ID2212 Network Programming with Java
Lecture 8

Message-Based Communication,
Java Message Service (JMS) API,
JavaEmail API.

Java Naming and Directory Interface (JNDI).

Leif Lindback and Vladimir Vlassov
KTH/ICT/SCS
HT 2016

Message-Oriented Middleware and
The Java Message Service API (JMS)

javax.jms

home page:
http://www.oracle.com/technetwork/java/jms/index.html

Lecture 8&: JMS. JavaEmail API. JNDI

Message-Oriented Middleware,
MOM

* Enables the exchange of general-purpose
messages 1n a distributed application.

* Data 1s exchanged by message queuing, either
synchronously or asynchronously.

* Reliable message delivery 1s achieved using
message queues, and by providing security,
transactions and the required administrative
SErvices.

Difterence between MOM and
RPC/RMI

When using RPC or RMI, the server must be available to accept
calls. If the server is down, the call can not be made.

When using MOM, messages can be sent to servers that are down.

> Messages under a MOM system are placed into a queue and retrieved
whenever the server requests them.

> Whether the server is available at the time the message is sent is
irrelevant.

Senders call the MOM, instead of calling the server directly.

That way, applications can be relieved of non-functional
requirements, like interoperability, reliability, security, scalability,
performance, etc.

- It is up to the MOM (and its administrator) to handle that.

The Java Message Service API (JMS)

JMS provides a Java API for an existing message queue. The
JMS specification defines how to call the provider, it does not
include a provider.

Synchronous and Asynchronous message production (send)
Synchronous message consumption (receive)

Asynchronous message consumption by a message listener
registered as consumer.

— Message-driven EJBs asynchronously consume messages.

Reliable messaging: Can ensure that a message 1s delivered
once and only once.

JMS provider 1s a messaging agent performing messaging

Lecture 8&: JMS. JavaEmail API. JNDI 5

Two Messaging Domains

Queues: Point-to-Point (PTP) Messaging Domain

Sends Msg

. Consumes .
lient 1 Client 2
I Client | Msg Acknowledges:l \

Topics: Publish/Subscribe (pub/sub) Messaging Domain

<4 Sube:rlbes Client 2
Delivers

Msg

<4 Subs_crlbes Client 8
Delivers

A stand-alone JMS provider can implement one or both domains.

Publishes

I Client 1 I—

Msg

A Java EE provider must implement both domains.

Lecture 8&: JMS. JavaEmail API. JNDI

Clients on Different Systems

Clients can
communicate with each
other, when running on
different systems in a
network.

— The systems must be
visible to each other by
name (IP address) and
must have compatible
message queues.

— Configuration issue

Earth

Java EE Server on Earth

e CF that

Queue Jupiter

points to

(cr
k' Sends /

Producer

Lecture 8&: JMS. JavaEmail API. JNDI

Jupiter
Java EE Server on Jupiter

"'/ Queue QF

Delivers

Msg

}

JMS Architecture

A JMS application is composed of:

A JMS provider - . JNDI Namespace
Administrative Bind
— There are many message queues that can be Tool @ o
used as JMS provider, e.g., Apache ActiveMQ, \) Inject
RabbitMQ and IBM WebSphere MQ. The Resource
GlassFish server also includes a JMS provider.) /
JMS clients s oo JMS Provider
— producing and/or consuming messages. L | Connection

Messages

— objects that communicate information between
JMS clients.

Administered objects
— Destinations (D);

— Connection Factories (CF) described in
Administered Objects

— created by an administrator for the use of

clients
Lecture 8&: JMS. JavaEmail API. JNDI 8

JMS Programming Concepts

Administered Objects
— Connection Factory

— Destinations (queues, topics,
both)

Connection
Session
Message Producers

Message Consumers

- MCSS&gC consumers

— Message listeners

— Message selectors
Messages

— Headers, properties, bodies
Queue Browsers

Message
Producer

Sends

To

Destination

Lecture 8&: JMS. JavaEmail API. JNDI

Connection
Factory. o (o)

Connection

Creates

Session

Creates Creates

Message
Consumer

Receives
From

Creates

Destination

Steps:

Creating a connection and a session

Creating message producers and
consumers

Sending and receiving messages

ConnectionFactory

* An administered object, deployed to the server by the message
queue administrator.

* Encapsulates a set of connection configuration parameters,
defined by the administrator.

* Used by a JMS client to create a connection with a JIMS
provider.

* When used in a Java EE server, the connection factory object 1s
created and injected by the server:

@Resource(mappedName="jms/MyConnectionFactory")

private static ConnectionFactory connectionFactory;

Lecture 8&: JMS. JavaEmail API. JNDI 10

Destination

* An administered object, deployed to the server by the message
queue administrator.

