Chapter 9 Global Nonlinear Techniques

Prove that a 3 % 3 symmetric matrix has only real eigenvalues.

A solution X(r) of a system is called recurrent if X(t;) — X(0) for
some sequence t; — 0o, Prove thata gradient dynamical systern has no
nonconstant recurrent solutions.

Show that a closed bounded omega limit set is connected. Give an exam-
ple of a planar system having an unbounded omega limit set consisting
of two paralle] lines.

Closed Orbits and
Limit Sets

In the past few chapters we have concentrated on equilibrium solutions of
systems of differential equations. These are undoubtedly among the most
important solutions, but there are other types of solutions that are important
as well. Tn this chapter we will investigate another important type of solution,
the periodic solution or closed orbit. Recall that a periodic solution occurs for
X' = F(X) if we have a nonequilibrium point X and a time t > 0 for which
¢:(X) = X. It follows that ¢y (X) = ¢ (X) for all ¢, so ¢ is a periodic
function. The least such T > 0 is called the period of the solution. As an
example, all nonzero solutions of the undamped harmonic oscillator equation
are periodic solutions, Like equilibrium points that are asymptotically stable,
periodic solutions may also attract other solutions. That is, solutions may limit
on periodic solutions just as they can approach equilibria.

In the plane, the limiting behavior of solutions is essentially restricted to
equilibria and closed orbits, although there are 2 few exceptional cases. We
will investigate this phenomenon in this chapter in the guise of the impor-
tant Poincaré-Bendixson theorem. We will see later that, in dimensions
greater than two, the limiting behavior of solutions can be quite a bit more
complicated.

10.1 Limit Sets

We begin by describing the limiting behavior of solutions of systems of dif-
ferential equations. Recall that ¥ € R" is an @-limit point for the solution
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216 Chapter 10 Closed Orbits and Limit Sets

through X if there is a sequence #, — oo such thatlimy—c0 @, (X) = Y. That
is, the solution curve through X accumulates on the point ¥ as time moves
forward. The set of all -limit points of the solution through X is the w-limit
set of X and is denoted by w(X). The a-limit points and the c-limit set @ (X)
are defined by replacing t, — 00 with #, — —00 in the above definition. By
a litnit set we mean a set of the form w(X) or e(X).

Here are some examples of Limit sets. Tf X* is an asymptotically stable
equilibrium, it is the w-limit set of every point in its basin of attraction. Any
equilibrium is its own o~ and w-limit set. A periodic solution is the e-limit
and ¢-limit set of every point on it. Such a solution may also be the w-limit
set of many other points,

Example. Consider the planar system given in polar coordinates by

4

=2(r—r)

L

gli=

—

As we saw in Section 8.1, all nonzero solutions of this equation tend to the
periodic solution that resides on the unit circle in the plane. See Figure 10.1.
Consequently, the a-limit set of any nonzero point is this closed orbit. [ |

Example. Consider the system

/
X

Y

There are equilibria which are saddles at the corners of the square (0, 0), (0, Nv.
(7)), and (mr,0), as well as at many other points. There are heteroclinic

sin x(—. 1 cosx — cos )!)

I

sin y(cos x—. 1 cos y).

Figure 10.1 The phase plane
forr' = .m.?i__.mu. =1
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Figure 10.2 The w-limit set of any
solution emanating from the source at
(/2,7/2) is the square bounded by the
four equilibria and the heteroclinic
solutions.

solutions connecting these equilibria in the order listed. See Figure 10.2. There
is also a spiral source at (7/2, 7/2). All solutions emanating from this source
accumulate on the four heteroclinic solutions connecting the equilibria (see
Exercise 4 at the end of this chapter). Hence the w-limit set of any point on
these solutions is the square bounded by x = 0,7 and y = 0, 7. | |

In three dimensions there are extremely complicated examples of limit
sets, which are not very easy to describe. In the plane, however, limit sets
are fairly simple. In fact, Figure 10.2 is typical in that one can show that
a closed and bounded limit set other than a closed orbit or equilibrium
point is made up of equilibria and solutions joining them. The Poincaré-
Bendixson theorem discussed in Section 10.5 states that if a closed and
bounded limit set in the plane contains no equilibria, then it must be a closed
orbit.

