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Outline

• Introduction to threads

• Multithreading with Java
– Thread class and Runnable interface
– Two ways of creating threads

• Java thread synchronization
– synchronized methods and blocks

– Shared objects as monitors; Bounded buffer (consumer-producer) example

• Concurrent utilities
– Locks and Conditions;
– The Executor framework; Example of using a thread pool
– Synchronizers; Atomic variables; Concurrent collections

• Further reading: 
http://docs.oracle.com/javase/tutorial/essential/concurrency/



Process and Thread (1/2)

• Process: A unit of activity characterized by a sequence of 

instructions, a current state and an associated set of system 

resources

• Thread: A path of execution in a process characterized by an 

execution state, execution stack and local variables
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Process and Thread (2/2)
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General Benefits of Using Threads

• Creating threads takes less time

• Terminating threads takes less time

• Switching between threads takes less time

• Threads in a process can communicate to each other without 

interference of kernel
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Multithreading in a Distributed Application

• Multiple threads in a client-server application (request-
response interaction)

• Client side
– Multithreading to hide communication latency
– Responsive user interface
– Typically two threads: one to interact with the user via (G)UI; another 

to interact with the server e.g. over TCP socket connection
– The (G)UI thread communicates user’s control actions and input to 

the communication thread through e.g. shared buffers or by method 
invocations on the communication thread object, e.g. to stop it

– Communication thread passes server responses to the (G)UI thread by 
GUI call-backs (method invocations) or/and through shared buffers.

– Access to shared buffers should be synchronized
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Multithreading in a Distributed Application 
(cont’d)

• Server side
– Multithreading for scalability and, as a consequence, for better 

performance (higher throughput)

– One thread (the main thread) listens on the server port for client 
connection requests and assigns (creates) a thread for each client 
connected

– Each client is served in its own thread on the server

– The listening thread should provide client information (e.g. at least 
the connected socket) to the servicing thread

– Typically servicing threads are independant, but might access shared 
resources, e.g. database, and therefore might need to be synchronized.
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Multithreading in Java

• A Java thread is a light-weight process represented by an 
object of the Thread (sub)class that includes start and 
run methods
– Stack and PC (Program Counter) register
– Accesses all variables in its scope

• Each thread has a method void run()
– Executes when the thread starts
– Thread vanishes when it returns
– You must implement this method

• Classes for multithreading:
– public class Thread 
– public class ThreadGroup
– public interface Runnable 
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First Way to Program and Create a Java Thread

1. Extend the Thread class
– Override the run method and define other methods if 

needed;
– Create and start a thread:

• Instantiate the Thread subclass;

• Call the start method on the thread object – creates a thread 
context and invokes run to be executed in a separate thread
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Another Way to Program and Create Java 
Threads

2. Implement the Runnable interface in a class that 
represents a class of tasks to be execute in threads
– Implement the run method;
– Create and start a thread with the Runnable object, i.e. 

the thread is given a Runnable task to execute
2. Create a Runnable object;

3. Create a thread to execute that task by passing the Runnable 
object to a Thread constructor

4. Call the start method on the thread object to start the thread.



Lecture 3:  Multithreading with Java 11

Thread Class and Runnable Interface

public class Thread extends Object implements Runnable {

  public Thread();

  public Thread(Runnable target);

  public Thread(String name);

  public Thread(Runnable target, String name);

...

  public synchronized native void start();

  public void run();

...

}

public interface Runnable{

public void run();

}
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Example 1: Extending Thread

public class RunThreads {
public static void main(String[] args) {
  OutputThread t1 = new OutputThread(“One”);
  OutputThread t2 = new OutputThread(“Two”); 
  t1.start();
  t2.start();
}

}
class OutputThread extends Thread {

OutputThread(String name){ super(name); }
public void run() {

for (int i = 0; i < 3; i++) {
System.out.println(getName());
yield();

}
}

}
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Starting a Thread

run()

start()
   t1:

for (int i = 0; i < 3; i++) {
  System.out.println(getName());
  yield();
}

OutputThread t1 = new OutputThread(“One”); 

t1.start();



public class RunThreads1 {
public static void main(String[] args) {

OutputClass out1 = new OutputClass(“One”);
OutputClass out2 = new OutputClass(“Two”);
Thread t1 = new Thread(out1);
Thread t2 = new Thread(out2);
t1.start();
t2.start();

