Chapter 2

Lecture 2: Divide and conquer and
Dynamic programming

2.1 Divide and Conquer

Idea:

- divide the problem into subproblems in linear time

- solve subproblems recursively

- combine the results in linear time, so that the result remains correct.
Well known example: Mergesort, sorting n numbers in nlogn time:

e Divide the input into two
e Sort the two halves by recursive MergeSort
e Merge the two sorted list in linear time.

Often Divide and Conquer works for problems were brute force algorithms are polynomial time.
In the basic case we divide the problem into two subproblems, but here we start with the general
case immediately.

How can we derive D-C result? i) We can guess the emerging running time, and prove it by
induction, or ii) we can unroll the recurrence, by analyzing the first levels, identifying the patters,
and summing over all levels.

Unrolling the recurrence, general approach: (see figure 4.2 (5.2)) Divide the problem of ¢
subproblems of n/2 size, and combine the results in cn time. Note, that the challenge is the division
to subproblems, and the combination of the results, such that the result after merging is correct.
For running time 7'(n) we have

T(n) < gT(n/2) + cn,
T(2) <ec.

1. Analysing the first few levels:
First level: e¢n + all subsequent recursive calls
Second and third level: gc(n/2) + all subsequent calls, g?c(n/2?) + all subsequent calls

2. Identifying the pattern:
For level i: (g/2)‘cn, that is, the algorithm has more and more to do in each layer, if ¢ > 2.

3. Summing up over all levels, where we have log, n levels
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log b

where we have used that a = bl°8% We can then state the following theorem.

Theorem 6. Any T'(n) satisfying T(n) < qT'(n/2) + cn for ¢ > 2 is bounded by O(n'°829).

For example, if you need to divide the problem in ¢ = 3 subproblems, the running time will
be O(n'°823) = O(n'?). Note, if you have a quadratic brute force approach, then dividing the
problem into four subproblems does not help.

Problem. Integer multiplication

For n digit numbers, following elementary school methods, the running time is O(n?). (We
multiply one number by one digit at a time, for all n digits.) For simplicity, we consider numbers
of same number of digits.

Let us try an alternative method, that leads to Divide and Conquer. We write the numbers as
2122 4+ X2, where x; is the higher order n/2 bits, x5 is the lower order n/2 bits.

xy = (2122 + 22) (12" + y2) = 21912" + (21Y0 + Toy1)2"? + 2oy

Note, that this leads to a ¢ = 4 case, which is unfortunately leads to quadratic running time.
We can do it with ¢ = 3:

e calculate x1y1, zoyo
e calculate (21 + 20)(y1 + Yo) = Z1y1 + 1Yo + Zoy1 + ToYo.

e get the required x1yo + zoy1 from these.

Final algorithm is given in the book, with complexity O(n!°823).

Reading: closest points for the difficulties of linear combinations of results. Other D&C prob-
lems: counting inversions, Fast Fourier.

Further generalization: similar results when the merging is not in linear time.

2.2 Dynamic programming

The name comes from Bellman, it emerged before the wide spread of computers. Dynamic stays
changing it time, and programming stays for planning.
Algorithmic paradigms:

Greedy. Build up a solution incrementally, by step wise optimization according to some local
criterion.

Divide-and-conquer. Break up a problem into independent subproblems, solve each subproblem,
and combine solutions.

Dynamic programming. Break up a problem into a series of overlapping subproblems, and build
up solutions to larger and larger subproblems.

2.2.1 From recursion to iteration - weighted interval scheduling
Recursive solution

Problem. Weighted interval scheduling. We have a set R of requests 7, given by starting and
finishing times (s;, f;), and a weight v;. |R| = n. A subsets of requests is compatible, if no two of
them overlap in time. The goal is to find a maximum weight compatible subset.

We do some preprocessing: order requests according to finishing time, and record the last
compatible request as p(i).

Recursive thinking: let us consider the optimal solution O, and the last interval. There are two
options.

1. n € O: then O includes an (the) optimal solution for request {1,...p(n)}.
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2. n ¢ O: then O is the same as the optimal solutions for requests {1,...n — 1}.

Based on this we have the following recursive equation:

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1)),
and j € O iff

v; + OPT(p(j) > OPT(j —1).
This gives us a recursive algorithm Compute-Opt(j). See book.
Theorem 7. Compute-Opt(j) correctly computes OPT(j) for each j.
Proof. Proof by induction, and following the same reasoning as above. O

Are we done? No.
Running time of the recursive Compute-Opt: grows according to the Fibonacci numbers, and is
therefore exponential.

