[D2212 Network Programming with Java
Lecture 5

Multithreading with Java

Hooman Peiro Sajjad
Vladimir Vlassov
KTH/ICT/SCS
HT 2016

Outline

Introduction to threads
Multithreading with Java

— Thread class and Runnable interface

— Two ways of creating threads
Java thread synchronization

— synchronized methods and blocks

— Shared objects as monitors; Bounded buffer (consumer-producer) example
Concurrent utilities

— Locks and Conditions;

— The Executor framework; Example of using a thread pool

— Synchronizers; Atomic variables; Concurrent collections

Further reading;:
http://docs.oracle.com/javase/tutorial/essential/concurrency/

Lecture 3: Multithreading with Java

Process and Thread (1/2)

* Process: A unit of activity characterized by a sequence of
instructions, a current state and an associated set of system

resources

* Thread: A path of execution 1n a process characterized by an

execution state, execution stack and local variables

Lecture 3: Multithreading with Java

Process and Thread (2/2)

Time —>

Request Request

Thread t

[] []
(Process pl) - -
Thread t1 -

I

(Process pl)
Thread 2 — ——

(Process pl)

Lecture 3: Multithreading with Java

General Benefits of Using Threads

Creating threads takes less time
Terminating threads takes less time
Switching between threads takes less time

Threads 1n a process can communicate to each other without

interference of kernel

Lecture 3: Multithreading with Java

Multithreading in a Distributed Application

* Multiple threads 1n a client-server application (request-
response interaction)

* (Client side

Multithreading to hide communication latency
Responsive user interface

Typically two threads: one to interact with the user via (G)UI; another
to interact with the server e.g. over TCP socket connection

The (G)UI thread communicates user’s control actions and input to
the communication thread through e.g. shared buffers or by method
invocations on the communication thread object, e.g. to stop it

Communication thread passes server responses to the (G)UI thread by
GUI call-backs (method invocations) or/and through shared buffers.

Access to shared buffers should be synchronized

Lecture 3: Multithreading with Java

Multithreading in a Distributed Application
(cont’d)

* Server side

— Multithreading for scalability and, as a consequence, for better
performance (higher throughput)

— One thread (the main thread) listens on the server port for client
connection requests and assigns (creates) a thread for each client
connected

— FEach client is served in its own thread on the server

— The listening thread should provide client information (e.g. at least
the connected socket) to the servicing thread

— Typically servicing threads are independant, but might access shared
resources, €.g. database, and therefore might need to be synchronized.

Lecture 3: Multithreading with Java

Multithreading 1n Java

* A Java thread is a light-weight process represented by an

object of the Thread (sub)class that includes start and
run methods

— Stack and PC (Program Counter) register
— Accesses all variables in its scope
* Each thread has a method void run ()
— Executes when the thread starts
— Thread vanishes when it returns
— You must implement this method
* C(lasses for multithreading:
— public class Thread
— public class ThreadGroup
— public interface Runnable

Lecture 3: Multithreading with Java

First Way to Program and Create a Java Thread

1. Extend the Thread class

— OQOverride the run method and define other methods if
needed;
— Create and start a thread:

* Instantiate the Thread subclass;

* (Call the start method on the thread object — creates a thread
context and invokes run to be executed in a separate thread

Lecture 3: Multithreading with Java

Another Way to Program and Create Java

Threads

2. Implement the Runnable interface in a class that
represents a class of fasks to be execute 1n threads

— Implement the run method;

— Create and start a thread with the Runnable object, i.e.
the thread is given a Runnable task to execute

2.
3.

Create a Runnable object;

Create a thread to execute that task by passing the Runnable
object to a Thread constructor

Call the start method on the thread object to start the thread.

Lecture 3: Multithreading with Java 10

Thread Class and Runnable Interface

public class Thread extends Object implements Runnable ({
public Thread() ;
public Thread (Runnable target);
public Thread (String name) ;
public Thread (Runnable target, String name) ;

public synchronized native void start();

public void run() ;

}

public interface Runnable{

public void run() ;

Lecture 3: Multithreading with Java 11

Example 1: Extending Thread

public class RunThreads {
public static void main(String[] args) {
OutputThread tl = new OutputThread(“One”) ;

OutputThread t2 = new OutputThread (“Two”) ;
tl.start () ;

t2.start () ;

