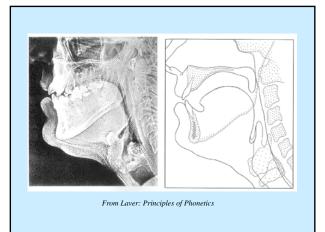
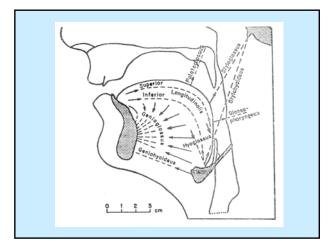
Speech perception

David House


DT2350 Human Perception for Information Technology 2016 Lecture 9


Literature

- Goldstein, E. (2010-2014). Sensation and Perception.
 - Chapter 13 (Editions 8 and 9): Speech Perception
- Weinschenk, S.M. (2011). 100 Things Every Designer Needs to Know About People.
 - Chapter 68: Speakers' brains and listeners' brains sync up during communication

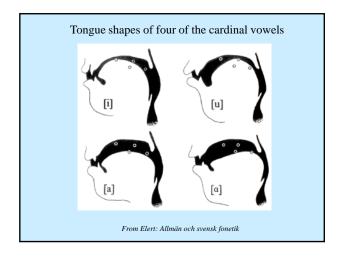
Basic units of speech

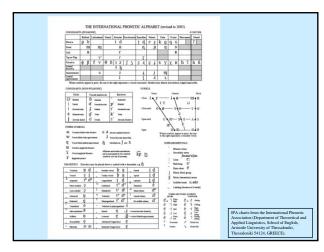
- Phonemes
 - Vowels
 - Consonants
- Prosody
 - Intonation (melody)
 - Rhythm (duration)
 - Intensity

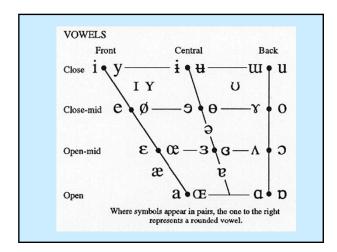
Vowel articulation

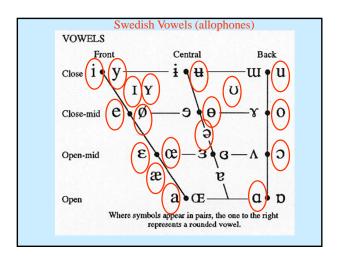
- Cardinal vowels
 - Reference vowels
 - Four corner vowels form the corners of the vowel chart
- Descriptive terminology

- Close-open (high-low)

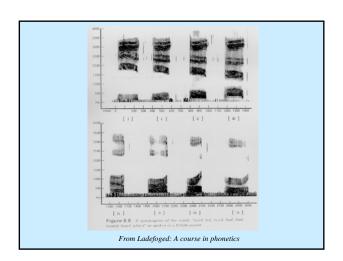

sluten-öppen

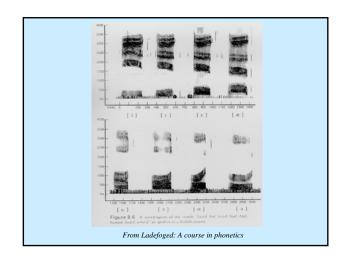

- Front-back

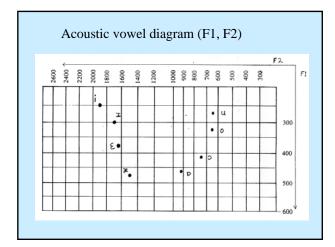

främre-bakre orundad-rundad

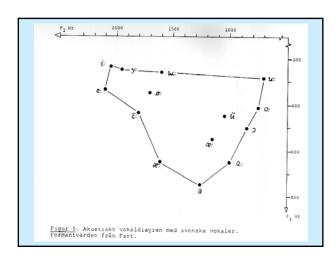

Unrounded-roundedOral-nasal (e.g. French)

oral-nasal



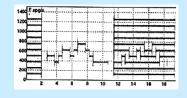

Vowel acoustics


- Speech spectrogram
- Formants (F1, F2, F3, F4)
- Acoustic vowel diagram (F1, F2)



