Visual Attention and Ecological Theory of Perception DT2350 Human Perception for Information Technology

Giampiero Salvi

 $KTH/CSC/TMH\ giampi@kth.se$

HT 2016

Literature

Goldstein, E. (2009/2014) Sensation and Perception

- Chapter 6: Visual Attention
- Chapter 7: Taking Action

Weinschenk, S.M. (2011) 100 Things Every Designer Needs to Know About People

- Chapter 45: People pay attention only to salient cues
- Chapter 8: People can miss changes in their visual field
- ► Chapter 7: People see cues that tell them what to do with an object (already in lecture 2)

most references in the book

Preamble: Studying Humans

Most of the studies cited in the book involve humans facing stimuli

- problem 1: partial view on perception
- problem 2: often artificial conditions
- the models we obtain can predict those specific situations

it is also desirable to test the global system

Opportunity: Simulate Humans

- make the complexity of real problems emerge
- test perception/cognition theories
- extra effect: create artifacts that interact with us in a more natural way
- limitation: we have to simplify to some extent

NOTE: perceptual studies will always be important

Introducing the iCub

- platform for cognitive studies
- large European project
 (RobotCub) involving
 researchers from engineering to
 neuroscience to psychology
- eight exemplars in labs in Europe, USA and Japan
- sensors: vision, hearing, tactile, proprioception, balance
- cognitive models implemented as control software

Why Do We Need Visual Attention?

The senses send to the brain huge amounts of information

- avoid overloading the brain
- dimensionality reduction
- disregard irrelevant information

William James (1890) Principles of Psychology

Camera vs Retina

Embodied dimensionality reduction

peripheral vision is blurred

Need to scan the scene: gaze!!

Eye Trackers

Eye Trackers

- very useful for visual attention research
- essential for research with small babies

But Attention is a Mental Process

Not only Gaze!! Examples:

- reading without paying attention
- we can pay attention to peripheral vision

Overt vs Covert Attention

Overt looking directly at the attended object Covert attention without looking

Li et al (2002)

What Determines How We Scan A Scene?

- Stimulus salience (bottom-up)
- Knowledge about the scene (top-down)
- Nature of the observer's task
- Learning from past experience

Stimulus Salience (Bottom-Up)

http://youtu.be/Z7y-7VX6-Qw

Egosphere [1]

The iCub EgoSphere and Reference Frames

based on: colour, movement, sound, faces

J. Ruesch, M. Lopez, A. Bernardino, and J. Hornstein. "Multimodal saliency-based bottom-up attention a framework for the humanoid robot iCub". In: IEEE ICRA. Pasadena, CA, 2008, pp. 962–967

Knowledge-Based Attention

Task-Oriented Attention

Attention vs Perception

Perception can occur without attention, but:

- 1. lack of attention can impair perception
 - inattention blindness
 - change blindness
- 2. focused attention can enhance perception
 - more vivid perception
 - binding features into coherent perception

Perception Without Focused Attention

Always look at the centre of the screen

- 1. are all the letters equal? 80-90% correct
- 2. is the face male or female? Is the disk green-red or red-green? 80-90% correct
- 3. both conditions simultaneously see next slide Li et al. (2007)

Perception Without Focused Attention

Inattention Blindness

Mack and Rock (1998)

Inattention Blindness: Demonstration

http://youtu.be/vJG698U2Mvo

Inattention Blindness: Demonstration 2

http://youtu.be/IGQmdoK_ZfY

Continuity Errors

Levin and Simons (1997)

Does Attention Enhance Perception?

Measuring reaction times: Posner et al. (1978)

NOTE: fixed gaze!

Cues Affect Objects

Egly et al. (1994)

Are Attended Objects More Vivid?

Carrasco Et Al. (2004)

Binding Problem

shape, movement, colour, ... put together

Feature Integration Theory

We need to focus our attention on each object in turn

Illusory Conjunctions

associate features with wrong object

Treisman and Schmidt (1982)

Visual Search: No Conjunction

solution evident without focusing on a location

Visual Search: With Conjunction

focusing on the location is necessary

Case of R.M.