}
}
class OutputClass implements Runnable {

String name;
OutputClass(String s) { 

name = s; 
}
public void run() {

for ( int i=0; i<3; i++ ) {
System.out.println(name);
Thread.currentThread().yield(); 

} 
}
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Example 2. Implementing Runnable

Runnable interface



Lecture 3:  Multithreading with Java 15

Thread with a Runnable Task

          out1:

for ( int i=0; i<3; i++ ) {

   System.out.println(name);

   yield();

}

run()

      t1:
start()

run()

OutputClass out1 = new OutputClass(“One”);

Thread t1 = new Thread(out1);

t1.start();



Starting a Thread

• Starts the new thread

• Caller returns immediately

• Caller & thread run in parallel

“Art of Multiprocessor Programming” by 
Maurice Herlihy, and Nir Shavit

20

t.start();  



Joining a Thread

• What if you want to wait for a thread to finish?

• Blocks the caller

• Waits for the thread to finish

• Returns when the thread is done

“Art of Multiprocessor Programming” by 
Maurice Herlihy, and Nir Shavit
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t.join();  
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Some Methods of the Thread Class 

• run()
– Should be overridden (the code 

of thread is placed here), 
otherwise does nothing and 
returns;

– Should not be invoked directly 
but rather calling start().

• start()
– Start the thread; JVM invokes 

the run method of this thread. 

• join()
– Wait for this thread to die.

• yield()
– Causes a context switch.

• sleep(long)
– The thread pauses for the 

specified number of 
milliseconds.

• interrupt()
– Interrupt this thread.

• Get / set / check thread attributes:
– setPriority(int), 

getPriority(), 
– setName(String), 

getName(), 
– setDaemon(boolean), 

isDaemon()
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Thread State Diagram

• IO operations affect states Runnable and Suspended in the ordinary way

new Thread()

return
System.exit()

NewNew

DeadDead

RunnableRunnable

yield()

start()

SuspendedSuspended

sleep()
wait()
join()

notify()
notifyAll()
sleep or join 
ends
interrupt()
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Thread Interactions

• Threads in Java execute concurrently – at least conceptually.

• Threads communicate 
– By calling methods and accessing variables of Thread (Runnable) 

objects like ordinary objects;

– Via pipes, TCP connections;

– Via shared objects.

• An object is shared when multiple concurrent threads invoke 
its methods or access its variables.
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Race Condition

int value = 0;

public int incrementValue() {

  return ++value;

}

T1: read the value, get 0, add 1, so value = 1
T2: read the value, get 0, add 1, so value = 1
T1: write 1 to the field value and return 1
T2: write 1 to the field value and return 1

To avoid race condition we need to run the method atomically.
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synchronized Methods and Blocks

• A shared object may have synchronized methods or code 
blocks to be executed with mutual exclusion

• The synchronized modifier defines mutual exclusion for 
an entire method or a code block
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synchronized Methods and Blocks (cont’d)

• Each object has an implicit lock associated with the object
• Each object has also one implicit condition variable called 

wait set
• Each synchronized block requires a lock object to be explicitly 

indicated
• A thread must obtain the lock when calling a synchronized 

method or block
– A thread may hold locks of more then one objects; nested synchronized 

calls are closed

• A thread may wait on and signal to the wait set
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synchronized Method

public class ComputeMax {

private int max = Number.MIN_VALUE;

public synchronized int getMax(int value) {
if (value > max) max = value;
return max;

}
}

synchronized method
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synchronized Block

public class ComputeMax {
private int max = Number.MIN_VALUE;

public int getMax(int value) {
if (value > max) {

   synchronized (this) {
if (value > max) max = value;

}
}
return max;

}
}

synchronized block
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Monitors in Java

• Java monitor is an object of a class with synchronized 
methods, which can be invoked by one thread at a time.
– A class may contain synchronized and ordinary non-synchronized 

methods – the latter are executed without synchronization.

