification test planning, Covering sets, Abstract

interpretation, . . .

Various
I Compilation, Wine blending, TV-schedule selection, Music

composition, . . .
Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming basics

Define variables

Define constraints

Draw conclusions from constraints and current values

When all conclusions are made
I Make a guess
I Draw new conclusions
I When inconsistency detected, backtrack

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming - variables
Finite set of variables

Variable represents an unknown value from a set

Finite domain variables
I Integers

E.g., x some value from {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
I Sets

E.g., y subset of {4, 8, 15, 16, 23, 42}
I Boolean, Tasks, Graphs, Relations, Strings, . . .

Continous domain
I Float variables
I Upper and lower bound, solve to certain precision

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming - constraints
Basic constraints

I Domain x ∈ S , x 6= v
I Arithmetic

∑
i ai ∗ xi ≤ d ,

√
x = y , x · y > z , . . .

I Element/array indexing (x [y] = z)

Logical constraints
I ∧ibi = c , a ⊕ b = c , . . .
I x + y = z ⇔ b (reified constraints)

Structural (global) constraints
I All different (∀i ,j |i 6=jxi 6= xj)
I Global cardinality, binpacking, regular language,

disjunctive and cumulative resource usage, no overlap,
hamiltonian cycle, matching, minimum spanning tree,
extensional . . .

I Encapsulates re-occuring sub-structures
I 350+ defined in Global Constraints Catalogue

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming - constraints
Constraints are implemented as propagators

Propagators look at current domains, and make
deductions
Example: Linear in-equality

I x + 2 · y < z x , y ∈ {2..10}, z ∈ {4..10}
I Propagation deduces x ∈ {2..6}, y ∈ {2..4}, z ∈ {6..10}

Example: All different
I alldifferent(x , y , z , v)
I x ∈ {1, 2}, y ∈ {1, 2}, z ∈ {1, 2, 3, 4}, v ∈ {2, 4}
I x ∈ {1, 2}, y ∈ {1, 2}, z ∈ {�A1, �A2, 3, 4}, v ∈ {�A2, 4}
I x ∈ {1, 2}, y ∈ {1, 2}, z ∈ {3, 4}, v ∈ {4}
I x ∈ {1, 2}, y ∈ {1, 2}, z ∈ {3, �A4}, v ∈ {4}
I x ∈ {1, 2}, y ∈ {1, 2}, z ∈ {3}, v ∈ {4}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming - constraints
Express high-level intent

In the best case, propagation removes all variables
not in any solution.
Global constraints encapsulate smart algorithms

I All different uses bipartite matching and strongly
connected components

I Global cardinality uses flow algorithms
I Symmetric all different uses general matching
I Cumulative uses edge-finding, time-tabling, and

not-first/not-last reasoning
I Binpacking uses dynamic programming
I . . .

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Constraint programming - search
Search = Branching + Exploration order

Branching is heuristic choice
I Defines shape of search tree
I Smallest domain, minimum regret, smallest

domain/accumulated failure count, activity based, . . .
I Custom problem specific heuristics

Exploration order
I Explore search tree induced by branching
I Depth first, Limited discrepancy, Best first, Depth

bounded, . . .
I Sequential, Restarts, Parallel, . . .
I Large neighborhood search

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming basics

Send More Money

SEND + MORE = MONEY

One digit per letter

Each letter different digit

Don’t start with zeroes

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Variables

set of int: Digits = 0..9;
var Digits: S;
var Digits: E;
var Digits: N;
var Digits: D;
var Digits: M;
var Digits: O;
var Digits: R;
var Digits: Y;
array[1..8] of var int : letters =

[S,E,N,D,M,O,R,Y];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Constraints

constraint all_different(letters);

constraint 1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =

10000*M + 1000*O + 100*N + 10*E + Y;

constraint S > 0;

constraint M > 0;