Recall from Section 9.2 that a limit set is closed in R" and is invariant under
the flow. We shall also need the following result:

Proposition.

1. IfX and Z lie on the same solution curve, then w(X) = &(Z) and a(X) =
a(Z);

2. If D is a closed, positively invariant set and Z € D, then w(Z) C D, and
sinilarly for negatively invariant sets and ao-limits;

3. A closed invariant set, in particular, a limit set, contains the a-limit and
w-limit sets of every point in it.




218 Chapter 10 Closed Orbits and Limit Sets

Proof: For (1), suppose that ¥ € w(X), and ¢4(X) = Z. If ¢, (X) = ¥,
then we have

th,—s(Z) = ¢, (X) > Y.
Hence ¥ € w(Z) as well. For (2), if ¢,(Z) = ¥ € @(Z) as ty — oo,
then we have t, > 0 for sufficiently large n so that ¢4,(Z) € D. Hence

Y € D since D is a closed set. Finally, part (3) follows immediately from
part (2). | |

10.2 Local Sections and Flow Boxes

For the rest of this chapter, we restrict the discussion to planar systems. In this
section we describe the local behavior of the flow associated to X’ = F(X) near
a given point Xp, which is not an equilibrium peint. Our goal is to construct
first a local section at X, and then a flow box neighborhood of Xp. In this flow
box, solutions of the system behave particularly simply.

Suppose F(Xp) # 0. The transverse line at Xo, denoted by £(Xp), is the
straight line through Xj, which is perpendicular to the vector F(Xy) based at
Xo. We parametrize £(Xp) as follows. Let Vo be a unit vector based at X and
perpendicular to F(Xp). Then define h : R — £(Xy) by h(u) = X + uVo.

Since F(X) is continuous, the vector field is not tangent to £(Xy), at least in
some open interval in £{Xp) surrounding Xo. We call such an open subinterval
containing Xo a local section at Xp. At each point ofalocal section S, the vector
field points “away from” &, so solutions must cut across a local section. In
particular F(X) # 0 for X € S. See Figure 10.3.

B Xo)

X

£(XG)

Figure 10.3 A local
section S at Xp and
several representative
vectors from the vector
field along &.
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Figure 10.4 The flow box associated to S.

Our first use of a local section at X, will be to construct an associated flow
box in a neighborhood of Xp. A flow box gives a complete description of the
behavior of the flow in a neighborhood of a nonequilibrium point by means
of a special set of coordinates, An intuitive description of the flow in a flow
box is simple: points mave in parallel straight lines at constant speed,

Given a local section S at Xp, we may construct a map ¥ from a neigh-
borhood A" of the origin in R? to a neighborhood of Xj as follows. Given
(s, 1) € B2, we define

W (s, u) = ¢ge(h(u))

where h is the parameterization of the transverse line described above. Nate
that W maps the vertical line (0, #) in A to the lacal section S; W also maps
horizontal lines in A to pieces of solution curves of the system. Provided that
we choose A sufficiently small, the map U is then one to one on A, Also
note that DW takes the constant vector field (1, 0) in A/ to vector field F(X).
Using the language of Chapter 4, ¥ is a local conjugacy between the flow of
this constant vector field and the flow of the nonlinear system.

We usually take A" in the form ((s,u) | |s| < o'} where ¢ > 0. In this case
we sometimes write Vo = W(N) and call V; the flow box at (or about) X.
See Figure 10.4. An important property of a flow box is that if X € V,, then
p¢(X) € Sforauniquet € (—a,a).

If 8 is a local section, the solution through a point Zy (perhaps far from
&) may reach Xp € S at a certain time fy; see Figure 10.5. We show that in a
certain local sense, this “time of first arrival” at § is a continuous function of
Zy. More precisely:

Proposition. Let S bealocal section at Xo and suppose ¢y, (Zy) = Xy, Let W
be a neighborhood of Zy. Then there is an open set U C W conraining 7y and
a differentiable function v : U — R such that t(Zy) = ty and

¢ es
foreach X e U.
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Figure 10.5 Solutions crossing the local section S.

