ID2212 Network Programming with Java
Lecture 4

Networking with Sockets

Leif Lindback, Vladimir Vlassov
KTH/ICT/SCS
HT 2016

QOutline

* Review

— Client-server architecture
— Berkley Socket API in C

* Socket API in Java

— Client Socket — connecting socket

— Socket for Servers — listening socket
— UDP sockets

— Multicast

Lecture 4: Networking with Sockets

Review: Client-Server
Architecture

The most commonly used model for distributed
applications
— Can be applied for a particular request-response interaction

The client is the entity (process) accessing the remote
resource and the server provides access to the resource.

Request / response protocols

connection request
,,,,,,,, Server

fork()

Server

requests / responses

Lecture 4: Networking with Sockets

Review: Sockets

Socket is an end-point of a virtual network connection
between processes — much like a full-duplex channel
— A socket address: IP address and a port number

— A transport protocol used for communication over a socket
TCP socket - stream-based, connection-oriented
UDP socket - datagram-based, connectionless

Sockets, a.k.a. Berkeley sockets, were introduced in
1981 as the Unix BSD 4.2 generic API for inter-process

communication
* Earlier, a part of the kernel (BSD Unix)
* Now, a library (Solaris, MS-DOS, Windows, OS/2, MacOS)

Lecture 4: Networking with Sockets

Ports

Port is an entry point to a process that resides on a host.

65,535 logical ports with integer numbers 1 - 65,535
A port can be allocated to a particular service:

* A server listens the port for incoming requests
* A client connects to the port and requests the service
* The server replies via the port.

Ports with numbers 1-1023 are reserved for well-known
services.

— Alist of services and allocated ports is stored in
* /etc/services (Unix)
* C:\Windows\services (Windows95)
* C:\WINNT\system32\drivers\etc\services (WindowsNT)
. C:\WINDOWS\EZstem32\drivers\et.c (Windows XP)

cture 4: Networking with Sockets

The Berkeley Socket API for the

Client-Server Architecture

Client

P o e e e e e e — — — — — — — — — —— ———

: I socket () Server
| |]
I | -
| | bind()
l | \
l | .
socket () ‘Connectiont listen()
: is establishqd : Start a thread
connect ()y----+------------ — accept() [~
! | | !
| | I
| i accept() i
| | i
. 0,1/PTTH lmth.xed TE
write() f/ ﬁ xednL b read()
! | |
HTTP/1.0 ioo 0K .. </htm1> .
read() | i i write()
{ | | | !
close() i i i close() |
_______________________________ Ay —
Lecture 4: Networking with Sockets 6

Sockets in Java.net

* Two classes of TCP sockets
* Socket — connecting socket, a.k.a. client socket

— Used to connect to another (remove) TCP socket specified by
an IP address and a port number.

— A connected TCP socket provides two sequenced byte streams,
input and output streams, used to communicate with the
remote process by reads and writes.

* ServerSocket - listening socket, a.k.a. server socket

— Used to listen for connection requests, to accept connection
and create a Socket object connected to the requester.

Lecture 4: Networking with Sockets

Sockets in Java.net (cont’d)

* Two classes of UDP sockets:
* DatagramSocket

— used for sending and/or receiving datagrams
represented by objects of the DatagramPacket
class.

e MulticastSocket

— is a subclass of DatagramSocket with capabilities
for joining multicast groups on the Internet.

— A multicast group is identified by an IP address of
class D (multicast address (224-239.x.x.x)

Lecture 4: Networking with Sockets

java.net.InetAddress

* Represents an IP address of a node on the Internet.

* Does not have public constructors.
* Getting an IP address:

InetAddress ipl = null;
InetAddress ip2 = null;
InetAddress localIP = null;
InetAddress[] ips = null;
try {
localIP = InetAddress.getlLocalHost();
ipl = InetAddress.getByName("kth.se");
ip2 = InetAddress.getByName("130.237.214.1");
= InetAddress.getAllByName("kth.se");
} catch (UnknownHostException e) {
e.printStackTrace();

Client Sockets — Connecting
Sockets

java.net.Socket

Lecture 4: Networking with Sockets

10

java.net.Socket

* Implements a connecting TCP socket that
provides connection to a specified host on a
specified port.