Memorizing the recursion

Compute-Opt becomes exponential, because it calculates the same instance of Compute-Opt(j) for
several times. Memorized version, M-Compute-Opt stores results once computed. See algorithm in
book.

Theorem 8. The running time of M-Compute-Opt(n) is O(n), assuming that the intervals are
sorted by their finish times.

Proof. We look for a suitable progress measure that decreases by one each time M-Compute-Opt
is called. The number of entries that are empty is such a measure. O

If we also need the optimal set, and not only the maximum weight, then we need additional
post processing, Find-Solution(j). See algorithm in book.

Theorem 9. The running time of Find-Solution(n) is O(n).

Proof. This is a recursive solution which calls strictly lower values, that is, completes in O(n)
time. O
Iterative solution

The key tool for the efficient recursive solution was the maintaining of the array M of already
computed values. But then nothing stops us to directly compute the entries of M, which leads to
an iterative algorithm, Iterative-Compute-Opt. See book.

Theorem 10. The running time of Iterative-Compute-Opt(n) is O(n).

2.2.2 Basic Steps of Dynamic Programming

To find a dynamic programming based solution, we need to find a collection of subproblems derived
from the original problem that satisfies the following;:

1. There are a polynomial number of subproblems. Reasonable requirement to keep the running
time polynomial. (We had two for the interval scheduling.)

2. The solution can be easily computed from the solutions to the subproblems. Again, to make
sure the algorithm remains polynomial. (It was the maximum operation for interval schedul-

ing.)

3. There is a natural ordering of subproblems from smallest to largest. This is needed to be able
to use memorization or iteration. (It was the number of intervals considered, according to
increasing finishing times.)
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2.2.3 Subset sums and Knapsack problems

Here the direct approach of defining subproblems do not work. We demonstrate the technique of
adding a new variable.

Problem. Subset sum problem: We are given n items with wights w; € IN, and a bound W.
Select a subset S, such that },_gw; < W and ), g w; is as large as possible.

Solution approaches: greedy solutions with starting from the heaviest or lightest item obviously
do not work. So we try with dynamic programming. Let us assume we ordered the requests.
Unfortunately the recursion as in the interval scheduling does not work, if item n is part of the
optimal solution, all the others may be part of it as well, only the limit W is decreased. Since we
need to keep track of the remaining space, we introduce one more variable:

OPT(i,w) = max Zw]| ij <w

sl \ 525 7 ies
Then we can write up a recursive construction of the optimal set O:
o if n ¢ O then OPT(n,W) =OPT(n—1,W),
e if n € O then OPT(n,W) = w, + OPT(n —1,W — w,),
or
o if w < w; then OPT(i,w) = OPT(i — 1, w),
e otherwise OPT (i, w) = max(OPT (i — 1,w),w; + OPT (i — 1,w — w;)).

See the algorithm in the book.
For the iterative implementation we need to fill in a matrix M of size n x W. Note, it also
requires the assumptions, that weights are integer.

Theorem 11. The Subset-Sum(n, W) algorithm correctly computes the optimal value of the problem
and runs in O(nW) time.

Proof. Each entry of M is filled in in O(1) time, by comparing previous entries. O

We call such algorithms pseudo-polynomial, as the running time depends on the largest integer
involved in the problem. These algorithms get less practical as this number grows large.

Theorem 12. Given the table M, the optimal set S can be backtracked in O(n) time.

Problem. Integer Knapsack: We are given n items with values v; > 0, wights w; € IN, and a
bound W. Select a subset S, such that ), gw; <W and ), 5 v; is as large as possible.

We can use exactly the same approach as for the subset sum problem, with slightly different
recursion rule, but the same matrix M:

o if n ¢ O then OPT(n,W) =OPT(n—1,W),

o if n € O then OPT(n,W) = v, + OPT(n —1,W —wy,),

or

e if w < w; then OPT(i,w) = OPT(i — 1,w),

e otherwise OPT (i, w) = max(OPT (i — 1,w),v; + OPT(i — 1,w — w;).

Theorem 13. The Knapsack(n, W) problem can be solved in O(nW) time.
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2.2.4 Shortest path in a graph, including negative weights

Recall, the Dijskra algorithm finds shortest path in graphs with positive weights, in O(mlogn)
steps.

Problem. Shortest path with negative weights: Given G = (V, E), and weights {c¢;; }. Decide
if G has a negative cycle. If the graphs has no negative cycle, find a path P from s to ¢ with
minimum total cost.

