ID2212 Network Programming with Java
Lecture 3

Java 1/0.
Overview of New 1/0 (NI1O)

Leif Lindback, Vladimir Vlassov
KTH/ICT/SCS
HT 2016

QOutline

e Javal/O

— I/0 using Streams
— Types of streams
— Standard streams
— Accessing files

— File channels

* Overview of New 1/0
— Buffers
— Channels
— Selectors

Lecture 5: Java I/0. Overview of New 1/0

I/0 in Java

* Package java.10

* I/0 sources and destinations:
— standard input, standard output, standard err
— Files, streams of TCP socket and URL connections

* Input and output streams

— Java provides different types of stream APIs, e.g. byte streams,
character streams, object streams, etc.

— Different stream reading and writing primitives, e.g. read/write,
print

— Basic streams: byte streams

— Other streams are built on top of byte streams

Lecture 5: Java 1/0. Overview of New 1/0 3

1/0 in Java (cont’d)

* For example:
try (BufferedReader r = new BufferedReader (
new InputStreamReader (
socket.getInputStream())) {
String str;
while ((str = r.readLine()) '= null) {
//process the line read
}
} catch (IOException e) {
e.printStackTrace();

}

Lecture 5: Java I/0. Overview of New 1/0

Streams

* Streams pass data from/to programes.

— Input can be performed by different types of input
streams, e.g. byte input stream, character input
stream (reader)

— Output can be performed by different types of
output streams, e.g. byte output stream, character
output stream (writer)

— If a stream handles characters on the program side,
then it is called a reader or a writer.

Lecture 5: Java 1/0. Overview of New 1/0

Streams

A source can be: A destination can be:

| Program |

. —> a stream— —> a stream —
File String File
EOClget input ptream array Socket output stream
eader : '
InputStream Object grtte;St
PinedInbuts char dtpd rean
lpedinputogream int PipedOutputStream
array array

short

Lecture 5: Java 1/0. Overview of New 1/0 6

Some Types of Streams

ObjectOutputStream
Objects < > Serialized

ObjectInputStream

DataOutputStream
Typed Binary
data representation

DataInputStream

Lecture 5: Java 1/0. Overview of New 1/0

DataInputStream Example

try (DataInputStream inData = new DataInputStream(
new FileInputStream(
fileName))) {
while (true) {
no = inData.readInt();
System.out.println("No " + no);
}
catch (EOFException done) {
catch (FileNotFoundException e) {
System.err.println("file " + fileName +
" is mising"');
} catch (IOException e) {
e.printStackTrace();

}

e

Lecture 5: Java I/0. Overview of New 1/0

Types of Streams (cont’d)

> FileOutputStream——_
i File of byt
/ijjii::;' FileInputStream— lle oI bytes
bytes <

~~_ > ByteArrayOutputStream—-__
\ Byte array
ByteArrayInputStream—

- — Text file
= (default encoding)

p FileWriteF-\\\\\\\\\\\§
/{iji/ FileReader

L

characters\"—___ _
OutputStreamerter\\\\A
__— Bytes

InputStreamReader~

Lecture 5: Java 1/0. Overview of New 1/0 9

Standard Streams

* Static fields in the java.lang.System class:

— public static final PrintStream err;
* The “standard” error output stream;

— public static final PrintStream out;
* The “standard” output stream;

— public static final InputStream in;
* The “standard” input stream.

— All the streams are already open and ready to

supply/accept data
System.out.println(“your output “ + result);

Lecture 5: Java I/0. Overview of New 1/0 10

Files (Java. 10 package)

File class supports platform-independent usage of file- and directory
names.

— Instances of this class represent the name of a file or a directory on the host
file system.

Some constructors:
File(String path)
File(String dir, String fileName)
File(File dir, String fileName)

Some interesting methods of File:
public boolean exists();
public boolean isDirectory();
public boolean isFile();
public long length();
public String[] list();
public String[] list(FileNameFilter f);
public boolean mkdir();
public boolean renameTo(File dest);
public boolean createNewFile()

Lecture 5: Java I/0. Overview of New 1/0 11

File Streams

* Used to access files (for reading and writing) as a continues
stream of bytes or characters

* FileInputStream and FileOutputStream
— for reading and writing bytes to the file

* FileReader and FileWriter
— for reading and writing character files

* Provide read and write methods

* Can be created by constructors given a file name or an
object of File
FileInputStream inf = new FileInputStream(filename);

Lecture 5: Java I/0. Overview of New 1/0 12

File Descriptor

®* FileDescriptor class is a platform-independent
representation of a handle of an open file or an open
socket.