}
class OutputThread extends Thread {

OutputThread (String name) { super (name); }
public void run() ({

for (int 1 = 0; 1 < 3; i++) {
System.out.println (getName()) ;
yield();

Lecture 3: Multithreading with Java 12

Starting a Thread

OutputThread tl

= new OutputThread(“One”) ;

tl.start(); \\

T

N

tl:
start ()

rén()

for (int 1 = 0; 1 < 3; i++) {
System.out.println (getName()) ;
yield() ;

}

Lecture 3: Multithreading with Java 13

Example 2. Implementing Runnable

public class RunThreadsl ({
public static void main(String[] args) ({

OutputClass outl = new OutputClass (“One”) ;
OutputClass out2 = new OutputClass (“Two”) ;
Thread tl = new Thread(outl);

Thread t2 = new Thread(out2) ;

tl.start();

t2.start () ;

}
}
class OutputClassimplements Runnable
String name; Runnable interface

OutputClass (String s) {

neme = sy 4
}
" public void run() {

for (int i=0; i<3; i++) {
System.out.println (name) ;
Thread.currentThread () .yield() ;

N ! -

} Lecture 3: Multithreading with Java 14

Thread with a Runnable Task

OutputClass outl = new OutputClass (“One”) ;
Thread tl = new Thread(outl) ;
tl.stark() ;

tl, “outl:

for (int i=0; i<3; i++) {
System.out.println (name) ;
yield() ;

}

Lecture 3: Multithreading with Java 15

Starting a Thread

t.start();

e Starts the new thread
* (aller returns immediately

* Caller & thread run in parallel

"Art of Multiprocessor Programming” by
Maurice Herlihy, and Nir Shavit

20

Joining a Thread

* What if you want to wait for a thread to finish?

t.join();

* Blocks the caller
* Waits for the thread to finish

* Returns when the thread is done

"Art of Multiprocessor Programming” by
Maurice Herlihy, and Nir Shavit

21

Some Methods of the Thread Class

run ()

— Should be overridden (the code
of thread is placed here),
otherwise does nothing and
returns;

— Should not be invoked directly
but rather calling start().

start ()

— Start the thread; JVM invokes
the run method of this thread.

join ()
— Wait for this thread to die.
yield ()

— Causes a context switch.

sleep (long)

The thread pauses for the
specified number of
milliseconds.

interrupt ()

Get / set / check thread attributes:

Interrupt this thread.

setPriority (int),
getPriority (),

setName (String),
getName (),

setDaemon (boolean),
isDaemon ()

Lecture 3: Multithreading with Java

23

Thread State Diagram

new Thread()
yield ()

New F start () — Runnable

return Sl?%ﬁ;) 235125&11()
. wal A9
System.exit () join () Zigepor301n
,////// \\\\ interrupt ()
Dead Suspended =

* IO operations affect states Runnable and Suspended in the ordinary way

Lecture 3: Multithreading with Java 24

Thread Interactions

Threads in Java execute concurrently — at least conceptually.

Threads communicate

— By calling methods and accessing variables of Thread (Runnable)
objects like ordinary objects;

— Via pipes, TCP connections;
— Via shared objects.

An object 1s shared when multiple concurrent threads invoke
1ts methods or access its variables.

Lecture 3: Multithreading with Java

26

Race Condition

int value = 0;
public int incrementValue() {

return ++value;

T1: read the value, get 0, add 1, so value =1
T2: read the value, get 0, add 1, so value =1
T1: write 1 to the field value and return 1
T2: write 1 to the field value and return 1

To avoid race condition we need to run the method atomically.

Lecture 3: Multithreading with Java

27

synchronized Methods and Blocks

* A shared object may have synchronized methods or code
blocks to be executed with mutual exclusion

* The synchronized modifier defines mutual exclusion for
an entire method or a code block

Lecture 3: Multithreading with Java

28

synchronized Methods and Blocks (cont’d)

* Each object has an implicit lock associated with the object

* Each object has also one implicit condition variable called
wait set

* Each synchronized block requires a lock object to be explicitly
indicated

* A thread must obtain the lock when calling a synchronized
method or block

— A thread may hold locks of more then one objects; nested synchronized
calls are closed

* A thread may wait on and signal to the wait set

Lecture 3: Multithreading with Java 29

synchronized Method

public class ComputeMax {

private int max = Number.MIN VALUE;

public synchronized int getMax(int wvalue) {
if (value > max) max = wvalue;
return max;

