
Multithreading with Java

Hooman Peiro Sajjad

Vladimir Vlassov

KTH/ICT/SCS

HT 2016

ID2212 Network Programming with Java
Lecture 5

Lecture 3: Multithreading with Java 2

Outline

• Introduction to threads

• Multithreading with Java
– Thread class and Runnable interface
– Two ways of creating threads

• Java thread synchronization
– synchronized methods and blocks

– Shared objects as monitors; Bounded buffer (consumer-producer) example

• Concurrent utilities
– Locks and Conditions;
– The Executor framework; Example of using a thread pool
– Synchronizers; Atomic variables; Concurrent collections

• Further reading:
http://docs.oracle.com/javase/tutorial/essential/concurrency/

Process and Thread (1/2)

• Process: A unit of activity characterized by a sequence of

instructions, a current state and an associated set of system

resources

• Thread: A path of execution in a process characterized by an

execution state, execution stack and local variables

Lecture 3: Multithreading with Java 3

Process and Thread (2/2)

Lecture 3: Multithreading with Java 4

P1 t

server server

Time

Request Request

Thread t
(Process p1)

P1 t1 t2

server

server

Thread t1
(Process p1)

Thread t2
(Process p1)

General Benefits of Using Threads

• Creating threads takes less time

• Terminating threads takes less time

• Switching between threads takes less time

• Threads in a process can communicate to each other without

interference of kernel

Lecture 3: Multithreading with Java 5

Multithreading in a Distributed Application

• Multiple threads in a client-server application (request-
response interaction)

• Client side
– Multithreading to hide communication latency
– Responsive user interface
– Typically two threads: one to interact with the user via (G)UI; another

to interact with the server e.g. over TCP socket connection
– The (G)UI thread communicates user’s control actions and input to

the communication thread through e.g. shared buffers or by method
invocations on the communication thread object, e.g. to stop it

– Communication thread passes server responses to the (G)UI thread by
GUI call-backs (method invocations) or/and through shared buffers.

– Access to shared buffers should be synchronized

Lecture 3: Multithreading with Java 6

Multithreading in a Distributed Application
(cont’d)

• Server side
– Multithreading for scalability and, as a consequence, for better

performance (higher throughput)

– One thread (the main thread) listens on the server port for client
connection requests and assigns (creates) a thread for each client
connected

– Each client is served in its own thread on the server

– The listening thread should provide client information (e.g. at least
the connected socket) to the servicing thread

– Typically servicing threads are independant, but might access shared
resources, e.g. database, and therefore might need to be synchronized.

Lecture 3: Multithreading with Java 7

Lecture 3: Multithreading with Java 8

Multithreading in Java

• A Java thread is a light-weight process represented by an
object of the Thread (sub)class that includes start and
run methods
– Stack and PC (Program Counter) register
– Accesses all variables in its scope

• Each thread has a method void run()
– Executes when the thread starts
– Thread vanishes when it returns
– You must implement this method

• Classes for multithreading:
– public class Thread
– public class ThreadGroup
– public interface Runnable

Lecture 3: Multithreading with Java 9

First Way to Program and Create a Java Thread

1. Extend the Thread class
– Override the run method and define other methods if

needed;
– Create and start a thread:

• Instantiate the Thread subclass;

• Call the start method on the thread object – creates a thread
context and invokes run to be executed in a separate thread

Lecture 3: Multithreading with Java 10

Another Way to Program and Create Java
Threads

2. Implement the Runnable interface in a class that
represents a class of tasks to be execute in threads
– Implement the run method;
– Create and start a thread with the Runnable object, i.e.

the thread is given a Runnable task to execute
2. Create a Runnable object;

3. Create a thread to execute that task by passing the Runnable
object to a Thread constructor

4. Call the start method on the thread object to start the thread.

Lecture 3: Multithreading with Java 11

Thread Class and Runnable Interface

public class Thread extends Object implements Runnable {

 public Thread();

 public Thread(Runnable target);

 public Thread(String name);

 public Thread(Runnable target, String name);

...

 public synchronized native void start();

 public void run();

...