* Objects of this class

— are returned by getFD () of FileInputStream,
FileOutputStream, RandomAcessFile,...

— passed to (used by) FileInputStream, FileOutputStream,
FileReader, FileWriter,...

Lecture 5: Java 1/0. Overview of New 1/0

13

Random Access File

RandomAccessFile class — provides an API similar to
the file API in C

Instances of this class represent the file opened in a given
mode, e.g.

* “r” —for reading only
* “rw”- for reading and writing
Methods of this class provide means for reading from file,

writing into file and changing current file access position.

All methods (including constructors) of this class may throw
IOException.

Contains object of the FileDescriptor class as a handle of the
file.

Lecture 5: Java I/0. Overview of New 1/0 14

An Overview of New 1/0 (NIO)

It is optional to use NIO in
programming assignments.

New 1/0 (java.nio.*...

* New I/O APIs introduced in JDK v 1.4

* NIO APIs supplements java.10

— provides a new I/0O model based on channels, buffers
and selectors

— enables non-blocking scalable 1/0

— allows improving performance of distributed
applications (mostly for the server side)

Lecture 5: Java I/0. Overview of New 1/0 16

Features in NIO APIs

Buffers for data of primitive types, e.g. char, int
Channels, a new primitive I/O abstraction

A multiplexed, non-blocking I/0 facility
(selectors, selection keys, selectable channels)
for writing scalable servers

Character-set encoders and decoders

A pattern-matching facility based on Perl-style
regular expressions (java.util)

A file interface that supports locks and memory
mapping

Lecture 5: Java I/0. Overview of New 1/0 17

NIO Packages

java.nio Buffers, which are used throughout the NIO APIs.
java.nio.channels Channels and selectors.

java.nio.charset Character encodings.

java.nio.channels.spi Service-provider classes for channels.
Java.nio.charset.spi Service-provider classes for charsets.

java.util.regex Classes for matching character sequences against patterns

specified by regular expressions.

Lecture 5: Java I/0. Overview of New 1/0 18

NIO Programming Abstractions

Buffers

— Containers for data

— Can be filled, drained, flipped, rewind, etc.

— Can be written/read to/from a channel
Channels of various types

— Represent connections to entities capable of performing 1/0
operations, e.g. pipes, files and sockets

— Can be selected when ready to perform I/O operation

Selectors and selection keys

— together with selectable channels define a multiplexed, non-
blocking I/0O facility. Used to select channels ready for I/O

Charsets and their associated decoders and encoders
— translate between bytes and Unicode characters

Lecture 5: Java I/0. Overview of New 1/0

19

Buffers

* Buffer is a container for a fixed amount of data of a specific
primitive type; Used by channels
— Content, data

— Capacity, size of buffer; set when the buffer is created;
cannot be changed

— Limit, the index of the first element that should not be read
or written; limit < capacity
— Position, the index of the next element to be read or written

— Mark, the index to which its position will be reset when the
reset method is invoked

— Buffer invariant: 0 < mark < position < limit < capacity

1

position = 0 lirnit = 4 capaclty = 8

Lecture 5: Java I/0. Overview of New 1/0 20

Buffer Classes

Buffer Superclass for other buffers;
clear, flip, rewind, mark/reset
ByteBuffer provides views as other buffers, e.g. IntBuffer
get/put, compact, views; allocate, wrap
Subclass of the ByteBuffer
MappedByteBuffer A byte buffer mapped to a file
CharBuffer
DoubleBuffer
FloatBuffer absolute (index-based) and relative (position-based) get/put,
IntBuffer compact, allocate, wrap
LongBuffer

Lecture 5: Java I/0. Overview of New 1/0 21

Some Buffer’s methods

static _
allocateDirect()

Allocates a new direct byte buffer. With direct ByteBuf fer
M avoid intermediaté buffe,rln% Whten performing native 1’0
operations directly upon the direct buffer.