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Search and output a solution
solve satisfy;

output [
"S:", show(S), " E:", show(E),
" N:", show(N), " D:", show(D),
" M:", show(M), " O:", show(O),
" R:", show(R), " Y:", show(Y),
"\n\n",
" ", show(S), show(E), show(N), show(D),"\n",
" + ", show(M), show(O), show(R), show(E),"\n",
" = ", show(M), show(O), show(N), show(E), show(Y),
"\n"

];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Full program
include "globals.mzn";

set of int: Digits = 0..9;

var Digits: S;
var Digits: E;
var Digits: N;
var Digits: D;
var Digits: M;
var Digits: O;
var Digits: R;
var Digits: Y;

array[1..8] of var int : letters =
[S,E,N,D,M,O,R,Y];

constraint all_different(letters);

constraint 1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =

10000*M + 1000*O + 100*N + 10*E + Y;

constraint S > 0;

constraint M > 0;

solve satisfy;

output [
"S:", show(S), " E:", show(E), " N:", show(N), " D:", show(D),
" M:", show(M), " O:", show(O), " R:", show(R), " Y:", show(Y),
"\n\n",
" ", show(S), show(E), show(N), show(D),"\n",
" + ", show(M), show(O), show(R), show(E),"\n",
" = ", show(M), show(O), show(N), show(E), show(Y), "\n"

];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Solution
$ mzn-gecode -a -s sendmoremoney.mzn
S:9 E:5 N:6 D:7 M:1 O:0 R:8 Y:2

9567
+ 1085
= 10652

==========
%% runtime: 0.000 (0.507 ms)
%% solvetime: 0.000 (0.133 ms)
%% solutions: 1
%% variables: 8
%% propagators: 2
%% propagations: 20
%% nodes: 7
%% failures: 3
%% restarts: 0
%% peak depth: 1

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Alternative constraints
...

var int: SEND;
var int: MORE;
var int: MONEY;

constraint 1000*S + 100*E + 10*N + D = SEND;
constraint 1000*M + 100*O + 10*R + E = MORE;
constraint 10000*M + 1000*O + 100*N + 10*E + Y = MONEY;

constraint SEND + MORE = MONEY;

...

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

SMM - Alternative model solution
$ mzn-gecode -a -s sendmoremoney-alternative.mzn
S:9 E:5 N:6 D:7 M:1 O:0 R:8 Y:2

9567
+ 1085
= 10652

==========
%% runtime: 0.012 (12.622 ms)
%% solvetime: 0.002 (2.018 ms)
%% solutions: 1
%% variables: 11
%% propagators: 5
%% propagations: 147
%% nodes: 11
%% failures: 5
%% restarts: 0
%% peak depth: 1

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Send Most Money

SEND + MOST = MONEY

One digit per letter

Each letter different digit

Don’t start with zeroes

Maximize the amount of money

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Most Money - Variables

set of int: Digits = 0..9;
var Digits: S;
var Digits: E;
var Digits: N;
var Digits: D;
var Digits: M;
var Digits: O;
var Digits: T;
var Digits: Y;
array[1..8] of var int : letters =

[S,E,N,D,M,O,T,Y];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Most Money - Constraints

constraint all_different(letters);

constraint 1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*S + T =

10000*M + 1000*O + 100*N + 10*E + Y;
constraint S > 0;
constraint M > 0;

var int: value =
10000*M + 1000*O + 100*N + 10*E + Y;

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Most Money - Search and output
solve maximize value;

output [
"S:", show(S), " E:", show(E),
" N:", show(N), " D:", show(D),
" M:", show(M), " O:", show(O),
" T:", show(T), " Y:", show(Y),
"\n\n",
" ", show(S), show(E), show(N), show(D),"\n",
" + ", show(M), show(O), show(S), show(T),"\n",
" = ", show(M), show(O), show(N), show(E), show(Y),
"\n"