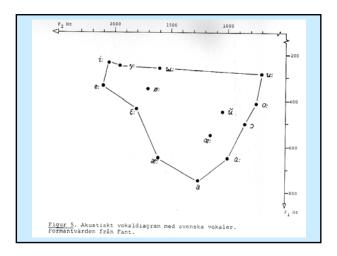
Formant transitions

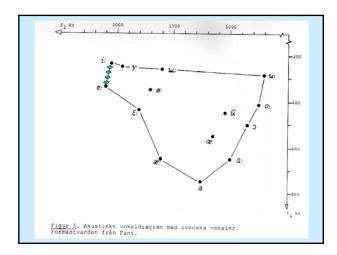
- Articulators move towards upcoming phonemes before reaching target: coarticulation
- Coarticulation causes formants to shift in frequency creating overlapping information
- Critical concept for speech perception

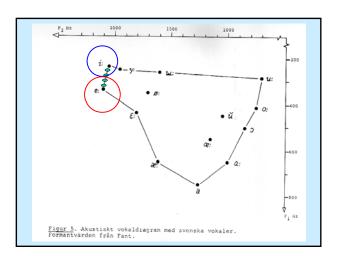


Holistic vs. analytic listening

- Demo 1: audible harmonics (1-5)
- Demo 2: melody with harmonics
- Demo 3: vowels and audible formants




Perception of vowels


- Formants (general relationship acousticsarticulation)
 - F1: information on jaw opening
 - higher F1= more open
 - F2: information on front-back
 - higher F2=more front
 - F3: information on lip rounding
 - lower F3=more rounded

Perception of vowels

- Identification
 - Perceive which vowel is pronounced
- Discrimination
 - Hear that two vowel sounds are different
- Categorical perception
 - Difficult to discriminate within a category
 - Easy to discriminate between categories

Consonant articulation

- · Voiceless or voiced
- Manner of articulation
 - How is the sound produced?
- · Place of articulation
 - Where is the constriction or closure located?

Manner of articulation

• Fricatives frikativor (spiranter)

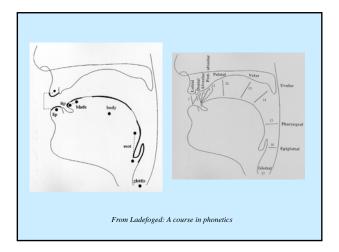
- f, v, s, z, h

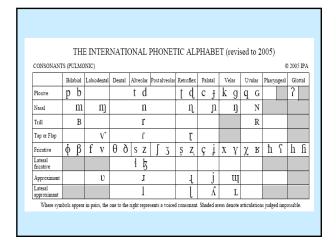
• Stops, plosives klusiler, explosivor

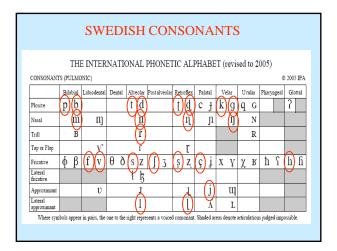
– p, b, t, d, k,

Liquids

likvidor

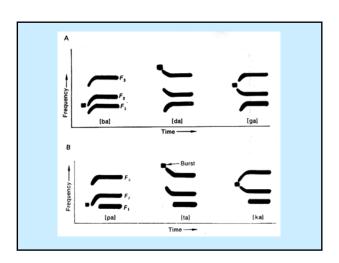

– r, l

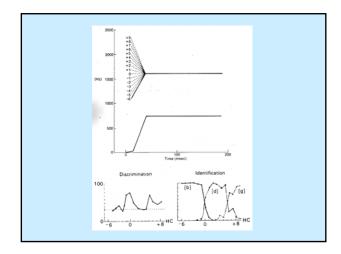

• Nasals nasaler

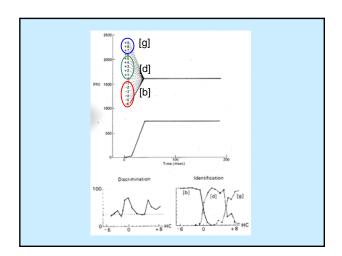

– n, m

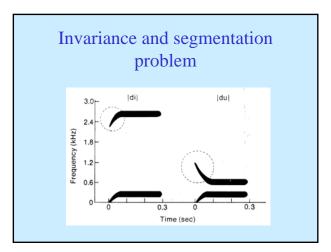
Place of articulation (IPA)

- Bilabial
- Labiodental
- Dental
- Alveolar
- Postalveolar
- Retroflex
- Palatal
- Velar
- Uvular
- Pharyngeal
- Glottal (laryngeal)