Proof: Suppose F(Xp) is the vector («, ) and recall that (e, 8) 5 (0, 0}, For
Y = (y,)2) € B?, define 5 : R — Rby

(YY) =Y -FXp) = oy + fya

Recall that ¥ belongs to the transverse line £(Xg) if and only if ¥ = Xo + V
where V - F(Xg) = 0. Hence ¥ € &(Xy) if and only if n(¥) = ¥ - F(Xy) =
Xo - F(Xp).

Now define G ; &2 % &8 — Rby

G(X, 1) = i (X)) = $(X) - F(Xp).
We have G(Zy, fa) = X - F(Xp) since ¢, (Zy) = Xp. Furthermore

% (Zo, 1) = | F(X0)* 0.

‘We may thus apply the implicit function theorem to find a smooth function
r: B2 — T defined on a neighborhood U of (Zg, fy) such that (%) =
and

G(X, T(X)) = G(Zy, 1g) = Xo - F(Xa).

Hence ¢h;(x)(X) belongs to the transverse line £(Xo). If & Ly is a suffici-
ently small neighborhood of Zy, then ¢ (x)(X) € S, as required. H

10.3 The Poincaré Map

Asin the case of equilibrium points, closed orbits may also be stable, asymptot-
ically stable, or unstable. The definitions of these concepts for closed orbits are
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entirely analogous to thase for equilibria as in Section 8.4, However, determin-
ing the stability of closed orbits is much more difficult than the corresponding
problem for equilibria. While we do have a tool that resenibles the linearization
technique that is used to determine the stability of {most) equilibria, generally
this tool is much more difficult to use in practice. Here is the tool.

Given a closed orbit y, there is an associated Poincaré map for y, some
examples of which we previously encountered in Sections 1.4 and 6.2. Near
a closed orbit, this map is defined as follows. Choose Xy € y and let § be
a local section at Xj. We consider the first return map on &. This is the
function P that associates to X € & the point P(X) = ¢;(X) € S where t is
the smallest positive time for which ¢,(X) € &. Now P may not be defined
at all points on & as the solutions through certain points in .S may never
return to S. But we certainly have P(Xy) = Xg, and the previous proposition
guarantees that P is defined and continuously differentiable in a neighborhood
of vﬁn.

In the case of planar systems, a local section is a subset of a straight line
through Xp, so we may regard this local section as a subset of R and take
Xy = 0 € . Hence the Poincaré map is a real function taking 0 to 0. If
|P'(0)] < 1, it follows that P assumes the form P(x) = ax+ higher order
terms, where |a| < 1. Hence, for x near 0, P(x) is closer to 0 than x. This
means that the solution through the corresponding point in S moves closer
to y after one passage through the local section. Continuing, we see that each
passage through & brings the solution closer to y, and so we see that y is
asymptotically stable. We have:

Proposition. Let X' = F(X) be a planar system and suppose that Xy leson a
closed orbit . Let P be a Poincaré mup defined on a neighborhood of Xy int some
local section. If |P'(Xo)| < 1, then y is asymptotically stable. |

Example. Consider the planar system given in polar coordinates by

P=r(l—1)
g =1

Clearly, there is a closed orbit lying on the unit circle r = 1. This solution
in rectangular coordinates is given by (cos t,sin ¢) when the initial condition
is (1,0). Also, there is a local section lying along the positive real axis since
8’ = 1. Furthermore, given any x € (0, o), we have ¢ (x, 0), which also lies
on the positive real axis Rt. Thus we have a Poincaré map P: RY — R*.
Moreover, P(1) = 1 since the point x = 1, = 0 is the initial condition
giving the periodic solution. To check the stability of this solution; we need to
compute P/(1).
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To do this, we compute the solution starting at (x, 0). We have 8(1) = t, 50
we need to find 7(27). To compute r(t), we separate variables (o find

\‘ F H,..+8E§an
r(l—r)

Fvaluating this integral yields
xe*

T = 1—x+xet

unmu:.