}

J_ -

~

synchronized method

Lecture 3: Multithreading with Java

30

synchronized Block

public class ComputeMax {
private int max = Number.MIN VALUE;

public int getMax (int wvalue) {
if (va

synchronized (this) ({
i1f (value > max) max = value;

} N
synchronized block

return max;

Lecture 3: Multithreading with Java 31

Monitors 1n Java

Java monitor 1s an object of a class with synchronized
methods, which can be invoked by one thread at a time.
— A class may contain synchronized and ordinary non-synchronized
methods — the latter are executed without synchronization.
Each monitor has an implicit monitor lock

Each monitor has an implicit condition variable
(a.k.a. wait set)

— wait(),notify () and notifyAll () inscope ofa
synchronized method;

— No priority wait;

— Signal-and-Continue policy of notify () and notifyAll ()

Lecture 3: Multithreading with Java 32

Java Synchronized Methods (1/3)

public class Queue<T> {

int head = 0, tail = 0;
T[QSIZE] items;

public synchronized T deq() {
while (tail - head == 0)
this.wait();
T result = items[head % QSIZE]; head++;
this.notifyAll();
return result;

}
1

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

33

Java Synchronized Methods (2/3)

[public class Queue<T>

Each object has an implicit
lock with an implicit condition

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

34

Java Synchronized Methods (3/3)

Lock on enitry,
unlock on return

[synchronized

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

35

Java Synchronized Methods (4/3)

Wait on implicit
condition

[this.wait();

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

36

Java Synchronized Methods (5/3)

Signal all threads waiting
on condition

[this.notifyAll();

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

37

Example 1: Producer/Consumer

* Producer and Consumer threads are using a shared object
(Shared Cell monitor) to interact in a dataflow fashion

Producer Consumer

put take

» Shared cell

* The “shared cell” (buffer) is a monitor
— Methods put and take are synchronized to be executed with
mutual exclusion.
— An mmplicit condition variable (“wait set”) 1s used for condition
synchronization of Producer and Consumer.

Lecture 3: Multithreading with Java

38

The Shared Cell Monitor

public class SharedCell {
private int wvalue;
private boolean empty = true;
public synchronized int take() {
while (empty) {
try {

wait (),
} catch (InterruptedException e) { }

}

empty = true;
notify (),
return value;

}

public synchronized void put(int value) {
while ('empty) {

try {

wait ()

} catch (InterruptedException e) { }
}
this.value = value;
empty = false;
notify ()

Consumer

|’put taa
» Shared cell J

Producer

v

39

Lecture 3: Multithreading with Java

Producer Class

class Producer extends Thread {
private SharedCell cell;
private boolean Stop = false;

public Producer (SharedCell cell) {
this.cell = cell;

Producer

put

}

public void setStop () {
Stop = true;

}

public void run () {
int value;
while (!Stop) {

value = (int) (Math.random () * 100);
cell.put (value);
try {

sleep (value);

} catch (InterruptedException e) { }

Lecture 3: Multithreading with Java

-
»

take

Consumer

v

40

Consumer Class

class Consumer extends Thread {

private SharedCell cell; Producer Consumer
private int n;

public Consumer (SharedCell cell, int n)
{
this.cell = cell;
this.n = n;

}

public void run () {

Shared cell

int wvalue;
for (int i = 0; i < n; i++) {
value = cell.take ();

System.out.println ("Consumer: " +
i+ " value = " + value);

}
}

Lecture 3: Multithreading with Java 41

A Test Application

public class Exchange {

public static void main(String args|[])

{

SharedCell cell = new SharedCell ()
Producer p = new Producer (cell);

Consumer c¢ = new Consumer (cell, 10);

p.start ();
c.start (),

try {
c.join ();

} catch (InterruptedException e) { };

p.setStop ()
pP-interrupt() ;

Producer

put

Lecture 3: Multithreading with Java

take

Consumer

42

Example 2: Synchronized Bounded Buffer

public class Bounded Buffer ({
private Object[] items;
private int count = 0, front = 0, rear = 0;
private int n;

public Bounded Buffer (int n) ({

this.n = n;
items = new Object[n];