static allocate()

allocate a buffer of a given capacity

clear() clear the buffer, i.e. prepare the buffer for writing data intg it by
channel-reads or relative puts fhmlt = capacity; position =0
flip() . . .
prepare the buffer for reading data from it by channel-writes or
relative gets (limit = position; position = ()
rewind() prepare the buffer for re-reading data from it (position = 0)
mark() set this buffer's mark at its position (mark = position)
22
reset()

reset this buffer's position to the previously-marked position
(position = mark)

Lecture 5: Java I/0. Overview of New 1/0

Some Buffer’s methods (cont’d)

static wrap()

wrap a given array into a buffer; returns the buffer.

et/put absolute (index-based) and relati ition-based) get/put

J P data ﬂon(ll/intoxthe bu?fer; posi%i(l)‘llleé%oosslitl{)ol}l +ai§) get/pu

asIntButfer() t i f this byte buffi th imitive t
create a view of this er as angther primitive type

asCharBuffer().. buffer, e.g. as an IntBl}llffer,uas a harBufferI,) eltc.l wep

slice() create a new buffer that shares part of this buffer's content
starting at this buffer's position.

duplicate() creates a new byte buffer that shares the this buffer's
content.

compact() coI% data between position and limit to the heginning of the
buffer; position is set to the number of data items copied.

boolean

hasRemaining()

f)l(l)g %’U?flaegﬂ%ﬁmwewﬂw@lts between the currgpt

Creating Buffers

* Allocation

— Create an empty buffer on top of a backing Java array
Bytebuffer bufl = ByteBuffer.allocate(100);
IntBuffer buf2 = intBuffer.allocate(100);

* Direct allocation (only ByteBuffer)

— Direct buffers (using DMA)
ByteBuffer buf3 = ByteBuffer.allocateDirect(100);
* Wrapping
— Wrap a buffer around existing data array
byte[] data = “Some data”.getBytes(“UTF-8");
ByteBuffer buf4 = ByteBuffer.wrap(data);

char[] text = “Some text”.toCharArray();
CharBuffer buf5 = CharBuffer.wrap(text);

Lecture 5: Java I/0. Overview of New 1/0 24

Filling/Draining Buffers

* Filling using wrap or put

String s = "Some String”;

CharBuffer bufl = CharBuffer.wrap(s);

CharBuffer buf2 = CharBuffer.allocate(s.length());

// put reversed s in to buf2

for (int i = s.length() - 1; i >= 0; i--) {
buf2.put(s.charAt(i)); // relative put

} // position in buf2 should be 11 after the loop

* Draining using get
buf2.flip(); // limit = position; position = 0
String r = "";

while (buf2.hasRemaining())
r += buf2.get();
}

Lecture 5: Java I/0. Overview of New 1/0

Reading/Writing Buffers from/to
Channels

* Reading from a channel to a buffer

while (buf.hasRemaining() && channel.read(buf) != -1)
{

// process the buffer’s content

}

* Writing to a channel from a buffer

while (buf.hasRemaining() &&
channel.write(buf) '= -1) ;

Lecture 5: Java I/0. Overview of New 1/0 26

Channels

* Channels represent connections to various 1/0
sources, such as pipes, sockets, files, datagrams;

— operate with buffers and I/0O sources: move
(read/write) data blocks into / out of buffers from /
to the 1/0 sources;

— can be open or closed;

— can be blocking/non-blocking, selectable (socket,
pipe), interruptible (file);

— enable non-blocking I/0 operations

Lecture 5: Java I/0. Overview of New 1/0 27

Channels versus Streams

Channels (new 1/0)

Streams (traditional 1/0)

Write/read data to/from buffers;
similar to buffered streams;

buffers can be directly allocated._in
memory — efficient iniplementation

Write data onto output streams and
reading data from input streams

Block-based: a stream of blocks
from/to buffers

Byte-based a continues stream of
bytes

Bi-directional: tend to support both
reading and writing on the same
object (source, buffer)

Uni-directional: input streams and
output streams

Lecture 5: Java I/0. Overview of New 1/0 28

Some Channel Classes

* For TCP connections
— SocketChannel
— ServerSocketChannel

* For UDP communication
— DatagramChannel

* For file access
— FileChannel

Lecture 5: Java I/0. Overview of New 1/0

29

FileChannel

java.nio.channels.FileChannel

— A channel for reading, writing, mapping, and manipulating
a file.