}

public interface Runnable{

public void run();

}

Lecture 3: Multithreading with Java 12

Example 1: Extending Thread

public class RunThreads {
public static void main(String[] args) {
 OutputThread t1 = new OutputThread(“One”);
 OutputThread t2 = new OutputThread(“Two”);
 t1.start();
 t2.start();
}

}
class OutputThread extends Thread {

OutputThread(String name){ super(name); }
public void run() {

for (int i = 0; i < 3; i++) {
System.out.println(getName());
yield();

}
}

}

Lecture 3: Multithreading with Java 13

Starting a Thread

run()

start()
 t1:

for (int i = 0; i < 3; i++) {
 System.out.println(getName());
 yield();
}

OutputThread t1 = new OutputThread(“One”);

t1.start();

public class RunThreads1 {
public static void main(String[] args) {

OutputClass out1 = new OutputClass(“One”);
OutputClass out2 = new OutputClass(“Two”);
Thread t1 = new Thread(out1);
Thread t2 = new Thread(out2);
t1.start();
t2.start();

}
}
class OutputClass implements Runnable {

String name;
OutputClass(String s) {

name = s;
}
public void run() {

for (int i=0; i<3; i++) {
System.out.println(name);
Thread.currentThread().yield();

}
}

} Lecture 3: Multithreading with Java 14

Example 2. Implementing Runnable

Runnable interface

Lecture 3: Multithreading with Java 15

Thread with a Runnable Task

 out1:

for (int i=0; i<3; i++) {

 System.out.println(name);

 yield();

}

run()

 t1:
start()

run()

OutputClass out1 = new OutputClass(“One”);

Thread t1 = new Thread(out1);

t1.start();

Starting a Thread

• Starts the new thread

• Caller returns immediately

• Caller & thread run in parallel

“Art of Multiprocessor Programming” by
Maurice Herlihy, and Nir Shavit

20

t.start();

Joining a Thread

• What if you want to wait for a thread to finish?

• Blocks the caller

• Waits for the thread to finish

• Returns when the thread is done

“Art of Multiprocessor Programming” by
Maurice Herlihy, and Nir Shavit

21

t.join();

Lecture 3: Multithreading with Java 23

Some Methods of the Thread Class

• run()
– Should be overridden (the code

of thread is placed here),
otherwise does nothing and
returns;

– Should not be invoked directly
but rather calling start().

• start()
– Start the thread; JVM invokes

the run method of this thread.

• join()
– Wait for this thread to die.

• yield()
– Causes a context switch.

• sleep(long)
– The thread pauses for the

specified number of
milliseconds.

• interrupt()
– Interrupt this thread.

• Get / set / check thread attributes:
– setPriority(int),

getPriority(),
– setName(String),

getName(),
– setDaemon(boolean),

isDaemon()

Lecture 3: Multithreading with Java 24

Thread State Diagram

• IO operations affect states Runnable and Suspended in the ordinary way

new Thread()

return
System.exit()

NewNew

DeadDead

RunnableRunnable

yield()

start()

SuspendedSuspended

sleep()
wait()
join()

notify()
notifyAll()
sleep or join
ends
interrupt()

Lecture 3: Multithreading with Java 26

Thread Interactions

• Threads in Java execute concurrently – at least conceptually.

• Threads communicate
– By calling methods and accessing variables of Thread (Runnable)

objects like ordinary objects;

– Via pipes, TCP connections;

– Via shared objects.

• An object is shared when multiple concurrent threads invoke
its methods or access its variables.

Lecture 3: Multithreading with Java 27

Race Condition

int value = 0;

public int incrementValue() {

 return ++value;

}

T1: read the value, get 0, add 1, so value = 1
T2: read the value, get 0, add 1, so value = 1
T1: write 1 to the field value and return 1
T2: write 1 to the field value and return 1

To avoid race condition we need to run the method atomically.

Lecture 3: Multithreading with Java 28

synchronized Methods and Blocks

• A shared object may have synchronized methods or code
blocks to be executed with mutual exclusion

• The synchronized modifier defines mutual exclusion for
an entire method or a code block

Lecture 3: Multithreading with Java 29

synchronized Methods and Blocks (cont’d)

• Each object has an implicit lock associated with the object
• Each object has also one implicit condition variable called

wait set
• Each synchronized block requires a lock object to be explicitly

indicated
• A thread must obtain the lock when calling a synchronized

method or block
– A thread may hold locks of more then one objects; nested synchronized

calls are closed

• A thread may wait on and signal to the wait set

Lecture 3: Multithreading with Java 30

synchronized Method

public class ComputeMax {

private int max = Number.MIN_VALUE;

public synchronized int getMax(int value) {
if (value > max) max = value;
return max;

}
}

synchronized method

Lecture 3: Multithreading with Java 31

synchronized Block

public class ComputeMax {
private int max = Number.MIN_VALUE;

public int getMax(int value) {
if (value > max) {

 synchronized (this) {
if (value > max) max = value;

}
}
return max;

}
}

synchronized block

Lecture 3: Multithreading with Java 32

Monitors in Java

• Java monitor is an object of a class with synchronized
methods, which can be invoked by one thread at a time.
– A class may contain synchronized and ordinary non-synchronized

methods – the latter are executed without synchronization.