Lecture 3: Multithreading with Java

43

Synchronized Bounded Buffer (cont’d)

public synchronized void put (Object x) ({
while (count == n)
try { wait(); }

catch (InterruptedException e) { }

items|[rear] = x; rear = (rear + 1) % n; count++;

notifyAll () ;
}
public synchronized Object take() {
while (count == 0)
try { wait(); }
catch (InterruptedException e) { }
Object x = items|[front];
front = (front + 1) % n; count--;
notifyAll () ;
return x;

Lecture 3: Multithreading with Java

- 44

Java Concurrency Utilities:
Java.util.concurrent

Locks and Conditions

Synchronizers

— G@General purpose synchronization classes, including semaphores,
mutexes, barriers, latches, and exchangers

The Executor framework

— for scheduling, execution, and control of asynchronous tasks
(Runnable objects)

Nanosecond-granularity timing
— The actual precision of System.nanoTime is platform-dependent

— Used for time-stamps and time estimates

Lecture 3: Multithreading with Java

45

Concurrency Utilities: (cont’d)

* Atomic Variables

Classes for atomically manipulating single variables (of primitive
types and references)

E.g. AtomicBoolean, AtomicInteger, AtomicLong
For object references and arrays

E.g. AtomicReference<V>,
AtomicMarkableReference<V>,
AtomicStampedReference<V>

Used to implement concurrent collection classes

* Concurrent Collections

Pools of items

— Queue and BlockingQueue interfaces
— Concurrent implementations of Map, List, and Queue.

Lecture 3: Multithreading with Java 46

L.ocks and Conditions

java.util.concurrent.locks

— Classes and interfaces for locking and waiting for conditions
ReentrantLock class

— Represents a reentrant mutual exclusion lock

— Allows to create condition variables to wait for conditions
Condition interface

— Represents a condition variable associated with a lock

— Allows one thread to suspend execution (to "wait") until notified by another
thread

— The suspended thread releases the lock
ReentrantLock locks (like synchronized objects) are monitors
— Allow blocking on a condition rather than spinning
Threads:
— acquire and release lock
— wait on a condition

Lecture 3: Multithreading with Java

47

The Java Lock Interface (1/5)

[void lock();

Acquire lock

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

48

The Java Lock Interface (2/5)

(void unlock; L—

Release lock

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

49

The Java Lock Interface (3/5)

boolean tryLock();
boolean tryLock(long time, TimeUnit unit);

Try for lock, but not too hard

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

50

The Java Lock Interface (4/5)

[Condition newCo“\di'ltif(_La

Create condition to wait on

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

51

The Java Lock Interface (5/5)

| void lockInterruptibly() throws InterruptedException;|

Guess what this method does?

Art of Multiprocessor 52

Programming® Herlihy-Shavit
20O\~

Lock Conditions (1/4)

public interface Condition {
void await();
boolean await(long time, TimeUnit unit);

void signal();
void signalAll();
}

Art of Multiprocessor 53

Programming® Herlihy-Shavit
20O\~

Lock Conditions (2/4)

void await();
boolean await(long time, TimeUnit unit);

L—

Release lock and
wait on condition

Art of Multiprocessor 54

Programming® Herlihy-Shavit
20O\~

Lock Conditions (3/4)

[&oid signal();

Wake up one waiting thread

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

55

Lock Conditions (4/4)

[void signalAll():

Wake up all waiting threads

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

56

Await, Signal and Signal All

q.awalilt()

Releases lock associated with q

Sleeps (gives up processor)

Awakens (resumes running) when signaled by Signal or SignalAll

Reacquires lock & returns

q.signal();

Awakens one waiting thread

* Which will reacquire lock associated with

q.signalAll();

Awakens all waiting threads

* Which will each reacquire lock associated with q

Art of Multiprocessor

Programming® Herlihy-Shavit
20O\~

57

Example 3: Lock-Based Blocking Bounded
Buffer

public class BoundedBuffer {
final Lock lock = new ReentrantLock () ;
final Condition notFull = lock.newCondition()
final Condition notEmpty = lock.newCondition() ;
final Object[] items;
int rear, front, count, n;

public BoundedBuffer (int n) ({

this.n = n;
items = new Object|[n];

Lecture 3: Multithreading with Java 58

public void put (Object x) throws InterruptedException {
lock.lock() ;

try {
while (count == n) notFull.await () ;
items|[rear] = x; rear = (rear + 1) % n; count++;
notEmpty.signal () ;