— Similar to RandomAccessFile
Can be mapped to a buffer in the main memory

— MappedByteBuffer()
Has a current position within its file which can be both
queried and modified.
The file itself contains a variable-length sequence of bytes
that can be read and written and whose current size can
be queried.

Lecture 5: Java 1/0. Overview of New 1/0 30

Some methods of FileChannel

read (dst, pos)
write (src, pos)

Read or write at an absolute lp0s1t1()n in a file
without affecting the channel's position.

MappedByteBuffer()

Map a region of a file directly into memory.

force()

Force out file updates to the underlying storage,
device, in order to ensure tha da ta'are not lost in
the evént of a system crash.

transferTo()
transferFrom()

Bytes can be transferred from a ﬁle to some other
channel, and vice Versa, in a way % can be
optimjzéd by many O %m 02 Very ast transfer
directly to or from the file system Cache.

Lecture 5: Java I/0. Overview of New 1/0 31

FileChannel Example

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class FileChannelTest {
public static void main(String[] args) {

String filename = (args.length > 0)? args[0] : "test.txt";
try {
FileInputStream inf = new FileInputStream(filename);
FileChannel channel = inf.getChannel();
MappedByteBuffer buffer =
channel.map(FileChannel.MapMode.READ ONLY,
0, channel.size());
WritableByteChannel out = Channels.newChannel (System.out);
while (buffer.hasRemaining() && out.write(buffer) != -1) {
System.out.println("Writing the file " + filename);
}
channel.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(0);

32

Using transter method

import java.io.*;
import java.nio.channels.*;

public class FileTransferTest {
public static void main(String[] args) {
String srcname = (args.length > 0)? args[0] : "test.txt";
try {
FileInputStream inf = new FileInputStream(srcname);
FileChannel src = inf.getChannel();
WritableByteChannel dst = Channels.newChannel(System.out);
src.transferTo(0, src.size(), dst);
} catch (IOException e) {
e.printStackTrace();
System.exit(0);
}
}
}

Lecture 5: Java I/0. Overview of New 1/0 33

SocketChannel

* Aselectable channel for stream-oriented connecting sockets.
— Reads from and writes to a TCP socket.
— Uses ByteBuffer for reading and writing
— Does not have public constructors

* Each SocketChannel is associated with a peer Socket
object

— Binding, closing, and manipulation of socket options must be done
through the associated Socket object

SocketChannel channel = SocketChannel.open();

channel.configureBlocking(false);

channel.connect(new InetSocketAddress(host,
port));

Lecture 5: Java I/0. Overview of New 1/0 34

SocketChannel Example 1

import java.io.IOException;
import java.nio.channels.*;
import java.net.*;

public class SocketChannelTest {
public static void main(String[] args) {

String host = (args.length > 0)? args[0] : "www.oracle.com";
int port = (args.length > 1) ? Integer.parseInt(args[1l]) : 80;
try {

SocketChannel channel = SocketChannel.open();

channel.configureBlocking(false);

channel.connect(new InetSocketAddress(host, port));

//can do something here while connecting

while (!'channel.finishConnect()) {
System.out.println("Connecting to " + host + " on port " + port);
// can do something here while connecting

}

System.out.println("Connected to " + host + " on port " + port);

// communication with the server via channel

channel.close();

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

Example 2

public class HTTPClient {
public static final String GET_REQUEST = "GET / HTTP/1.1\n";

public static void main(Stringl[] args) {
String host = (args.length > 0) ? args[0] : "www.kth.se";
String hostHeader = "Host: " + host + "\n\n";
int port = (args.length > 1) ? Integer.parselnt(args[l]) : 80;
WritableByteChannel out = Channels.newChannel (System.out);
try {
SocketChannel channel = SocketChannel.open(new InetSocketAddress(
host, port));
ByteBuffer buf = ByteBuffer.wrap(GET_REQUEST.getBytes());
channel.write(buf);
buf = ByteBuffer.wrap(hostHeader.getBytes());
channel.write(buf);
buf = ByteBuffer.allocate(1024);
while (buf.hasRemaining() && channel.read(buf) !'= -1) {
buf.flip();
out.write(buf);
buf.clear();

}
} catch (IOException e) {

e.printStackTrace();
System.exit(0);

ServerSocketChannel

* Aselectable channel for stream-oriented /istening sockets.
— Abstraction for listening network sockets.
— Listens to a port for TCP connections.
— Does not have public constructors