Plx)=r(27) = S

Differentiating, we find P'(1) = 1/¢’" sothat0 < P'(1) < 1. Thus the periodic
solution is asymptotically stable. [ ]

The astute reader may have noticed a litdle scam here. To determine the
Polncaré map, we actually first found formulas for all of the solutions starting
at (x,0). So why on earth would we need to compute a Poincaré map? Well,
good question. Actually, it is usually very difficult to compute the exact mo_.q:
of 2 Poincaré map or even its derivative along a closed orbit, since in practice
we rarely have a closed-form expression for the closed orbit, never mind the
nearby solutions. As we shall see, the Poincaré map is usually more useful
when setting up a geometric model of a specific system (see the Lorenz system
in Chapter 14). There are some cases where we can nr.nmnz_u:m this _w_.cEnB
and gain insight into the Poincaré map, as we shall see when we investigate the
Van der Pol equation in Section 12.3.

10.4 Monotone Sequences in Planar
Dynamical Systems

Let Xg, X3,.-. € B2 be a finite or infinite sequence of distinct points on the
solution curve through Xp. We say that the sequence is monolone along the
solution 1f gy, (Ko) = Xy with 0 = ) <tp---.

Let Yo, Vi.... be a finite or infinite sequence of points on a line segment I
in IR, We say that this sequence is monotone along I if ¥, is between Yy, and
V541 in the natural order along I for alln = 1. )

A sequence of points may be on the intersection of a solution curve and
a segment I; they may be manotone along the solution curve but nat along

0.4 Monotone Sequences

o
)

Figure 10.6 Two solutions crossing a straight line. On the left, Xg,
Xi, X3 is monotone alang the solution but not along the straight
line. On the right, Xg, X1, X2 is menotone along both the solution
and the line.

the segment, or vice versa; see Figure 10.6. However, this is impossible if the
segment is a local section in the plane.

Proposition. LetS be a local section for a planar system of differential equa-
tions and let Yo, Y1, Y3, ... be a sequence of distinct poinis in S that lie on the
same solution curve, If this sequence is monotone along the solution, thei it is also
monotone along S.

Proof: It suffices to consider three points ¥y, Y], and Y3 in S. Let I be the
simple closed curve made up of the part of the solution between ¥, and ¥
and the segment T € S between ¥ and Vj. Let D be the region bounded by
T. We suppose that the solution through ¥; leaves D at Y| (see Figure 10.7; if
the solution enters D, the argument is similar). Hence the solution leaves D at
every point in T since T is part of the local section.

1t follows that the complement of 1D is positively invariant. For no solution
can enter [ at a point of T not can it cross the solution connecting ¥y and
¥1, by uniqueness of solutions.

Therefore ¢;(Y}) € B? — D for all t > 0. In particnlar, ¥; € § — T.
The set S — T is the union of two half open intervals Ip and I with ¥}
an endpoint of I for j = 0,1. One can draw an arc from a point ¢¢(¥1)
(with € > 0 very small) to a point of I}, without crossing L. Therefore I
is outside D. Similarly Tp is inside D. Tt follows that Y; € 1) since it must
be outside D). This shows that ¥, is between Yy and ¥y in I, proving the
proposition. u

‘We now come to an important property oflimit points.
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hin

Figure 10.7 Solutions exit
the region D through T.

Proposition. For a planar system, suppose that Y € w(X). Then the man.q_.._
through ¥ crosses any local section at no more than one point. The same s true if
Y ew(X).

Proof: Suppose for the sake af contradiction that ¥y and ¥; are distinct points
on the solution through ¥ and § is a Jocal section containing ¥1 and Y5
Suppose ¥ & w(X) (the argument for a(X) is similar). Then ¥; € w(X) for

= 1,2. Let V. be flow boxes at Yy defined by some intervals [ C S; we
assume that J; and J; are disjoint as depicted in Figure 10.8. The solution
through X enters each Vy infinitely often; hence it crosses Ji infinitely often.

Figure 10.8  The solution
through X cannot cross V4 and
Vp infinitely often.
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Hence there is a sequence
ay, by, az, by a3, b, .,
which is monotone along the solution through X, with a, € Jj, b, € J5 for

n=1,2,.... But such a sequence cannot be monotone along & since /; and |;
are disjoint, contradicting the previous proposition. =

10.5 The Poincaré-Bendixson Theorem

[n this section we prove a celebrated result concerning planar systems:

Theorem. (Poincaré-Bendixson) Suppose that S is a nonempty, closed
and bounded limit set of a planar system of differential equations that contains
no equilibritm point. Then Q 1s a closed orbit.