We can easily see some wrong approaches. Dijsktra does not work, since now we can not easily
declare the set of discovered nodes. Another idea would be to add a large constant to each weights,
so that each of them becomes positive. But this penalize long paths more that short paths, and
the shortest path may change. Let us see a dynamic programming approach. We will end up
with the Bellman-Ford Algorithm, which is one of the first applications of dynamic programming.
Remember, what we need:

e polynomial number of subproblems

e easy merging of subproblems

e a natural sequence of items to be included.
Moreover, we will use the following simple statement.

Lemma 9. If G does not have negative cycles, then the shortest paths have at most n-1 edges
(V] =mn).

We need two tricks from earlier discussions: we will use more than two subproblems, and we
will have two variables: i for using at most i edges, and v as the start of a path to ¢ Then we know
the following about the optimal path P, representing OPT'(i,v), that is, shortest path from v to ¢
with maximum i edges:

e if P uses at most ¢ — 1 edges, then OPT'(i,v) = OPT(i — 1, v),
e if P is uses i edges, and the first edge is (v, w), then OPT'(i,v) = ¢y + OPT (i — 1, w),

or, as a recursive formula:
if ¢ > 0 then
OPT(i,v) = min(OPT(i — 1,v), min(OPT (i — 1,w) 4 cy))-
w

The iterative shortest path algorithm fills in an M matrix of n x n. To fill in an entry, it needs
to compare n previous entries. See algorithm in book.

Theorem 14. The Shortest-Path algorithm correctly computes the minimum cost of an s-t path in
a graph with no negative cycles, and runs in O(n3) time.

Remark. The algorithm can be implemented in O(mn) time, where n? is changed to m since only
w — v pairs with edges need to be evaluated. Similarly, the space requirements can be decreased to

O(n).

This shortest-path algorithm is relevant even for graphs with only positive weights, due to the
possibility of distributed implementation. In the distributed implementation each node pushes its
new shortest path values to its neighbors, neighbors update their own values, etc. Algorithms
with synchronous and asynchronous implementation in the book. The synchronous distributed
implementation is the official Bellman-Ford algorithm.

2.2.5 Negative Cycles in Graphs

Actually, up to now we solved only half of the shortest path problem. We have not discussed the
detection of cycles yet. Note two subcases: the negative cycle is on a path to the sink, or the
negative cycle is not on a path to the sink. If we want to detect all cycles, then we need to use an
augmented graph, adding a node ¢ and an edge from all nodes to ¢.
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Lemma 10. The augmented graph G’ has negative cycle such that there is a path from the cycle
to the sink t iff G has negative cycle.

Proof. Forward direction (If G’ has negative cycle, then G has too): Since no edge leaves ¢, the
negative cycle can not go through ¢, and needs to be there in G as well.

Backward direction (If G has negative cycle, then G’ has too): If G has a negative cycle, it will
not disappear due to the augmentation. Also, a path needs to go to ¢, since there is an edge from
all nodes to t. O

Algorithm. Bellman-Ford extension to detect cycles.
Take B-F, and let it run for ¢ > n.

Lemma 11. If a node v can reach t and it is contained in a negative cycle, then

lim OPT(i,v) = —o0.

i—»00
Lemma 12. If G has no negative cycles, then OPT(i,v) = OPT(n — 1,v), Yv, Vi > n.

The question is for how large i do we need to test? e.g., OPT(n,v) = OPT(n — 1,v) may hold
for a v in a negative cycle (an entire loop needs to be made, so maybe there is no path which is
just one link longer). Therefore, the following result is important.

Theorem 15. There is no negative cycle with path to t iff OPT (n,v) = OPT(n — 1,v) holds Yv.

Proof. If no negative path then OPT(n,v) = OPT(n — 1,v) holds: see previous lemma.

If OPT(n,v) = OPT(n — 1,v) then no negative path: OPT values for iteration ¢ are calculated
only from the values in iteration ¢ — 1, so if they have not changed in one iteration, they will never
change. This means there can not be a negative cycle, since then the lemma before the last one
would hold. O

Corollary 2. If in a graph G with n nodes OPT(n,v) # OPT(n — 1,v), then there is a path from

v to t containing a negative cycle. This also helps to backtrack the negative cycle in O(n) steps.

2.2.6 Other dynamic programming problems

e Segmented least squares: example for multi-way choices,
e Sequence alignment

e Parsing

2.3 What have we learned

Divide and Conquer:
e Solve subproblems ¢, and combine results in linear time
e Running time O(n!°&29)
e Examples: sorting, multiplication, closest points, convolution
Dynamic programming:
e Similarly to divide and conquer we build up solution from subproblems
e Design steps: recursion, recursion with memorization, iterative solution
e To derive complexity: see how entries in the iterative solution fill up

e Famous problems: weighted interval, subset sum, knapsack, shortest paths