];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Most Money - Full program
include "globals.mzn";

set of int: Digits = 0..9;

var Digits: S;
var Digits: E;
var Digits: N;
var Digits: D;
var Digits: M;
var Digits: O;
var Digits: T;
var Digits: Y;

array[1..8] of var int : letters =
[S,E,N,D,M,O,T,Y];

constraint all_different(letters);

constraint 1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =

10000*M + 1000*O + 100*N + 10*E + Y;
constraint S > 0;
constraint M > 0;

var int: value =
10000*M + 1000*O + 100*N + 10*E + Y;

solve maximize value;

output [
"S:", show(S), " E:", show(E), " N:", show(N), " D:", show(D),
" M:", show(M), " O:", show(O), " T:", show(T), " Y:", show(Y),
"\n\n",
" ", show(S), show(E), show(N), show(D),"\n",
" + ", show(M), show(O), show(S), show(T),"\n",
" = ", show(M), show(O), show(N), show(E), show(Y), "\n"

];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Most Money - Solution
$ mzn-gecode -a -s sendmostmoney.mzn
...
S:9 E:6 N:7 D:5 M:1 O:0 T:3 Y:8

9675
+ 1093
= 10768

S:9 E:7 N:8 D:3 M:1 O:0 T:2 Y:5

9783
+ 1092
= 10875

S:9 E:7 N:8 D:4 M:1 O:0 T:2 Y:6

9784
+ 1092
= 10876

==========

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Most Money - Statistics
%% runtime: 0.018 (18.043 ms)
%% solvetime: 0.003 (3.437 ms)
%% solutions: 8
%% variables: 9
%% propagators: 3
%% propagations: 154
%% nodes: 41
%% failures: 13
%% restarts: 0
%% peak depth: 4

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Examples

Constraint programming benefits

Concise and natural models

Often good performance

Custom search and hybridizations

Describe the problem, the computer figures out how
to solve it.

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

Constraint programming draw backs
Complex behaviour, small changes may result in large
differences

The best model is not the simplest model

Automatic search and symmetry breaking just
starting

I New features makes systems more complex

Debugging constraint models is hard

When more specialized systems work, they are often
more efficient

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

Constraint programming alternatives

Constraint programming as modelling language is
very expressive

Systems must handle generality

Limiting expressiveness can lead to more effective
systems

Using CP style models translating to base language
I Simpler models than in base language
I Easier modelling and debugging
I Not widely used

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

Linear Programming
Restrictions

I Only float variables
I Only linear in-equality constraints (

∑
i ai ∗ xi ≤ d)

Mathematical optimization
Most common method in industry and research
Algorithms are polynomial
Systems are very good

I Commercial: IBM CPLEX, Gurobi, Mosek, . . .
I Free: COIN-OR, lp_solve, glpk, . . .

Some things are hard to express, leading to very large
models
More information: KTH Course SF1841 Optimization

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

http://www.kth.se/student/kurser/kurs/SF1841

Mixed Integer Programming

Restrictions
I Float variables, some restricted to be integers
I Only linear in-equality constraints (

∑
i ai ∗ xi ≤ d)

Also very common in industry and research

Algorithms are not polynomial

Linear relaxation (disregarding integer requirements)
guides search

Same systems as for Linear Programming

Huge increase in performance last 15 years (> x1000)

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

Difference between CP and MIP models
Consider n variables x from 1 to m and an all
different constraint.
Constraint programming

x = 〈x1, x2 . . . , xn〉, xi ∈ {1, . . . ,m}
alldifferent(x)

Mixed Integer Programming

x = 〈x11, x12, . . . , x1m, x21, . . . , xnm〉, xij ∈ {0, 1}

∀j ∈ {1..m}
n∑

i=1

xi ,j = 1 ∀i ∈ {1..n}
m∑
j=1

xi ,j ≤ 1

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

SAT
Restrictions

I Only Boolean variables
I Only simple or clauses

Systems are highly optimized

Suitable for some types of problems

Common in industry and research

Algorithms are not polynomial

Explanations for failures, cheap restarts, activity
based search

More information: Print and read source of MiniSat
(http://minisat.se/)

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

http://minisat.se/

Satisfiability Modulo Theories

Restrictions
I Boolean variables and simple or clauses
I Algebraic theory (equality, arithmetic, . . .)