• Each monitor has an implicit monitor lock
• Each monitor has an implicit condition variable 

(a.k.a. wait set)
– wait(), notify() and notifyAll() in scope of a 
synchronized method;

– No priority wait;

– Signal-and-Continue policy of notify() and notifyAll() 
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public class Queue<T> {

  int head = 0, tail = 0; 
  T[QSIZE] items;

  public synchronized T deq() {
   while (tail – head == 0)
     this.wait();
   T result = items[head % QSIZE]; head++;
   this.notifyAll();
   return result;
  }
  …
}}

Java Synchronized Methods (1/5)
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public class Queue<T> {

  int head = 0, tail = 0; 
  T[QSIZE] items;

  public synchronized T deq() {
   while (tail – head == 0)
     this.wait();
   T result = items[head % QSIZE]; head++;
   this.notifyAll();
   return result;
  }
  …
}}

Java Synchronized Methods (2/5)

Each object has an implicit 
lock with an implicit condition
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public class Queue<T> {

  int head = 0, tail = 0; 
  T[QSIZE] items;

  public synchronized T deq() {
   while (tail – head == 0)
     this.wait();
   T result = items[head % QSIZE]; head++;
   this.notifyAll();
   return result;
  }
  …
}}

Java Synchronized Methods (3/5)

Lock on entry, 
unlock on return
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public class Queue<T> {

  int head = 0, tail = 0; 
  T[QSIZE] items;

  public synchronized T deq() {
   while (tail – head == 0)
     this.wait();
   T result = items[head % QSIZE]; head++;
   this.notifyAll();
   return result;
  }
  …
}}

Java Synchronized Methods (4/5)

Wait on implicit 
condition
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public class Queue<T> {

  int head = 0, tail = 0; 
  T[QSIZE] items;

  public synchronized T deq() {
   while (tail – head == 0)
     this.wait();
   T result = items[head % QSIZE]; head++;
   this.notifyAll();
   return result;
  }
  …
}}

Java Synchronized Methods (5/5)

Signal all threads waiting 
on condition
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Example 1: Producer/Consumer

• Producer and Consumer threads are using a shared object 
(Shared Cell monitor) to interact in a dataflow fashion

Shared cell

Producer Consumer

put take

• The “shared cell” (buffer) is a monitor
– Methods put and take are synchronized to be executed with 

mutual exclusion.
– An implicit condition variable (“wait set”) is used for condition 

synchronization of Producer and Consumer.



Lecture 3:  Multithreading with Java 39

The Shared Cell Monitor
public class SharedCell {
  private int value;
  private boolean empty = true;
  public synchronized int take() {
    while (empty) {

  try {
    wait ();
  } catch (InterruptedException e) { }

    }
    empty = true;
    notify ();
    return value;
  }
  public synchronized void put(int value) {
    while (!empty) {

  try {
    wait ();
  } catch (InterruptedException e) { }

    }
    this.value = value;
    empty = false;
    notify ();
  }
}

Shared cell

Producer Consumer

put take
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Producer Class
class Producer extends Thread {

  private SharedCell cell;

  private boolean Stop = false;

  public Producer (SharedCell cell) {

    this.cell = cell;

  }

  public void setStop () {

    Stop = true;

  }

  public void run () {

    int value;

    while (!Stop) {
value = (int) (Math.random () * 100);

cell.put (value);

try {

  sleep (value);

} catch (InterruptedException e) { }

}

  }

}

Shared cell

Producer Consumer

put take
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Consumer Class
class Consumer extends Thread {

  private SharedCell cell;

  private int n;

  public Consumer(SharedCell cell, int n) 
{

    this.cell = cell;

    this.n = n;

  }

  public void run () {

    int value;

    for (int i = 0; i < n; i++) {

      value = cell.take ();

      System.out.println ("Consumer: " + 
i + " value = " + value);

   }

  }

}

Shared cell

Producer Consumer

put take



A Test Application
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public class Exchange {

  public static void main(String args[]) 
{

    SharedCell cell = new SharedCell ();

    Producer p = new Producer (cell);

    Consumer c = new Consumer (cell, 10);

    p.start ();

    c.start ();

    try {

      c.join ();

    } catch (InterruptedException e) { };

    p.setStop ();

p.interrupt();

  }

}

Shared cell

Producer Consumer

put take
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Example 2: Synchronized Bounded Buffer

Lecture 3:  Multithreading with Java

public class Bounded_Buffer {
   private Object[] items;
   private int count = 0, front = 0, rear = 0;
   private int n;

   public Bounded_Buffer(int n) {
       this.n = n;
       items = new Object[n];
   }
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Synchronized Bounded Buffer (cont’d)

   public synchronized void put(Object x) {
      while (count == n)
         try { wait(); } 
         catch (InterruptedException e) { }
      items[rear] = x; rear = (rear + 1) % n; count++;
      notifyAll();
   }
   public synchronized Object take() {
      while (count == 0)
         try { wait(); } 
         catch (InterruptedException e) { }
      Object x = items[front];
      front = (front + 1) % n; count--;
      notifyAll();
      return x;
   }
}