Proof: Suppose that w(X) is closed and bounded and that ¥ € (X}, (The
case of e-limit sets is similar.) We show first that Y lies on a closed orbit and
later that this closed orbit actually is w{X).

Since ¥ belongs to w(X) we know from Section 10.1 thates(¥) isa nonempty
subset of w(X). Let Z € @(Y) and let S be a lacal section at Z, Let V be a
flow box assaciated to 8. By the results of the previous section, the solution
through ¥ meets § in exactly one point. On the other hand, there is a sequence
ty — oo such that ¢, (Y) — Z; hence infinitely many ¢, (¥) belong to V.
Therelore we can find r, s € R such that r > sand ¢,.(Y), ¢5(¥) € S. It follows
that ¢ (¥) = ¢s(Y); hence ¢, _(Y) = ¥ and r — 5 > 0. Since w(X) contains
no equilibria, ¥ must lie on a closed orbit.

It remains to prove that if y is a closed orbit in w(X), then y = w(X). For
this, it is enough to show that

Jim_d((X),p) =0,
where d{¢(x), ¥) is the distance from ¢¢(X) to the set y (that is, the distance
from ¢;(X) to the nearest point of y).
Let & be a local section at ¥ € y. Let € > 0 and consider a flow box V,
associated to 5. Then there is a sequence fp < f < - - - such that

L ¢ (X)eS;
2. (X)) ¥;
3. (X)) € Sforty_y <t <ty, 1=12,....

Let X,; = ¢,(X). By the first proposition in the previous section, X, is a
monotone sequence in S that converges to Y.
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We claim that there exisis an upper bound for {he set of positive numbers
fyegr — fn for n sufficiently large. To see this, mcwmcmn.&aﬁs — Y wheret > 0.
Then for X, sufficiently near ¥, e (Xn) € Ve and hence

Pyl ) €S
for some t € [—€,€l. Thus
) — I ST TE
This provides the upper Bbound for tyr1 — In- Also, tyat — 18 clearly at least
mm”mon_nlvocsmalvco. -

Let f > 0 be small. By continuity of solutions with respect to initial con-
ditions, there exists 8 > 0 such that, if |Z — Y| <& and |t] £ T+ m.mumb
el Z) — (Y] < B Thatis, the distance from the solution ¢y (Z) 10 ¥ 18 less
than B for all ¢ satisfying [t] =7 & Let rip be so large that | Xy — y| <8 for
all n = ng. Then

by () — e () <p

if |t <t+eamdn= 0. Now let t = i et 2 1 be such that

ty <15 Inbl-

Al (0, p) < 1) — Br-1, (T
= Ve Kr) = Pri, (1)
<f

since |t—fy| = THE This shows that the distance from i (X) toy isless z.:ﬁ B
for all sufficiently large . This completes the proof of the Poincaré-Bendixson
theorem. | |

Example. Another example of an w-limit set that is neither a closed orbit
nor an equilibrium is pro ided by a fromoclinic solution, Consider the system

: PO B
Hxn\V_IARM|m~|+WquMb

<! wn wﬂug
Fogd g | T LA
y=x—x ha =)
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Figure 10.9 A pair of
homoclinic solutions in the
w-limit set.

A computation shows that there are three equilibria: at (0,0), (—1,0), and
(1,0). The origin is a saddle, while the other two equilibria are sources. The
phase portrait of this system is shown in Figure 10.9. Note that solutions far
from the origin tend to accumulate an the origin and a pair of homogelinic
solutions, each of which leaves and then returns to the origin. Solutions ema-
nating from either source have w-limit set that consists of just one homoelinic
solution and (0, 0). See Exercise 6 for proofs of these facts. [ |

10.6 Applications of Poincaré-Bendixson

10.6 Applications of Folncar®==— ———

The Poincaré-Bendixson theorem essentially determines all of the possible
limiting behaviors of a planar flow. We give a number of corollaries of this
{mpartant theorem in this section.