* Each ServerSocketChannel is associated with a peer ServerSocket object

— Binding and the manipulation of socket options must be done through the associated
ServerSocket object;

* accept on a ready ServerSocketChannel returns SocketChannel
ServerSocketChannel serverChannel = ServerSocketChannel.open();
ServerSocket socket = serverChannel.socket();

socket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);

selector = Selector.open();

serverChannel.register(selector, SelectionKey.OP ACCEPT);

Lecture 5: Java I/0. Overview of New 1/0 37

Selectors

* Selector is an object used to select a channel
ready to communicate (to perform an
operation)

— Used to operate with several non-blocking channels
— Allows readiness selection

* Ability to choose a selectable channel that is ready for some
of network operation, e.g. accept, write, read, connect

Lecture 5: Java I/0. Overview of New 1/0 38

Selectable Channels

* Selectable channels include:
— DatagramChannel
— Pipe.SinkChannel
— Pipe.SourceChannel
— ServerSocketChannel
— SocketChannel

* Channels are registered with a selector for
specific operations, e.g. accept, read, write

* Registration is represented by a selection key

Lecture 5: Java I/0. Overview of New 1/0

39

Selection Keys

A selector operates with set of selection keys

Selection key is a token representing the
registration of a channel with a selector

The selector maintains three sets of keys
— Key sef contains the Keys with registered channels;

— Selected-key set contains the Keys with channels
ready for at least one of the operations;

— Cancelled-key set contains cancelled keys whose
channels have not yet been deregistered.

— The last two sets are sub-sets of the Key set.

Lecture 5: Java I/0. Overview of New 1/0 40

Use of Selectors

Create a selector
Selector selector = Selector.open();

Configure a channel to be non-blocking
channel. configureBlocking(false);

Register a channel with the selector for specified operations
(accept, connect, read, write)
ServerSocketChannel serverChannel =
ServerSocketChannel.open();
ServerSocket serverSocket = serverChannel.socket();
serverSocket.bind(new InetSocketAddress(port));
serverChannel. configureBlocking(false);
serverChannel.register(selector, SelectionKey.OP ACCEPT);

— Register as many channels as you have/need

Lecture 5: Java I/0. Overview of New 1/0 41

Use of Selectors (cont’d)

* Select() on the selector to perform the
selection of keys with ready channels
— Selects a set of keys whose channels are ready for
1/0.
* selectNow() — non-blocking select: returns
zero if no channels are ready

* selectedKeys () on the selector to get the
selected-key set

* Iterate over the selected-key set and handle the
channels ready for different I/O operations, e.g.

read, write, accept
Lecture 5: Java 1/0. Overview of New 1/0 42

SelectionKey

Upon registration, each of the registered channels is

assigned a selection Kkey.

SelectionKey clientKey = clientChannel.register(selector,
SelectionKey.OP_READ | SelectionKey.OP WRITE);

Selection key allows attaching of a single arbitrary object
to it
* Associate application data (e.g. buffer, state) with the key (channel)

ByteBuffer buffer = ByteBuffer.allocate(1024);
clientKey.attach(buffer);

Get the channel and attachment from the key
SocketChannel clientChannel =
(SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();

Lecture 5: Java I/0. Overview of New 1/0 43

Non-Blocking Server

while (true) {
selector.select();
Iterator<SelectionKey> keys = selector.selectedKeys().iterator();

while (keys.hasNext()) {
SelectionKey key = keys.next();
keys.remove();

if (key.isAcceptable()) { // accept connection.
ServerSocketChannel server =
(ServerSocketChannel) key.channel();
SocketChannel channel = server.accept();
channel.configureBlocking(false);
channel.register(selector, SelectionKey.OP READ,
ByteBuffer.allocate(1024));

} else if (key.isReadable()) { // read from a channel.
SocketChannel channel = (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();
channel.read(buffer);
key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);

Non-Blocking Server, Cont'd

} else if (key.isWritable()) { // write buffer to channel.
SocketChannel channel = (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();
buffer.flip();
channel.write(buffer);
if (buffer.hasRemaining()) {

buffer.compact();
} else {
buffer.clear();

}
key.interestOps(SelectionKey.OP READ);

Lecture 5: Java I/0. Overview of New 1/0 45

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