— When connected, provides input and output byte

streams
Local host Remote host
Process A Local Remote Process B
port port
InputStream OutputStream
G
OutputStream InpiStream

socket socket

Lecture 4: Networking with Sockets

11

Socket Constructors
Socket(..)

— (String remoteHost, int remotePort)

(InetAddress remoteAddr, int remotePort)

(String remoteHost, int remotePort,
InetAddress localAddr, int localPort)

(InetAddress remoteAddr, int remotePort,
InetAddress localAddr, int localPort)

()
— (SocketImpl socketImplementation)

Lecture 4: Networking with Sockets 12

Socket’s Attributes

 setSoLinger(boolean, 1int)

— Enable/disable SO _LINGER with the specified
linger time (linger on close if data are present).
— Note: Use netstat utility to check open connection.

e setSoTimeout(int)

— Enable/disable SO_TIMEOUT with the specified
time-out, in milliseconds.

* setTcpNoDelay(boolean)

— Enable/disable TCP_NODELAY (disable/enable
Nagle’s algorithm).

Lecture 4: Networking with Sockets

13

Communicating via a TCP Socket
* Steps:

— Establish a socket connection to the specified host on

the specified port by create a connected Socket
object.

— Set socket’s attributes.

— Get an input stream of the socket connection for
reading data.

— Get an output stream of the connection for writing
data.

— Communicate via the input and output streams by
reads and writes according to an application specific
communication protocol.

— Close the socket connection.
Lecture 4: Networking with Sockets 14

Example: A Code Fragment from a
HTTP Client

String httpServer = "www.kth.se";

int serverPort = 80;

int timeoutMillis = 10000;

String httpRequest = "GET / HTTP/1.1";
String hostHeader = "Host: " + httpServer;

try (Socket socket = new Socket(httpServer, serverPort)) {
socket.setSoTimeout(timeoutMillis);
PrintWriter wr = new PrintWriter(socket.getOutputStream());
wr.println(httpRequest);
wr.println(hostHeader);
wr.println();
wr. flushi();
BufferedReader reader
= new BufferedReader(new InputStreamReader(socket.getInputStream()));
String str;
while ((str = reader.readLine()) != null) {
System.out.println(str);
h
} catch (IOException e) {
e.printStackTrace();

Iy
Lecture 4: Networking with Sockets 15

Communication in the HTTP Client

HTTP request “GET /index.html HTTP/1.0"
A

Socket |
OutputStream

PrintWriter’

Socket socket = new Socket(httpServer, serverPort);
PrintWriter wr =

new PrintWriter(socket.getOutputStream());
wr.println(httpRequest);
wr.println(hostHeader);
wr.println();
wr.flush();

Lecture 4: Networking with Sockets 16

The Httpc Client (cont)

Reply: “HTTP/1.1 200 OK
Date: Mon, 15 Nov 1999 11:23:29 GMT ..”

Socket I
InputStream ‘
InputStreamReader
BufferedReader
BufferedReader rd = I readLine
new BufferedReader(new InputStreamReader (Stri t ‘
socket.getInputStream())); ring str
String str; _I
while ((str = rd.readLine()) != null) System.out‘
System.out.println(str); println
socket.close();

Lecture 4: Networking with Sockets 17

Parsing Textual Data by Tokenizers

* java.l1lo.StreamTokenizer supports splitting a
character stream into “tokens”.

StreamTokenizer rd = new StreamTokenizer (
new BufferedReader (

new InputStreamReader(
socket.getInputStream())));

* java.util.StringTokenizer supports splitting a
string into “tokens”.
— StringTokenizer(String)

— Can be used to parse a text from the input stream
accumulated into a StringBuffer object.