• Each monitor has an implicit monitor lock
• Each monitor has an implicit condition variable

(a.k.a. wait set)
– wait(), notify() and notifyAll() in scope of a
synchronized method;

– No priority wait;

– Signal-and-Continue policy of notify() and notifyAll()

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

33

public class Queue<T> {

 int head = 0, tail = 0;
 T[QSIZE] items;

 public synchronized T deq() {
 while (tail – head == 0)
 this.wait();
 T result = items[head % QSIZE]; head++;
 this.notifyAll();
 return result;
 }
 …
}}

Java Synchronized Methods (1/5)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

34

public class Queue<T> {

 int head = 0, tail = 0;
 T[QSIZE] items;

 public synchronized T deq() {
 while (tail – head == 0)
 this.wait();
 T result = items[head % QSIZE]; head++;
 this.notifyAll();
 return result;
 }
 …
}}

Java Synchronized Methods (2/5)

Each object has an implicit
lock with an implicit condition

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

35

public class Queue<T> {

 int head = 0, tail = 0;
 T[QSIZE] items;

 public synchronized T deq() {
 while (tail – head == 0)
 this.wait();
 T result = items[head % QSIZE]; head++;
 this.notifyAll();
 return result;
 }
 …
}}

Java Synchronized Methods (3/5)

Lock on entry,
unlock on return

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

36

public class Queue<T> {

 int head = 0, tail = 0;
 T[QSIZE] items;

 public synchronized T deq() {
 while (tail – head == 0)
 this.wait();
 T result = items[head % QSIZE]; head++;
 this.notifyAll();
 return result;
 }
 …
}}

Java Synchronized Methods (4/5)

Wait on implicit
condition

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

37

public class Queue<T> {

 int head = 0, tail = 0;
 T[QSIZE] items;

 public synchronized T deq() {
 while (tail – head == 0)
 this.wait();
 T result = items[head % QSIZE]; head++;
 this.notifyAll();
 return result;
 }
 …
}}

Java Synchronized Methods (5/5)

Signal all threads waiting
on condition

Lecture 3: Multithreading with Java 38

Example 1: Producer/Consumer

• Producer and Consumer threads are using a shared object
(Shared Cell monitor) to interact in a dataflow fashion

Shared cell

Producer Consumer

put take

• The “shared cell” (buffer) is a monitor
– Methods put and take are synchronized to be executed with

mutual exclusion.
– An implicit condition variable (“wait set”) is used for condition

synchronization of Producer and Consumer.

Lecture 3: Multithreading with Java 39

The Shared Cell Monitor
public class SharedCell {
 private int value;
 private boolean empty = true;
 public synchronized int take() {
 while (empty) {

 try {
 wait ();
 } catch (InterruptedException e) { }

 }
 empty = true;
 notify ();
 return value;
 }
 public synchronized void put(int value) {
 while (!empty) {

 try {
 wait ();
 } catch (InterruptedException e) { }

 }
 this.value = value;
 empty = false;
 notify ();
 }
}

Shared cell

Producer Consumer

put take

Lecture 3: Multithreading with Java 40

Producer Class
class Producer extends Thread {

 private SharedCell cell;

 private boolean Stop = false;

 public Producer (SharedCell cell) {

 this.cell = cell;

 }

 public void setStop () {

 Stop = true;

 }

 public void run () {

 int value;

 while (!Stop) {
value = (int) (Math.random () * 100);

cell.put (value);

try {

 sleep (value);

} catch (InterruptedException e) { }

}

 }

}

Shared cell

Producer Consumer

put take

Lecture 3: Multithreading with Java 41

Consumer Class
class Consumer extends Thread {

 private SharedCell cell;

 private int n;

 public Consumer(SharedCell cell, int n)
{

 this.cell = cell;

 this.n = n;

 }

 public void run () {

 int value;

 for (int i = 0; i < n; i++) {

 value = cell.take ();

 System.out.println ("Consumer: " +
i + " value = " + value);

 }

 }

}

Shared cell

Producer Consumer

put take

A Test Application

Lecture 3: Multithreading with Java 42

public class Exchange {

 public static void main(String args[])
{

 SharedCell cell = new SharedCell ();

 Producer p = new Producer (cell);

 Consumer c = new Consumer (cell, 10);

 p.start ();

 c.start ();

 try {

 c.join ();