44Lecture 3:  Multithreading with Java
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Java Concurrency Utilities: 
java.util.concurrent

• Locks and Conditions

• Synchronizers
– General purpose synchronization classes, including semaphores, 

mutexes, barriers, latches, and exchangers

• The Executor framework
– for scheduling, execution, and control of asynchronous tasks 

(Runnable objects)

• Nanosecond-granularity timing
– The actual precision of System.nanoTime is platform-dependent

– Used for time-stamps and time estimates
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Concurrency Utilities: (cont’d)

• Atomic Variables
– Classes for atomically manipulating single variables (of primitive 

types and references)
– E.g. AtomicBoolean, AtomicInteger, AtomicLong
– For object references and arrays
– E.g. AtomicReference<V>, 
AtomicMarkableReference<V>, 
AtomicStampedReference<V>

– Used to implement concurrent collection classes

• Concurrent Collections 
– Pools of items
– Queue and BlockingQueue interfaces
– Concurrent implementations of Map, List, and Queue.



Locks and Conditions

• java.util.concurrent.locks
– Classes and interfaces for locking and waiting for conditions

• ReentrantLock class
– Represents a reentrant mutual exclusion lock
– Allows to create condition variables to wait for conditions 

• Condition interface
– Represents a condition variable  associated with a lock
– Allows one thread to suspend execution (to "wait") until notified by another 

thread
– The suspended thread releases the lock

• ReentrantLock locks (like synchronized objects) are monitors
– Allow blocking on a condition rather than spinning

• Threads: 
– acquire and release lock
– wait on a condition

47Lecture 3:  Multithreading with Java
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public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (1/5)

Acquire lock
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public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (2/5)

Release lock
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public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (3/5)

Try for lock, but not too hard
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public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

The Java Lock Interface (4/5)

Create condition to wait on
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The Java Lock Interface (5/5)

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock;
}

Guess what this method does?
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Lock Conditions (1/4)

public interface Condition {
  void await();
  boolean await(long time, TimeUnit unit);
  …
  void signal(); 
  void signalAll();
 }
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public interface Condition {
  void await();
  boolean await(long time, TimeUnit unit);
  …
  void signal(); 
  void signalAll();
 }

Lock Conditions (2/4)

Release lock and 
wait on condition
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public interface Condition {
  void await();
  boolean await(long time, TimeUnit unit);
  …
  void signal(); 
  void signalAll();
 }

Lock Conditions (3/4)

Wake up one waiting thread 
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public interface Condition {
  void await();
  boolean await(long time, TimeUnit unit);
  …
  void signal(); 
  void signalAll();
 }

Lock Conditions (4/4)

Wake up all waiting threads 
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Await, Signal and Signal All

– Releases lock associated with q
– Sleeps (gives up processor)

– Awakens (resumes running) when signaled by Signal or SignalAll
– Reacquires lock & returns

– Awakens one waiting thread

• Which will reacquire lock associated with q

– Awakens all waiting threads

• Which will each reacquire lock associated with q

q.await()

q.signal();  

q.signalAll();  



Example 3: Lock-Based Blocking Bounded 
Buffer
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 public class BoundedBuffer {
   final Lock lock = new ReentrantLock();
   final Condition notFull  = lock.newCondition(); 
   final Condition notEmpty = lock.newCondition(); 
   final Object[] items;
   int rear, front, count, n;

   public BoundedBuffer(int n) {
      this.n = n;
      items = new Object[n];
   }
   



   public void put(Object x) throws InterruptedException {
     lock.lock();
     try {
       while (count == n) notFull.await();
       items[rear] = x; rear = (rear + 1) % n; count++;
       notEmpty.signal();
     } finally {
       lock.unlock();
     }
   }
   public Object take() throws InterruptedException {
     lock.lock();
     try {
       while (count == 0) notEmpty.await();
       Object x = items[front]; 
       front = (front + 1)% n; count--;
       notFull.signal();
       return x;
     } finally {
       lock.unlock();
     }
   } 
 } 59Lecture 3:  Multithreading with Java