Lecture 4: Networking with Sockets 20

Example: Usage of Stream Tokenizer

socket.setSoTimeout(timeoutMillis);
PrintWriter wr = new PrintWriter(socket.getOutputStream());
wr.println(httpRequest);
wr.println(hostHeader);
wr.println();
wr.flush();
StreamTokenizer rd = new StreamTokenizer (new BufferedReader(new InputStreamReader (
socket.getInputStream())));
int lineBreak = 0;
while (rd.nextToken() != StreamTokenizer.TT EOF) {
switch (rd.ttype) {
case StreamTokenizer.TT_NUMBER:

numCounter++;
break;

case StreamTokenizer.TT WORD:
wordCounter++;

if (++lineBreak % 5 == 0) {
System.out.println(rd.sval);
} else {
System.out.print(rd.sval + " ");
h

Lecture 4: Networking with Sockets 21

Sockets for Servers — listening sockets

java.net.ServerSocket

Lecture 4: Networking with Sockets 23

java.net.ServerSocket

* Implements a listening TCP socket, a.k.a. server socket

— should be bound to some known local port (and known local IP
address)

— used to listen ccept connections from clients.
Server oci(e%rkd..f')

— (int port)

A port of 0 creates a socket on any free port.

— (int port, int backlog)
Here backlog is the maximum allowed length of queue of
pending connection requests.

. (int port, int backlog,
InetAddress bindLocalAddress)

Lecture 4: Networking with Sockets 24

Accepting Connections
Socket clientSocket = serverSocket.accept();

* Blocks the current thread until a client connects

* Returns a connected Socket of the accepted connection.

* For example:

// create a server socket bound to the port 8080
ServerSocket serverSocket = new ServerSocket(8080);
while (true) {

try {
// wait for a client connection request
Socket clientSocket = serverSocket.accept();
// communicate with a client via clientSocket

// close the socket and wait for another connection

clientSocket.close();
} catch (SocketException e) { e.printStackTrace(); }

Lecture 4: Networking with Sockets 25

Handling Connections

* The server uses a Socket object to
communicate with a connected client

— The connection should be closed when service is
done.

* The server shall handle the connection in a
separate thread.

— When a client connects, constructs a handler thread
with the Socket object as a parameter of the
handler constructor.

— Starts the handler thread.

— The parent thread continues waiting for the next

connection requests.
Lecture 4: Networking with Sockets 26

Fragment of a Multithreaded Server

ServerSocket serversocket = new ServerSocket(8080);
while (true) {

try {
Socket socket = serversocket.accept();
Thread handler = new Thread(new Handler(socket));

handler.setPriority(handler.getPriority() + 1);
handler.start();

}

catch (SocketException e) { e.printStackTrace(); }
}

}

class Handler implements Runnable {
private Socket socket;

Handler (Socket socket) throws IOException { // thread
constructor

this.socket = socket;
. }

public void run() { // communicate with the client via the
socket

Working with Files. Status of a
File
* Very often a server accesses files and/or databases.

* java.1o0.File allows obtaining the status of a file or

directory:

String basedir = “/var/www/documents”;
File file = new File(basedir, “index.html”);

* Useful methods

— Get the status of the file:

exists(), length(), lastModified(), canRead(), canWrite(),
getPath()

— Get a list of files in the directory:
list(), list(FilenameFilter)

— Manipulate a file, directory:
mkdir(), delete(), renameTo(File)

Lecture 4: Networking with Sockets 28

Two APIs to Access Files. See
java.1o0
* Sequential-access file:
— FileInputStream and FileOutputStream

— represent a file as a byte streams that can be wrapped by any
specialized stream:

DataInputStream in = new DataInputStream (new
FileInputStream(‘“base.tsv*));

— FileReader and FileWriter are used to access text files.

* Random-access file (similar to file API in C):

— An object of RandomAccessFile allows reading (or writing)
data of various types from (or to) a file.

Lecture 4: Networking with Sockets 29

A Simple HTTP Server

Accepts GET requests and POST requests. Assumes that only a POST
request can request the execution of a CGI program.

The example illustrates how to start the execution of an external
program (process) and communicate with the program via standard

input and output streams. The example also illustrates how to access a
file.