Makes SAT systems more usable

Middle ground between SAT and CP

Common in industry and research

Algorithms are not polynomial

Extensively used at Microsoft
(https://github.com/Z3Prover/z3)

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

https://github.com/Z3Prover/z3

Local Search
Move between (potentially invalid) solutions

I Local moves and evaluation
I Meta heuristics: Simulated annealing, Tabu search, . . .
I Population based: genetic, ant colony, particle swarm,

. . .

No guarantees that solution will be found

Very often ad-hoc and unprincipled

Can be very effective

Constraint Based Local Search combines modelling of
CP with local search

I CBLS Systems: Comet, OscaR

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Constraint programming in perspective

https://bitbucket.org/oscarlib/oscar/wiki/Home

Summary

Constraint programming is a way to model and solve
combinatorial optimization problems

Even if CP systems are not used, modelling
abstractions are important

Fun way to solve puzzles

Useful both in research and in industry

More information: KTH Course ID2204 Constraint
Programming

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Summary

http://www.kth.se/student/kurser/kurs/ID2204
http://www.kth.se/student/kurser/kurs/ID2204

Bonus example - Social golfers

Classic scheduling example

Club with golfers playing tournament

Each week golfers play in new groups

All golfers play every week

Goal: find schedule for p players in g groups of size
p/g for w weeks

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Social golfers example

Golfers: Alice, Bob, Cara, David, Erica, Finley,
Gretchen, Hamley, Ingrid

Three person per group, four weeks of play

{A,B ,C} {D,E ,F} {G ,H , I}

{C ,D,H} {B ,F ,G} {A,E , I}

{C ,E ,G} {B ,D, I} {A,F ,H}

{C ,F , I} {B ,E ,H} {A,D,G}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Set variables

Set of integers from some universe

S ⊆ {1, 2, . . . , n}

Simple constraints x ∈ S , |S | = y

Set relations S ∪ T ⊂ U , . . .

Global set constraints (all disjoint, range, roots, value
precedence, partition, . . .)

Higher level modeling

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Problem definition

Giving names to the amounts and sets

int: weeks;
int: groups;
int: group_size;
int: golfers = groups * group_size;

set of int: Weeks = 1..weeks;
set of int: Groups = 1..groups;
set of int: Golfers = 1..golfers;
set of int: GroupSize = 1..group_size;

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Data file

Stored in separate file golf443.dzn

% Problem instance
weeks = 4;
groups = 4;
group_size = 3;

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Variables

Matrix of variables representing the groups.

array[Weeks,Groups] of
var set of Golfers:

schedule;

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Right size groups

Each group must have right cardinality

constraint
forall (week in Weeks, group in Groups) (

card(schedule[week,group]) = group_size
);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Play once per week
Two groups in one week share no players

constraint
forall (week in Weeks) (

forall (group1, group2 in Groups
where group1 < group2) (

schedule[week,group1]
intersect

schedule[week,group2]
= {}

)
);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - All players every week

Every week all players get to play

constraint
forall (week in Weeks) (

partition_set(
[schedule[week,group] | group in Groups],
Golfers

)
);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - No replays
Two groups from different weeks share at most one player

constraint
forall (week1, week2 in Weeks

where week1 < week2) (
forall (group1, group2 in Groups) (

card(
schedule[week1,group1]

intersect
schedule[week2,group2]

) <= 1
)

);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Search and output
Standard search and simple output (one line per week)

solve satisfy;

output
[if group == 1

then "Week " ++ show(week) ++ ": "
else "" endif ++

show(schedule[week,group]) ++ " " ++
if group == groups then "\n" else "" endif
| week in Weeks, group in Groups

];