} finally {

lock.unlock () ;

}

public Object take() throws InterruptedException ({
lock.lock() ;

try {
while (count == 0) notEmpty.await() ;
Object x = items|[front];
front = (front + 1)% n; count--;

notFull.signal () ;
return x;

} finally {
lock.unlock () ;

Lecture 3: Multithreading with Java

59

The Executor Framework

For scheduling, execution, and control of asynchronous
tasks 1n concurrent threads according to a set of execution
policies

Allows creating an executor (a pool of threads) and assigning
tasks to the executor

An Executor object executes submitted tasks

For example:

Executor e =

Executors.newFixedThreadPool (numThreads) ;
e.execute (new RunnableTaskl()) ;
e.execute (new RunnableTask2()) ;

Executor Interfaces

An executor can have one of the following interfaces:
Executor
— A simple interface to launch void Runnable tasks
— execute (Runnable)
ExecutorService
— Executor subinterface with additional features to manage lifecycle
— To launch and control void Runnable tasks and Callable tasks, which return results

— submit (Runnable) , submit (Callable<T>), shutdown (),
invokeAll(...),awaitTermination(...)
— Future<V> represents the result of an asynchronous computation
ScheduledExecutorService
— ExecutorService subinterface with support for future or periodic execution

— For scheduling Runnable and Callable tasks

Example: Using an Executer (a Thread Pool)

public class Handler implements Runnable ({
private Socket socket;
public Handler (Socket socket) { this.socket = socket; }
public void run() {
try {

BufferedReader rd = new BufferedReader (
new InputStreamReader (socket.getInputStream())) ;

PrintWriter wr = new PrintWriter (socket.getOutputStream()) ;
String str;
while ((str = rd.readLine()) '= null) {

for (int i=str.length(); i > 0; i--) wr.print(str.charAt(i-1));

wr.println() ;
wr.flush() ;

}

socket.close() ;
} catch (IOException e) {;}

Lecture 3: Multithreading with Java

65

public class ReverseServer {
public static void main(String[] args) throws IOException {
int poolSize = 3, port = 4444;
ServerSocket serverSocket = null;
try {
if (args.length >1) poolSize = Integer.parselnt(args[l]);
if (args.length >0) port = Integer.parselnt(args[0]);
} catch (NumberFormatException e) ({
System.out.println ("USAGE: java ReverseServer [poolSize] [port]");

System.exit (1) ;

}

try {
serverSocket = new ServerSocket (port) ;

} catch (IOException e) ({
System.out.println("Can not listen on port: " + port);
System.exit (1) ;

}

ExecutorService executor = Executors.newFixedThreadPool (poolSize) ;
while (true) {

Socket socket = serverSocket.accept()

executor.execute (new Handler (socket));

Lecture 3: Multithreading with Java 66

Java Collections Framework

The Java collections framework (package java.util)

— Includes collection interfaces and classes, e.g. HashSet<E>,
LinkedList<E>

A collection 1s an object that represents a group of elements (objects) of a
specified type, 1.e. Vector<E>

— Operations: add, remove, put, replace, get, peek, poll, contains, size, list,
isEmpty, etc.

Concurrent Collections (java.util.concurrent)

— Extends the Java Collection framework (java.util) with concurrent
collections including the Queue, BlockingQueue and BlockingDeque
interfaces, and high-performance, concurrent implementations of Map,
List, and Queue.

Lecture 3: Multithreading with Java

70

Concurrent Collections
(java.util.concurrent)

* Concurrent versions of some collections
— ConcurrentHashMap<K,6 V>
— CopyOnWriteArrayList
— CopyOnWriteArraySet

* Different from similar "synchronized" classes

* A concurrent collection is thread-safe, but not governed
by a single exclusion lock.

— For example, ConcurrentHashMap, safely permits any number of
concurrent reads as well as a tunable number of concurrent writes.

Lecture 3: Multithreading with Java

73

Unsynchronized, Synchronized, Concurrent
Collections

When to use which

Unsynchronized collections

— preferable when either collections are unshared, or are accessible only
when holding other locks.

”’Synchronized” versions

— when you need to govern all access to a collection via a single lock,
at the expense of poorer scalability.

”Concurrent' versions

— normally preferable when multiple threads are expected to access a
common collection.

Lecture 3: Multithreading with Java 74

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 70
	Slide 73
	Slide 74