 } catch (InterruptedException e) { };

 p.setStop ();

p.interrupt();

 }

}

Shared cell

Producer Consumer

put take

43

Example 2: Synchronized Bounded Buffer

Lecture 3: Multithreading with Java

public class Bounded_Buffer {
 private Object[] items;
 private int count = 0, front = 0, rear = 0;
 private int n;

 public Bounded_Buffer(int n) {
 this.n = n;
 items = new Object[n];
 }

44

Synchronized Bounded Buffer (cont’d)

 public synchronized void put(Object x) {
 while (count == n)
 try { wait(); }
 catch (InterruptedException e) { }
 items[rear] = x; rear = (rear + 1) % n; count++;
 notifyAll();
 }
 public synchronized Object take() {
 while (count == 0)
 try { wait(); }
 catch (InterruptedException e) { }
 Object x = items[front];
 front = (front + 1) % n; count--;
 notifyAll();
 return x;
 }
}

44Lecture 3: Multithreading with Java

Lecture 3: Multithreading with Java 45

Java Concurrency Utilities:
java.util.concurrent

• Locks and Conditions

• Synchronizers
– General purpose synchronization classes, including semaphores,

mutexes, barriers, latches, and exchangers

• The Executor framework
– for scheduling, execution, and control of asynchronous tasks

(Runnable objects)

• Nanosecond-granularity timing
– The actual precision of System.nanoTime is platform-dependent

– Used for time-stamps and time estimates

Lecture 3: Multithreading with Java 46

Concurrency Utilities: (cont’d)

• Atomic Variables
– Classes for atomically manipulating single variables (of primitive

types and references)
– E.g. AtomicBoolean, AtomicInteger, AtomicLong
– For object references and arrays
– E.g. AtomicReference<V>,
AtomicMarkableReference<V>,
AtomicStampedReference<V>

– Used to implement concurrent collection classes

• Concurrent Collections
– Pools of items
– Queue and BlockingQueue interfaces
– Concurrent implementations of Map, List, and Queue.

Locks and Conditions

• java.util.concurrent.locks
– Classes and interfaces for locking and waiting for conditions

• ReentrantLock class
– Represents a reentrant mutual exclusion lock
– Allows to create condition variables to wait for conditions

• Condition interface
– Represents a condition variable associated with a lock
– Allows one thread to suspend execution (to "wait") until notified by another

thread
– The suspended thread releases the lock

• ReentrantLock locks (like synchronized objects) are monitors
– Allow blocking on a condition rather than spinning

• Threads:
– acquire and release lock
– wait on a condition

47Lecture 3: Multithreading with Java

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

48

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (1/5)

Acquire lock

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

49

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (2/5)

Release lock

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

50

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (3/5)

Try for lock, but not too hard

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

51

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (4/5)

Create condition to wait on

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

52

The Java Lock Interface (5/5)

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

Guess what this method does?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

53

Lock Conditions (1/4)

public interface Condition {
 void await();
 boolean await(long time, TimeUnit unit);
 …
 void signal();
 void signalAll();
 }

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

54

public interface Condition {
 void await();
 boolean await(long time, TimeUnit unit);
 …
 void signal();
 void signalAll();
 }

Lock Conditions (2/4)

Release lock and
wait on condition

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

55

public interface Condition {
 void await();
 boolean await(long time, TimeUnit unit);
 …
 void signal();
 void signalAll();
 }

Lock Conditions (3/4)

Wake up one waiting thread

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

56

public interface Condition {
 void await();
 boolean await(long time, TimeUnit unit);
 …
 void signal();
 void signalAll();
 }

Lock Conditions (4/4)

Wake up all waiting threads

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

57

Await, Signal and Signal All

– Releases lock associated with q
– Sleeps (gives up processor)

– Awakens (resumes running) when signaled by Signal or SignalAll
– Reacquires lock & returns

– Awakens one waiting thread

• Which will reacquire lock associated with q

– Awakens all waiting threads

• Which will each reacquire lock associated with q

q.await()

q.signal();

q.signalAll();

Example 3: Lock-Based Blocking Bounded
Buffer

58Lecture 3: Multithreading with Java

 public class BoundedBuffer {
 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();
 final Object[] items;
 int rear, front, count, n;

 public BoundedBuffer(int n) {
 this.n = n;
 items = new Object[n];
 }

 public void put(Object x) throws InterruptedException {
 lock.lock();
 try {
 while (count == n) notFull.await();
 items[rear] = x; rear = (rear + 1) % n; count++;
 notEmpty.signal();
 } finally {
 lock.unlock();
 }
 }
 public Object take() throws InterruptedException {
 lock.lock();
 try {
 while (count == 0) notEmpty.await();
 Object x = items[front];
 front = (front + 1)% n; count--;
 notFull.signal();
 return x;
 } finally {
 lock.unlock();
 }
 }
 } 59Lecture 3: Multithreading with Java