A limit cycle is 2 closed orbit ¥ such thaty C w(X)or p C a(X) for some
X ¢ y. In the first case ¥ is called an w-limit cycle; in the second case, an
o-Yimit cycle. We deal only with @-limit sets in this section; the case of a-limit
sets is handled by simply reversing time.

Tn the proof of the Poincaré-Bendixson theorem it was shown that limit
cycles have the following propetty: Ify is an -limit cycle, there exists X & ¥
such that

fim_d(¢(X),7) =0

t—>o0

Geometrically this means that some solution spirals toward y as f — 00. See
Figure 10.10, Not all closed orbits have this property. For example, in the




Chapter 10 Closed Orbits and Limit Sets

Figure 10.10 A
solution spiraling
toward a limit cycle.

case of a linear system with a center at the origin in T2, the closed orbits that
surround the origin have no solutions approaching them, and so they are not
limit cycles.

Limit cycles possess a kind of (one-sided, at least) stability. Let y be an
w-limit cycle and suppose ¢(X) spirals toward y as t — oc. Let S be a local
section at Z € y. Then there is an interval T C & disjoint from y, bounded
by ¢4, (X) and ¢y, (X) with y < #;, and not meeting the solution through X
for fq < # < f;. See Figure 10.11. The annular region A that is bounded on one
side by y and on the other side by the union of T and the curve

{#eX) 0=t = 1)

is positively invariant, as is the sct B = A — y. It is easy to see that ¢,( V') spirals
toward y forall Y € B. Hence we have:

Corollary 1. Let y be an w-limit cycle. If y = o(X) where X ¢ y, then X
has a neighborhood O such thaty = w(Y) forall Y € O. In other words, the set

Ya(Y)=y)—v

is open. | |

Recall that a subset of R” that is closed and bounded is said to be compact.
As another consequence of the Poincaré-Bendixson theorem, suppose that
K is a positively invariant set that is compact. Tf X € K, then s(X) must
also lie in K. Hence K must contain either an equilibrium point or a limit
cycle.

10.6 Applications of Poincaré-Bendixson

8

¥

Figure 10.11 The reglen
A is positively invariant.

Corollary 2. A compact set K that is positively or negatively invariant contairs
either a limit cycle or an equilibrium point. |

The next result exploits the spiraling property of limit cycles.

Corollary 3. Lety be aclosed orbit and let U be the open region in the inter-
iar of y. Then U contains either an equilibrium point or a limit cycie.

Proof: Let D be the compact setI{ U . Then D is invariant since no solution
in 4 can cross ¥, If I{ contains no limit cycle and no equilibrium, then, for
any X € U,

olX)=alX)=y

by Poinearé-Bendixson. If S is a local section at a point Z € y, there are
sequences b, — 00, 5; — —0a such that ¢y, (X), ¢, (X) € S and both ¢, (X)
and ¢, (X) tend to Z as » — o0. But this leads to a contradiction of the
proposition in Section 10.4 on monotone sequences. [ |

Actually this last result can be considerably sharpened:

Corollary 4. Lety beaclosed orbit that forms the boundary of an open set U.
Then U contains an equilibrium point.

Proof: Suppose U conlains no equilibrium point. Consider first the case
that there are only finitely many closed orbits in U. We may choose the
closed orbit that bounds the region with smallest area. There are then no
closed orbits or equilibrium points inside this region, and this contradicts
corallary 3.
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Naow suppose that there are infinitely many closed otbitsin U. 1£X, — X
in U and each X, lies on a closed orbit, then X must lie on a closed orbit.
Otherwise, the solution through X would spiral toward a limit cycle since
there are no equilibtia in U. By corollary 1, so would the solution through
some nearby Xy, which is impossible.

Let v > 0 be the greatest lower bound of the areas of regions enclosed by
clased orbits in U. Let {yn} be a sequence of closed orbits enclosing regions
of arcas vy such that lim—co v = v Let Xy € V- Since ¥ U U is compact,
we may assume that X, > X € U. Then if U contains na equilibrium, X lies
on a closed orbit 8 bounding a region of area v. The usnal section argument
shows that as it — 00, yy gets arbitrarily close to 8 and hence the area v, — v
of the region between yn and f§ gocs to 0. Then the argument above shows that
there can be no clased orbits or equilibrivm points inside p, and this provides
a contradiction ta corollary 2. ]

The following result uses the spiraling properties of limit cycles in a subtle
way.