Perception of stops


- Frequency of the burst release
 - Provides information on place of articulation
- Formant transitions in adjoining vowels
 - Also information on place of articulation
- Voicing during occlusion and burst
 - Provides information on manner of articulation



Perception of stops

- Early experiments with speech synthesis
 - Formant transitions alone were sufficient to identify place of articulation (ba-da-ga)
 - Identification and discrimination of stops
- Categorical perception of stops
 - Difficult to discriminate within a category
 - Easy to discriminate between categories

Invariance and segmentation problem

- The same phoneme has different cues in different contexts, e.g. F2-transitions for [di] [du].
- Where are the segment boundaries?
- Problem is a result of coarticulation
- Problem has inspired the classic perception theories

Classic theories of speech perception

- · Invariance theory
 - The acoustic signal is the most important (invariant)
- Motor theory
 - Speaker's nerve impulses for speech motor control are calculated by the brain by analysing the acoustic signal.
 - Activation of motor mechanisms is the most important

Cognitive theories

- · Top-down speech processing
 - Expectation and linguistic knowledge set the frame
 - Incoming words are compared to hypotheses
- Bottom-up processing
 - Acoustic signal is transformed to words
 - Message formed from words

Psycholinguistics

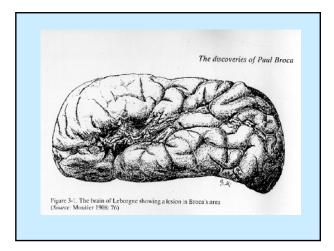
- The mental lexicon
- "Top-down" perception and context
 - experiments with phoneme detection (e.g. [s])
 - "They had been up all night and needed to sleep"
 - "They didn't know if they would be able to sleep"
 - experiments with filtered speech

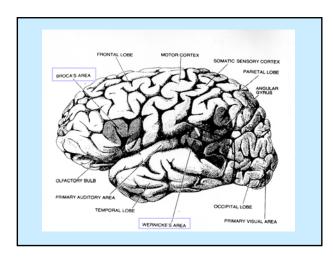
Demo: Low-pass filtered speech (speech below 300 Hz)

Original recording

Speech acquisition theories

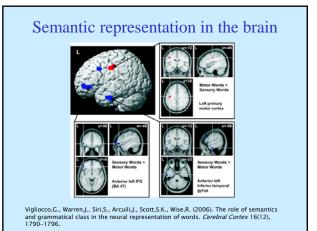
- Innate
 - Possible psychophysical limits
 - e.g. the number of vowels that can be discriminated
- Acquired
 - Language-specific categories
 - Several high, front vowels in Swedish: language categories develop making use of psychophysical limits
 - One high front vowel in Japanese: category differences are lost


Some of the main functions of language and speech


- Informative (provide information)
- Interrogative (obtain information)
- Influence (make someone perform an action)
- Social (make contact)
- Expressive (express feelings)
- Speaker-specific information (gender, age, background, identity)

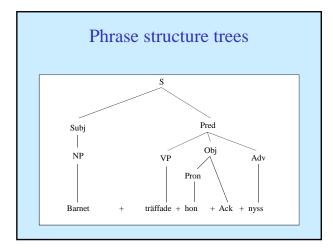
Language and the brain

- Neurolinguistics
 - Language lateralization to the left hemisphere
 - Aphasia
 - Paul Broca, 1861
 - Carl Wernicke, 1874



Semantics

- The linguistic sign (word) Ferdinand de Saussure
 - Arbitrary union between sound and meaning (e.g. hund, dog, chien)
 - But there are onomatopoetic words (sound imitation: e.g. whisper, mumble, susa, mumla)
- Homonyms
 - Two signs have the same form (e.g. vad-vad, bear-bear-bear)
- Lexicon
 - Semantic features (e.g. häst-sto-hingst, horse-mare-stallion)
 - Language dependent categories (e.g. tak, roof-ceiling)


Semantic representation in the brain

- PET-study (Positron Emission Tomography)
 - Cerebral blood flow
- Subjects listened to words (Italian)
 - Motor words (e.g. dive, skate)
 - Sensory words (e.g. darkness, shine)
- Used both nouns and verbs

Syntax and grammar

- Grammatical analysis
 - Word class (e.g. noun, verb, adverb)
 - function (e.g. subject, object)
- Position analysis
- Phrase structure rules (Noam Chomsky)
- Parsing (phrase structure analysis)
- Generative grammar

Example of syntactic ambiguity

- Igår sköt jag en hare med gevär på 100 meter.
- Hade du ett så långt gevär?
- Nej, jag menar att jag sköt med gevär en hare på 100 meter.
- Jaså, finns det så långa harar?
- Nej, jag sköt på 100 meter en hare med gevär.
- Då hade du tur att inte haren sköt först.