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - First solution
$ mzn-gecode -s social.mzn golf443.dzn
Week 1: {5,11,12} {3,4,8} {2,7,10} {1,6,9}
Week 2: {6,7,11} {3,5,10} {2,4,9} {1,8,12}
Week 3: {6,10,12} {3,9,11} {2,5,8} {1,4,7}
Week 4: {8,10,11} {7,9,12} 4..6 1..3

%% runtime: 29.833 (29833.078 ms)
%% solvetime: 29.820 (29820.188 ms)
%% solutions: 1
%% variables: 248
%% propagators: 220
%% propagations: 74940759
%% nodes: 762337
%% failures: 381153
%% restarts: 0
%% peak depth: 41

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Parallel search
$ mzn-gecode -s -p 4 social.mzn golf443.dzn
Week 1: {5,7,12} {3,4,9} {2,6,10} {1,8,11}
Week 2: {5,9,10} {3,11,12} {2,4,8} {1,6,7}
Week 3: {6,9,12} {3,7,8} {2,5,11} {1,4,10}
Week 4: {8,10,12} {7,9,11} 4..6 1..3

%% runtime: 1.138 (1138.283 ms)
%% solvetime: 1.126 (1126.825 ms)
%% solutions: 1
%% variables: 248
%% propagators: 220
%% propagations: 4959569
%% nodes: 52228
%% failures: 26077
%% restarts: 0
%% peak depth: 39

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Symmetry breaking

Social golfers has symmetries
I Solutions can be transformed simply
I Only care about some solution

Golfer names symmetric

Order of groups in week is symmetric

Order of weeks is symmetric

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfer names symmetric

Base solution
I {A,B ,C} {D,E ,F} {G ,H , I}
I {C ,D,H} {B ,F ,G} {A,E , I}
I {C ,E ,G} {B ,D, I} {A,F ,H}
I {C ,F , I} {B ,E ,H} {A,D,G}

Switched A and F
I {F ,B ,C} {D,E ,A} {G ,H , I}
I {C ,D,H} {B ,A,G} {F ,E , I}
I {C ,E ,G} {B ,D, I} {F ,A,H}
I {C ,A, I} {B ,E ,H} {F ,D,G}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Group order symmetry

Base solution
I {A,B ,C} {D,E ,F} {G ,H , I}
I {C ,D,H} {B ,F ,G} {A,E , I}
I {C ,E ,G} {B ,D, I} {A,F ,H}
I {C ,F , I} {B ,E ,H} {A,D,G}

Re-ordered first two groups
I {D,E ,F} {A,B ,C} {G ,H , I}
I {C ,D,H} {B ,F ,G} {A,E , I}
I {C ,E ,G} {B ,D, I} {A,F ,H}
I {C ,F , I} {B ,E ,H} {A,D,G}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Week order symmetry

Base solution
I {A,B ,C} {D,E ,F} {G ,H , I}
I {C ,D,H} {B ,F ,G} {A,E , I}
I {C ,E ,G} {B ,D, I} {A,F ,H}
I {C ,F , I} {B ,E ,H} {A,D,G}

Re-ordered first and last week
I {A,B ,C} {D,E ,F} {G ,H , I}
I {C ,D,H} {B ,F ,G} {A,E , I}
I {C ,E ,G} {B ,D, I} {A,F ,H}
I {C ,F , I} {B ,E ,H} {A,D,G}

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Group order symmetry

Idea: Groups in week can be ordered

constraint
forall (week in Weeks) (

forall (group1, group2 in Groups
where group1 < group2) (

schedule[week, group1]
>

schedule[week, group2]
)

);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Group order symmetry
$ mzn-gecode -s social.mzn golf443.dzn
Week 1: {1,7,11} {2,5,10} {3,6,9} {4,8,12}
Week 2: {1,6,10} {2,4,9} {3,7,8} {5,11,12}
Week 3: {1,4,5} {2,6,7} {3,10,12} {8,9,11}
Week 4: 1..3 {4,10,11} {5,6,8} {7,9,12}