Corollary 5. Let H be a first integral of a planar system. If H is not constant
on any open set, then there are 110 limit cyeles.

Proof: Suppose there is a limit cycle p; let ¢ € R be the constant value of
H on y. If X(1) is a solution that spirals toward y, then H(X(1)) = c by
continuity of H. In cotollary 1 we found an open set whose solutions spiral
toward y; thus H is constant on an open sel. |

Finally, the following result is implicit in our development of the theory of
Liapunov functions in Section 9.2.

Corollary B. IfL is a strict Linpunov function for a planar system, then there
are no limit cycles. | |

10.7 Exploration: Chemical Reactions
That Oscillate

_ Inat A

For much of the 20th. century, chemists believed that all chemical reactions.

tended monotonically to equilibrium, This Dbelief was shattered in the 1950s
when the Russian biochemist Belousov discovered that a certain reaction
involving citric acid, bromate ions, and sulfuric acid, when combined with
a cerium catalyst, could oscillate for long periods of time before settling to
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equilibrium. The concoction would turn yellow for a while, then fade, then
turn yellow again, then fade, and on and on like this for over an hour. This
reaction, now called the Belousov-Zhabotinsky reaction (the BZ reaction, for
short), was a major turning point in the history of chemical reactions. Now,
many systems are known to oscillate. Some have even been shown to behave
chaotically.

One particularly simple chemical reaction is given by a chlorine dioxide—
momz_._mlgmmonpn acid interaction, The exact differential equations modeling
this reaction are extremely complicated. However, there is a planar nonlinear
system that closely approximates the concentrations of two of the reactants
The system is :

dxy
14 %2

= b O\F
e 1422

where x and y represent the concentrations of [~ and ClO7 , respectively, and
aand b are positive parameters.

i=a-x-—

1. mnmmu the exploration by investigating these reaction equations numer-
mew What qualitatively different types of phase portraits do you
Ll
. Pind all equilibrium points for this system.
. Linearize the system at your equilibria and determine the type of each
equilibrium. .
. In the ab-plane, sketch the regions where you find asymptotically stable
or unstable equilibria.
. Identify the a, b-values where the system undergoes bifurcations.
. Using the nullclines for the system tagether with the Poincaré-Bendixson
theorem, find the a, b-values for which a stable limit cycle exists. Why do
these values correspond to oscillating chemical reactions?

For more details on thisreaction, see [27]. The very interesting history of the

.mN—._HMM&os is described in [47]. The original paper by Belousay is reprinted
m .

EXERCISES

1. Eor each of the following systems, identify all points that lie in either an
- or an -limit set
(@) Fr=r-r%8'=1
) F=r -3+, 8 =1
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(¢) r'=sinr, 8 =-1
(d) %' =sinx siny, ' = —cosx cosy

2. Consider the three-dimensional system

3.

f=r(1-r1)

8'=1

g=—2
‘Compute the Poincaré map along the clased orbit lying on the unit circle
given by r = 1 and show that this closed orbit is asymptotically stable.
Consider the three-dimensional system

'=r(1-1)

a=1

&l
Again compute the Poincaré map for this system. What can you now say

about the behavior of solutions near the closed orbit? Sketch the phase
portrait for this system.

. Consider the system

x' = sin%(—0. 1 cosx — cos ¥}

y =siny{cosx — 0.1 cosy).

Show that all solutions emanating from the source at (xr/2,7/2) bave
w-limit sets equal to the square bounded by x = 0,7 and y = 0,7
The system

=g =1
=1
depends on a parameter 4. Determine the phase plane for Tepresentative

a2 values and describe all bifurcations for the system.
Consider the system

¥==

u\.\HHula1A

(a) Find all equilibrivm peints.
(b) Determine the types of these equilibria.

10.

1.

Exercises

Figure 10.12 The
region A is positively
invariant.

(¢) Prove that all nonequilibrium solutions have e-limit sets consisting
of either one or two homaoclinic solutions plus a saddle point.