Efter Sigurd: Språk och språkforsking

Example of syntactic ambiguity

- Do you want to see my synthetic cow hide?
- I didn't know you had a synthetic cow.
- No, I mean do you want to see the cow hide.
- Oh, is she so shy?
- No, I mean a synthetic cow hide.
- Yes, I know, but what happened to the real one?

Syntax in the brain

- · Studies of aphasia
 - What kinds of linguistic problems do patients display? (e.g. problems with passive
- fMRI-study (functional magnetic resonance imaging)
 - Subjects are asked to interpret complex syntactic structures

Syntax in the brain

pink=phrase structure, yellow=sentence constituents, striped=integration:syntax/lexicon

Yosef Grodzinsky and Angela D Friederici, Neuroimaging of syntax and syntactic processing, Current Opinion in Neurobiology 2006, 16:240-246

Phonology

- · Phoneme: The smallest distinctive unit of sound e.g. /b/ /p/ in Swedish (bil pil) – allophones: variants of a phoneme (t.ex. /r/ > [$_r$], [$_R$])

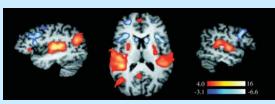
 - minimal pairs (bil/pil, par/bar)
 - commutation test (used to define phonemes in a language)
 - /r/ /l/ are two phonemes in Swedish and English but not in Japanese
- Distinctive features (e.g. voicing)
- Phonotactic structures (e.g. pferd, stone)
- · Syllable structure

Vowels and consonants

- Speech production (phonetics)
 - Free air passage through the pharynx, mouth and the lips = vowel
 - Constricted or closed air passage = consonant
- Function (phonology)
 - Nuclear in the syllable = vowel
 - Marginal in the syllable = consonant
- Exceptions
 - Some voiced consonants (e.g. syllablic nasal)
 - Approximants or semi-vowels (e.g. [j] [w])
- Information
 - Consonants carry more information than vowels

Representation of phonemes in the brain

- PET-study (Positron Emission Tomography)
 - Cerebral blood flow
- · Subjects had to reconstruct words
 - Real words (repeat the word)
 - Non-word (wrong vowel, say the real word)
 - Non-word (wrong consonant, say the real word)
- Left hemisphere (Words with wrong consonants produced more brain activity)


Prosody

- · Functions of prosody
 - Lend prominence (emphasize, de-emphasize)
 - Grouping function (combine, separate)
 - Facilitate dialogue: turntaking and feedback
 - Signal attitude and emotion
- · Word prosody
 - quantity, intensity (stress), accent
- Phrase prosody
 - Focus, emphasis, intonation

Prosody in the brain

- Prosody lateralized to the right hemisphere?
- · Studies of aphasia
 - Lesions or injuries to the right hemiphere can result in deviant prosody
- fMRI-study
 - Subjects listened to emotional speech
 - Complex prosodic stimuli seem to activate several areas in the brain (not exclusively right hemisphere)

Prosody in the brain

Normal speech = red

Prosodic speech = blue

Sonja A. Kotz, Martin Meyer, Kai Alter, Mireille Besson D., Yves von Cramon, and Angela D. Friederici. *On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language 86* (2003) 366-376

Brain synchrony in dialogue

- Speakers' and listeners' brains sync up during communication
- 68 (p.156) in "100 things every designer needs to know about people".

Lab exercises

- 13.2 McGurk Effect
 - Audiovisual speech
- 13.4 Phonemic restoration
- 13.7 Speech reconstruction
 - Sound stimulus reconstructed from brain signals

References

- Caplan, David (1987) *Neurolinguistics and linguistic aphasiology*. Cambridge University Press, Cambridge.
- Elert, Claes-Christian (1995) Allmän och svensk fonetik. Norstedts Förlag, Stockholm
- Engstrand, Olle (2004) *Fonetikens grunder*. Studentlitteratur, Lund
- Laver, John (1994) *Principles of phonetics*. Cambridge University Press, Cambridge
- Sigurd, Bengt (1991) *Språk och språkforskning*. Studentlitteratur, Lund