Patient with Balint's syndrome (inability to focus attention on individual objects)

- can not perform Treisman and Schmidt's task
- can not perform conjunction search

Attention and Autism

"Who is afraid of Virginia Woolf?" (1966)

Klin et al. (2003)

Attention and Autism

"Who is afraid of Virginia Woolf?" (1966)

Klin et al. (2003)

Perception outside the laboratory

in real life:

- perception and action tightly connected
- all senses jointly contribute to perception
- the observer's goal drives perception

Covered here, mainly:

- 1. navigation
- 2. reaching and grasping

James J. Gibson

Ecological Theory of Perception:

- moving observer
- look for information in the environment (out there)

Why is it important?

- 1. we evolved in a fast moving environment (hunting, being hunted)
- 2. the amount of information is overwhelming Imperative to find concise, relevant and invariant representations of the world

Optic Array and Optic Flow

Optic Array: structure in surfaces, textures and contours

Optic Flow: movement of elements in the Optic Array

Optic Flow

- more rapid near the observer (gradient of flow, info on speed)
- no flow at the destination: focus of expansion
- invariant information

Self Produced Information

"we need to perceive to move and we need to move to perceive"

Example: Vertical Parallax

Walking produces an ondulatory vertical motion of the head

This helps perceive depth

Example: grasshopper

balance example

Lee and Aronson (1974)

balance example

(b) Person sways back to compensate.

Lee and Aronson (1974)

balance example

(c) When room swings away, person sways forward to compensate.

Lee and Aronson (1974)

sensory integration:

- vestibular system
- sensors at joints and muscles
- vision

Vision is powerful:

- ▶ toddlers: 26% swayed, 23% staggered, 33% fell down
- adults: swayed with just 6mm movement
- starts early: 4 months

Optic Flow and Navigation

subjects guess the heading within 0.5-1.0 degrees

Warren (1995)

Physiology: Optic Flow Neurons

medial superior temporal area (monkey)

Experiments with Monkeys

Graziano et al. (1994)

How does this affect perception?

Stimulating neurons in Medial Superior Temporal (MST) area

Britten and van Wezel (2002)

How does this affect perception?

Stimulating neurons in Medial Superior Temporal (MST) area

Britten and van Wezel (2002)

Not only Optic Flow: Gaze in Driving

Land and Lee (1994)

Not only Optic Flow: Gaze in Driving

Land and Lee (1994)

Example: autonomous vehicles

- DARPA Grand Challenge
- vehicles equipped with a number of sensors
- estimate road from camera input
- using colours too complex (lighting, different environments)

Not only Optic Flow: Blinded Walking

Philbeck et al. (1997)

More Navigation: Landmarks

(a) Toy at decision point

(b) Toy at nondecision point

Jansen and van Turennout (2004)

More Navigation: Landmarks

Jansen and van Turennout (2004)

Acting on Objects: Affordances

They afford sitting

Reaching and Grasping

Reaching and Grasping

A huge research question in robotics

Grasp Taxonomy

Affordances in Reaching and Grasping

Affordance test

Patient with Extinction (only right object detected)

Di Pellegrino et al. (2005)

Affordance test

Patient with Extinction (only right object detected)

Di Pellegrino et al. (2005)

Affordance test

Patient with Extinction (only right object detected)

Di Pellegrino et al. (2005)

Example: words and affordances [2]

^[2] G. Salvi, L. Montesano, A. Bernardino, and J. Santos-Victor. "Language bootstrapping: Learning word meanings from perception-action association". In: IEEE Trans. Syst., Man, Cybern. B 42.3 (June 2012), pp. 660–671

Example: words and affordances

Find associations between:

```
actions (tap, touch, grasp)
object properties (shape, size, color)
effects (obj vel, obj-hand vel, contact...)
spoken words ("the robot grasps the ball, but the ball falls")
```


the meaning of words is grounded into the robots action/perception world

Physiology of Reaching and Grasping

Neurons in the parietal cortex of the monkey respond to goal-directed reaching

- they respond if the monkey is reaching to achieve a goal (obtain food)
- they do not respond for same movement without goal
- they respond even before the monkey reaches for the object
- they respond when observeing others achieving the goal

Anecdote

Rizzolatti's laboratory in Ferrara, Italy

a researcher took a lunch break...

Observing Other People's Actions: Mirror Neurons

Rizzolatti et al. (2000)

Audiovisual Mirror Nowrons

Predicting People's Intentions

Record activity in the action observation system in the brain (mirror neurons, premotor cortex...)

Pierno et al. (2006)

Predicting People's Intentions

Mirror Neurons and Experience

73 / 75

Mirror Neurons and Experience

Controlling Movements With the Mind

http://youtu.be/77KsE--Adp8