The Executor Framework

• For scheduling, execution, and control of asynchronous
tasks in concurrent threads according to a set of execution
policies

• Allows creating an executor (a pool of threads) and assigning
tasks to the executor

• An Executor object executes submitted tasks

• For example:

Executor e =
 Executors.newFixedThreadPool(numThreads);
e.execute(new RunnableTask1());
e.execute(new RunnableTask2());

Executor e =
 Executors.newFixedThreadPool(numThreads);
e.execute(new RunnableTask1());
e.execute(new RunnableTask2());

Executor Interfaces

• An executor can have one of the following interfaces:
• Executor

– A simple interface to launch void Runnable tasks
– execute(Runnable)

• ExecutorService
– Executor subinterface with additional features to manage lifecycle

– To launch and control void Runnable tasks and Callable tasks, which return results
– submit(Runnable) , submit(Callable<T>), shutdown(),

invokeAll(...), awaitTermination(…)
– Future<V> represents the result of an asynchronous computation

• ScheduledExecutorService
– ExecutorService subinterface with support for future or periodic execution

– For scheduling Runnable and Callable tasks

public class Handler implements Runnable {

private Socket socket;

public Handler(Socket socket) { this.socket = socket; }

public void run() {

 try {

 BufferedReader rd = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));

 PrintWriter wr = new PrintWriter(socket.getOutputStream());

 String str;

 while ((str = rd.readLine()) != null) {

 for (int i=str.length(); i > 0; i--) wr.print(str.charAt(i-1));

 wr.println();

 wr.flush();

 }

 socket.close();

 } catch (IOException e) {;}

 }

}

Lecture 3: Multithreading with Java 65

Example: Using an Executer (a Thread Pool)

public class ReverseServer {
 public static void main(String[] args) throws IOException {
 int poolSize = 3, port = 4444;
 ServerSocket serverSocket = null;
 try {
 if (args.length >1) poolSize = Integer.parseInt(args[1]);
 if (args.length >0) port = Integer.parseInt(args[0]);
 } catch (NumberFormatException e) {
 System.out.println("USAGE: java ReverseServer [poolSize] [port]");
 System.exit(1);
 }
 try {
 serverSocket = new ServerSocket(port);
 } catch (IOException e) {
 System.out.println("Can not listen on port: " + port);
 System.exit(1);
 }
 ExecutorService executor = Executors.newFixedThreadPool(poolSize);
 while (true) {
 Socket socket = serverSocket.accept();
 executor.execute(new Handler(socket));
 }
 }
}

Lecture 3: Multithreading with Java 66

Java Collections Framework

• The Java collections framework (package java.util)
– Includes collection interfaces and classes, e.g. HashSet<E>,

LinkedList<E>

• A collection is an object that represents a group of elements (objects) of a
specified type, i.e. Vector<E>

– Operations: add, remove, put, replace, get, peek, poll, contains, size, list,
isEmpty, etc.

• Concurrent Collections (java.util.concurrent)
– Extends the Java Collection framework (java.util) with concurrent

collections including the Queue, BlockingQueue and BlockingDeque
 interfaces, and high-performance, concurrent implementations of Map,
List, and Queue.

70Lecture 3: Multithreading with Java

Concurrent Collections
(java.util.concurrent)

• Concurrent versions of some collections
– ConcurrentHashMap<K,V>
– CopyOnWriteArrayList
– CopyOnWriteArraySet

• Different from similar "synchronized" classes

• A concurrent collection is thread-safe, but not governed
by a single exclusion lock.
– For example, ConcurrentHashMap, safely permits any number of

concurrent reads as well as a tunable number of concurrent writes.

73Lecture 3: Multithreading with Java

Unsynchronized, Synchronized, Concurrent
Collections

• When to use which
• Unsynchronized collections

– preferable when either collections are unshared, or are accessible only
when holding other locks.

• ”Synchronized” versions
– when you need to govern all access to a collection via a single lock,

at the expense of poorer scalability.

• ”Concurrent" versions
– normally preferable when multiple threads are expected to access a

common collection.

74Lecture 3: Multithreading with Java

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 70
	Slide 73
	Slide 74