Lecture 4: Networking with Sockets 32

Data flow in HTTP server.,
GET Request

A GET /index.html HTTP/1.0
Socket | outputStream InpufStream ‘
« A A 3
| | InputStreamReader
PrintWriter -
buf . BufferedReader
2 T | ~~
method ‘ 1
FileInputStream | header version =~ _ _
I error messages StringTokenizer
Fite|__ _ _ _ __—————— 7 name

/var/vwaww/documents/index. html

Lecture 4: Networking with Sockets 33

Connection Failures

* Connection failures are signaled via exceptions
thrown by methods of socket APIs (constructors,
connect, accept, read, write, bind, etc.)

* Exceptions that indicate errors in the underlying
protocol, such as a TCP error, are indicated by
SocketException and its subclasses:

— BindException
* on failed attempt to bind a socket to a local address and port.

— ConnectException, NoRouteToHostException

* on failed attempt to connect a socket to a remote address and
port.

Lecture 4: Networking with Sockets

34

(cont’d) Connection Failures

* The client can get exceptions

— UnknownHostException

* The IP address of a host could not be determined (getters of
InetAddress)

— IOException

* while creating the socket (Socket constructors) and
communicating via the socket connection (getInputStream,
getOutputStream, read/write, etc.)

* The server can get exceptions
— IOException

* opening a server socket (ServerSocket constructors)
* waiting for a connection and accepting the connection in accept()
* closing the socket by close()

Lecture 4: Networking with Sockets 35

JSSE (Java Secure Socket Extension)

A set of Java packages that enable secure Internet
communications.

— Implements a Java version of SSL (Secure Sockets Layer) and TLS
(Transport Layer Security) protocols

— Includes functionality for data encryption, server authentication,
message integrity, and optional client authentication.

— javax.net.ssl

— javax.net

— java.security.cert
— com.sun.net.ssl

JSSE on the Web:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136007.html

http://download.oracle.com/javase/8/docs/technotes/guides/security/
Lecture 4: Networking with Sockets 36

UDP Sockets. Multicast

java.net.DatagramSocket
java.net.DatagramPacket
java.net.MulticastSocket

Lecture 4: Networking with Sockets

37

UDP Sockets

* The java.net.DatagramSocket class

— represents a UDP socket for sending and receiving datagrams
— objects of the java.net.DatagramPacket class

* Sending datagrams:
DatagramSocket ds = new DatagramSocket();
byte buf[] = new byte[256];

// fill buf with data to be sent

// create a datagram
DatagramPacket dp = new DatagramPacket (

buf, buf.length,
InetAddress.getByName(“dest.host.com"),

4711);
// send the datagram via the UDP socket
ds.send(dp);

LECUrc & INC

* Receiving datagrams:

DatagramSocket ds = new

DatagramSocket(4711);
byte b[] = new byte[256];
DatagramPacket dp = new DatagramPacket(b,
b.length);

/* Set timeout — the amount of time (in
milliseconds) that receive() waits for
datagram before throwing an
InterruptedIOException. With the time out of
0, receive() never times out.

*/

ds.setSoTimeout (timeout)

ds.receive(dp); // receive a datagram

byte[] data = dp.getData(); // get data

InetAddress source = dp.getAddress(); // source

int port = dp.getPort(); // source port

IP Multicast

* IP multicast is communication within a multicast group
identified by a multicast IP address of the D class:

224-239.x.X.X
* A multicast group is a set of computers sharing the same
multicast address.

— ~80 of multicast addresses are permanently assigned by the
TANA (Internet Assigned Number Authority).

* Toreceive datagrams directed to a multicast group, a
computer joins the group (gets its IP address)

— Informs a default router about its interest in receiving UDP
packets directed to the group’s IP address

Lecture 4: Networking with Sockets 39

1P Multicast (cont’d)

* Multicast is based on sending UDP datagrams
to a multicast group.

* An IP header of a UDP packet includes the
field 7TL (Time-To-Live) that specifies the

number of routers that the packet can pass
through (in the range (0-255).