The Executor Framework

• For scheduling, execution, and control of asynchronous 
tasks in concurrent threads according to a set of execution 
policies

• Allows creating an executor (a pool of threads) and assigning 
tasks to the executor

• An Executor object executes submitted tasks

• For example:

Executor e = 
        Executors.newFixedThreadPool(numThreads);  
e.execute(new RunnableTask1()); 
e.execute(new RunnableTask2()); 

Executor e = 
        Executors.newFixedThreadPool(numThreads);  
e.execute(new RunnableTask1()); 
e.execute(new RunnableTask2()); 



Executor Interfaces

• An executor can have one of the following interfaces: 
• Executor

– A simple interface to launch void Runnable tasks
– execute(Runnable)

• ExecutorService
– Executor subinterface with additional features to manage lifecycle

– To launch and control void Runnable tasks and Callable tasks, which return results
– submit(Runnable) , submit(Callable<T>), shutdown(), 

invokeAll(...), awaitTermination(…)
– Future<V> represents the result of an asynchronous computation

• ScheduledExecutorService
– ExecutorService subinterface with support for future or periodic execution

– For scheduling Runnable and Callable tasks



public class Handler implements Runnable {

private Socket socket;

public Handler(Socket socket) {  this.socket = socket; }

public void run() {

   try {

         BufferedReader rd = new BufferedReader(
                new InputStreamReader(socket.getInputStream()));

         PrintWriter wr = new PrintWriter(socket.getOutputStream());

         String str;

         while ((str = rd.readLine()) != null) {

            for ( int i=str.length(); i > 0; i-- ) wr.print(str.charAt(i-1));

            wr.println(); 

            wr.flush();

         }

         socket.close();

       } catch ( IOException e ) {;}

    }

}
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Example: Using an Executer (a Thread Pool)



public class ReverseServer {
    public static void main(String[] args) throws IOException {
        int poolSize = 3, port = 4444;
        ServerSocket serverSocket = null;
        try {
           if (args.length >1) poolSize = Integer.parseInt(args[1]);
           if (args.length >0) port = Integer.parseInt(args[0]);
        } catch (NumberFormatException e) {
           System.out.println("USAGE: java ReverseServer [poolSize] [port]");
           System.exit(1);
        }
        try {
            serverSocket = new ServerSocket(port);
        } catch (IOException e) {
            System.out.println("Can not listen on port: " + port);
            System.exit(1);
        }
        ExecutorService executor = Executors.newFixedThreadPool(poolSize); 
        while (true) {
            Socket socket = serverSocket.accept();
            executor.execute( new Handler(socket) );
        }
    }
}

Lecture 3:  Multithreading with Java 66



Java Collections Framework

• The Java collections framework (package java.util)
– Includes collection interfaces and classes, e.g. HashSet<E>, 

LinkedList<E>

• A collection is an object that represents a group of elements (objects) of a 
specified type, i.e. Vector<E>

– Operations: add, remove, put, replace, get, peek, poll, contains, size, list, 
isEmpty, etc.

• Concurrent Collections (java.util.concurrent)
– Extends the Java Collection framework (java.util) with concurrent 

collections including the Queue, BlockingQueue and BlockingDeque 
 interfaces, and high-performance, concurrent implementations of Map, 
List, and Queue. 

70Lecture 3:  Multithreading with Java



Concurrent Collections 
(java.util.concurrent)

• Concurrent versions of some collections
– ConcurrentHashMap<K,V>
– CopyOnWriteArrayList
– CopyOnWriteArraySet

• Different from similar "synchronized" classes

• A concurrent collection is thread-safe, but not governed 
by a single exclusion lock. 
– For example, ConcurrentHashMap, safely permits any number of 

concurrent reads as well as a tunable number of concurrent writes.

73Lecture 3:  Multithreading with Java



Unsynchronized, Synchronized, Concurrent 
Collections 

• When to use which
• Unsynchronized collections 

– preferable when either collections are unshared, or are accessible only 
when holding other locks. 

• ”Synchronized” versions
– when you need to govern all access to a collection via a single lock, 

at the expense of poorer scalability. 

• ”Concurrent" versions 
– normally preferable when multiple threads are expected to access a 

common collection.

74Lecture 3:  Multithreading with Java
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