%% runtime: 1.090 (1090.510 ms)
%% solvetime: 1.086 (1086.382 ms)
%% solutions: 1
%% variables: 248
%% propagators: 244
%% propagations: 2639492
%% nodes: 24363
%% failures: 12172
%% restarts: 0
%% peak depth: 38

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - First week symmetry

Idea: First week can be fixed statically

constraint
forall (group in Groups, i in GroupSize) (

((group-1)*group_size + i)
in

schedule[1,group]
);

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - First week symmetry
$ mzn-gecode -s social.mzn golf443.dzn
Week 1: 1..3 4..6 7..9 10..12
Week 2: {6,9,10} {3,4,8} {2,7,11} {1,5,12}
Week 3: {6,7,12} {3,5,11} {2,4,9} {1,8,10}
Week 4: {6,8,11} {3,9,12} {2,5,10} {1,4,7}

%% runtime: 0.177 (177.424 ms)
%% solvetime: 0.166 (166.398 ms)
%% solutions: 1
%% variables: 248
%% propagators: 213
%% propagations: 412250
%% nodes: 4071
%% failures: 2025
%% restarts: 0
%% peak depth: 27

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Search annotation

Idea: Search on first group per week first

solve ::
set_search(

[schedule[week,1] | week in Weeks] ++
[schedule[week,group]
| week in Weeks, group in Groups],

input_order, indomain_min, complete)
satisfy;

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - Search annotation
$ mzn-gecode -s -p 4 social.mzn golf443.dzn
Week 1: {1,10,11} {2,5,7} {3,6,12} {4,8,9}
Week 2: {1,6,7} {2,4,12} {3,8,11} {5,9,10}
Week 3: {1,4,5} {2,6,11} {3,7,9} {8,10,12}
Week 4: 1..3 {4,7,10} {5,6,8} {9,11,12}

%% runtime: 0.036 (36.828 ms)
%% solvetime: 0.030 (30.782 ms)
%% solutions: 1
%% variables: 248
%% propagators: 244
%% propagations: 101909
%% nodes: 1030
%% failures: 493
%% restarts: 0
%% peak depth: 35

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - All features
$ mzn-gecode -s social.mzn golf443.dzn
Week 1: 1..3 4..6 7..9 10..12
Week 2: {1,4,7} {2,5,10} {3,9,11} {6,8,12}
Week 3: {1,5,8} {2,6,11} {3,7,12} {4,9,10}
Week 4: {1,6,9} {2,4,12} {3,8,10} {5,7,11}

%% runtime: 0.016 (16.187 ms)
%% solvetime: 0.004 (4.421 ms)
%% solutions: 1
%% variables: 248
%% propagators: 231
%% propagations: 4625
%% nodes: 63
%% failures: 21
%% restarts: 0
%% peak depth: 23

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Golfers - All features and parallel
$ mzn-gecode -s -p 4 social.mzn golf443.dzn
Week 1: 1..3 4..6 7..9 10..12
Week 2: {1,4,7} {2,5,10} {3,9,11} {6,8,12}
Week 3: {1,5,8} {2,6,11} {3,7,12} {4,9,10}
Week 4: {1,6,9} {2,4,12} {3,8,10} {5,7,11}

%% runtime: 0.008 (8.116 ms)
%% solvetime: 0.002 (2.617 ms)
%% solutions: 1
%% variables: 248
%% propagators: 231
%% propagations: 4693
%% nodes: 64
%% failures: 22
%% restarts: 0
%% peak depth: 23

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

Social golfers conclusions

High level modeling with set variables

Suprisingly hard problem

Parallel search cheap to test

Symmetry breaking is crucial but hard
I Symmetry breakings might interfere with each other
I Wrong order for group order symmetry would make first

week fixing invalid

Search is an art
I Experimentation often required

Mikael Z. Lagerkvist (Tomologic) Constraint Programming Bonus - Social Golfers

	Introduction
	Solving Sudoku with CP
	Constraint programming basics
	Examples
	Constraint programming in perspective
	Summary