Lecture 4: Networking with Sockets

40

MBONE. Videoconferencing on the

Internet

* MBONE (Multicast Backbone on the Internet) is the
range of Class D addresses beginning with 224.2.x.x

— Mbone is a part of the Internet formed of routers supporting
the IP multicast extension.

— Mbone is used for audio and video broadcasts over the
Internet.

* The MBONE programs should be announced on
224.2.127.254 (port 9875).

Lecture 4: Networking with Sockets 41

Multicast with Java

* MulticastSocket is a subclass of
DatagramSocket that represents a UDP
socket with capabilities for joining multicast
groups on the Internet.

* Communicating with a multicast group
— Construct a multicast socket
— Join a multicast group (for receiving)

— Send/receive data to/from the multicast group
— Leave the group

Lecture 4: Networking with Sockets 42

Receiving from a Multicast Group

try {
MulticastSocket ms = new MulticastSocket(9875):

ms.joinGroup(InetAddress.getByName('224.2.127.254"));
byte b[] = new byte[256];
DatagramPacket dp = new DatagramPacket(b, b.length);
while (true) {
ms.receive(dp);
String s =
new String(dp.getData(),0,dp.getLength());
System.out.println(s);
}
} catch (Exception se) {
se.printStackTrace();

Lecture 4: Networking with Sockets

43

Sending to a Multicast Group

InetAddress iaddr =
InetAddress.getByName(“224.17.17.17");

DatagramPacket dp = new DatagramPacket(data,
data.length, iaddr, port);

try {
MulticastSocket ms = new MulticastSocket();
ms.setTimeTolLive(16); // set TTL to 16
ms.joinGroup(iaddr); // not necessary for sending
ms.send(dp) ;
ms . leaveGroup(iaddr); // not necessary for sending
ms.close();

} catch (SocketException se) {
se.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

Implication for A Course Project

* Client-Server interaction using TCP
— Client side:

Host and port of a server should be command line arguments
Do not bind a client socket to a fixed local port number

Do not forget to flush the socket output stream when sending a
request

Remember that read from a socket input stream is blocking
Should set timeout for a socket and properly handle exceptions

Take into account long communication latency: User interface
should be responsive, use multithreading: a thread for the user
interface, a thread for the network interface.

A Client may create and listen a server socket (e.g. for callbacks).
It should do this in a separate “server” thread

Lecture 4: Networking with Sockets 45

Implication for the Course Project
(cont’d)

* Client Server interaction using TCP

— Server side:

* Aserver port should be a command line argument

* A server should be scalable, i.e. it should be able to handle
multiple requests simultaneously by using multithreading

* Two approaches to multithreading:
— (1) create a new thread for each client connected;
— (2) assign a thread to a client from a pool of threads

* While communicating with a client, do not forget to set
timeout to a TCP socket, and flush output stream when
needed

Lecture 4: Networking with Sockets 46

Implication for the Course Project
(cont’d)

* Communication using UDP

— The same UDP socket can be used for both, sending
and receiving

— A TCP socket and a UDP socket may be bound to
the same port number

— Sending a datagram, set a proper TTL
— Remember that receive is a blocking call

* Set timeout and handle exceptions properly

— You may get source address (IP address and port)
from a datagram received

Lecture 4: Networking with Sockets

47

Implication for the Course Project
(cont’d)

* Problem with request-response interaction
using UDP:

— if receive is interrupted because of timeout, you
may treat this as there is no response to the sent
request and send a new request. However, next
receive may receive a response on the old request
rather than the one sent recently.

— Your application should be able to handle this
situation.

Lecture 4: Networking with Sockets 48

Implication for the Course Project
(cont’d)

Communication with a multicast group
— A multicast address(es) and port(s) should be command line
arguments.
— To send to a multicast group, it is not needed to join the group
* You may use DatagramSocket for sending to the group

— Responses to one member of a group should be sent directly to
the member (to it’s IP) rather than to the entire group

— When your application waits for a response from the multicast
group, it should be able to handle two extreme cases
* No response
* Too many responses

— You should also solve the problem of receiving old responses
(see previous slide).

Lecture 4: Networking with Sockets 49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