Let A be an annular region in R%. Let F be a planar vector field that
points inward along the two boundary curves of A. Suppose also that
every radial segment of 4 is local section. See Figure 10.12. Prove there
is a periodic solution in A.

Let F be a planar vector field and again consider an annular region A
a5 in the previous problem. Suppose that F has no equilibria and that F
points inward along the boundary of the annulus, as before.

(a) Prove there is a closed orbit in A. (Natice that the hypothesis is
weaker than in the previous problem.)

(b) If there are exactly seven closed orbits in A, show that one of them
has orbits spiraling toward it from both sides,

Let F be a planar vector field on 2 neighborhood of the annular region A
above, Suppose that for every boundary point X of A, F(X) is a nonzero
vector tangent to the boundary.

(a) Sketch thepossible phase portraits in A under the further assumption
that there are no equilibria and no closed orbits besides the boundary
circles. Include the case where the solutions on the boundary travel
in opposite directions.

{b) Suppose the boundary solutions are oppositely ariented and that the
flow preserves arca. Show that A contains an equilibrium,

Show that a closed orbit of a planar system meets a local section in at
most one point.

Show that a closed and bounded limit set is connected (that is, not the
union of two disjoint nonempty closed sets).
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12. Let X' = F(X) be a planar system with no equilibrium points, Suppose
the flow ¢; generated by F preserves area (that is, if U is any open set,
the avea of ¢ U) is independent of £). Show that every solution curve is
a closed set,

Let p be a closed orbit of a planar system. Let A be the period of y. Let

{1} be asequence of closed orbits. Suppose the period of , is A, [ there

are points Xy € yy such that Xy — X € y, prove that &, — A. (This

result can be false for higher dimensional systems. Tt is true, however,
that if Ay — it then ¢ is an integer multiple of )
. Cansider a system in B having only a finite number of equilibria.

{a) Show that every limit set is either a closed orbit or the union of
cquilibrium points and solutions @ (X) such that im0 @(X)
and lim . —oq ¢;(X) are these equilibria.

() Show by example (draw a picture) that the aumber of distinct
solution curves in (X ) may be infinite.

. Let X be a recurrent point of a planar systeni, that is, there is a sequence
ty — =00 such that

iy, (X) — K.

(a) Prove that either X isan equilibrium or X lieson a closed orbit.

(b) Show byexample {hat there can be a recurrent point for a nonplanar
system that is nat an equilibrium and does not lie on a closed orbit.

Let X' = F(X)and X' = G(X) be planar systems, Suppose that
FUX) - GLX) =0

for all X & L If F has a dlosed orbit, prove that G has an equilibrium
point.

Let y be a closed orbit for a planar system, and let U be the bounded,
open region inside y. Show that ¥ is not simultaneously the omega and
alpha limit set of points of 4. Use this fact and the Poincaré-Hendixson
theorem to prove that I{ contains an equilibrium that is not a saddle.
(Hint: Consider the limit sets of points on the stable and unstable curves
of saddles.)

11

Applications in Biology

In this chapter we make use of the technigues developed in the previous few
chapters to examine some nonlinear systems that have been used as mathe-
matical models for a variety of biological systems. In Section 11.1 we utilize
the preceding results involving nullclines and linearization to describe sev-
eral biological models intvolving the spread of communicable diseases. In
Section 11.2 we investigate the simplest types of equations that model a preda-
torfprey ecology. A mare sophisticated approach is used in Section 11.3 to
study the populations of a pair of competing species. Instead of developing
explicit formulas for these differential equations, we instead make only quali-
tative assumptions about the form of the equations. We then derive geometric
information about the hehavior of solutions of such systems based on these
assumptions.

11.1 Infectious Diseases

The spread of infectious diseases such as measles or malaria may be modeled
as a nonlinear system of differential equations. The simplest model of this
type is the SIR model. Here we divide a given population into three disjoint
groups. The population of susceptible individuals is denoted by 5, the infected
population by I, and the recovered population by R. As usual, each of these
is 2 function of time. We assume for simplicity that the total population is
constant, so that (§ -+ T+ R)' = 0.
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