* Encapsulates a provider-specific address.

* Used by a client to specify the target of messages 1t produces
and the source of messages it consumes.

* When used 1n a Java EE server, the connection factory object 1s
created and injected by the server:

@Resource(mappedName="jms/MyQueue")
private static Queue queue;

@Resource (mappedName="jms/MyTopic")
private static Topic topic;

Lecture 8&: JMS. JavaEmail API. JNDI 11

Connection

* Encapsulates an open connection with a JMS provider.

* Typically represents an open TCP/IP socket between a client
and the service provider.

* Created by a ConnectionFactory:

Connection connection =
connectionFactory.createConnection();

connection.close();

Lecture 8&: JMS. JavaEmail API. JNDI 12

Session

* A single-threaded context for producing and consuming
messages.

* Used to create message producers and consumers,
messages, queue browsers, temporary queues and topics.

* Retains messages 1t consumes until they have been
acknowledged.

* A not transacted session with automatic acknowledgement

of messages:

Session session = connection.createSession(false,
Session.AUTO ACKNOWLEDGE) ;

* A transacted session, messages are acknowledged on

commit;
Session session = connection.createSession(true, 0);

Lecture 8&: JMS. JavaEmail API. JNDI

13

MessageProducer

A message producer 1s created by a session, and used for
sending messages to a destination.

— Create a producer for a pestination object (Queue or
Topic):

MessageProducer producer =
session.createProducer(destination);

— Send messages by using the send method:
producer.send(message) ;

— Create an unidentified producer and specity a
destination when sending a message:

MessageProducer producer = session.createProducer(null);
producer.send(destination, message);

Lecture 8&: JMS. JavaEmail API. JNDI 14

MessageConsumer

* A message consumer is created by a session and used for receiving
messages sent to a destination.

* Create a consumer for a Destination object (Queue or Topic):
MessageConsumer consumer =
session.createConsumer(dest);

* Start the connection and use the receive method to consume a message
synchronously.
connection.start();
Message m = consumer.receive();
Message m = consumer.receive(1000); // time out after a second

Lecture 8&: JMS. JavaEmail API. JNDI 15

MessagelListener

* A message listener acts as an asynchronous event handler
for messages.

— Implements the MessagelL1stener interface, wich has one
method, onMessage.

public void onMessage(Message message);

* Register the message listener with a specific
MessageConsumer

Listener myListener = new Listener();
consumer.setMessagelListener(myListener);

Lecture 8&: JMS. JavaEmail API. JNDI

16

Messages

A JMS message has three
parts:

1. (required) a header,
2. (optional) properties,
3. (optional) a body.

A header contains
predefined fields with
values that both clients
and providers use to

identify and to route
messages.

Header Field Set By
JMSDestination
JMSDeliveryMode

send or

publish
JMSExpiration method
JMSPriority
JMSMessagelD
JMSTimestamp
JMSCorrelationID

Client

JMSReplyTo
JMSType
JMSRedelivered JMS provider

Lecture 8&: JMS. JavaEmail API. JNDI

17

Message Body
lypes

* Five message body formats (a.k.a.
message types)

TextMessage message =
session.createTextMessage();

message.setText(msg_text);
producer.send(message);

Message m = consumer.receive();
if (m instanceof TextMessage) {
TextMessage message = (TextMessage)
m;
System.out.println("”Message:"
+ message.getText());
} else {
// Handle error

¥

Lecture 8&: JMS. JavaEmail API. JNDI

Message Type Contents
TextMessage A String object (for example, the
contents of an XML file).
MapMessage A set of name-value pairs, names
as String and values as primitive
types. Entries can be accessed
sequentially by enumerator or
randomly by name.
BytesMessage A stream of bytes.
StreamMessage A stream of primitive values.
ObjectMessage | \ sarializable object.
Message Nothing, but header fields and

properties only.

18

JavaMail API

javax.mail
home page:

http://www.oracle.com/technetwork/java/javamail/index.html

Lecture 8: JMS. JavaEmail API. JNDI

JavaMail Programming Concepts

* Session, a basic email session
* Message, an email
* Address, an email address of a recipient or a sender

* Transport, a facility used to connect to the mail server
and to send a message

* Store, an email store
* Folder, an email folder

* Authenticator, knows how to obtain authentication for
a network connection. Usually, by prompting the user.

Session

* A basic mail session
* An object of the Session class

* For example:

Properties props = new Properties();

// Fill props with any information, e.g. mail server,

// protocol, username

Session session = Session.getDefaultInstance(props,
Authenticator);

// The authenticator object will be called to retrieve the

// user's credentials, for example password.

Lecture 8&: JMS. JavaEmail API. JNDI

30

Authenticator

* An object to access to the mail server using a
username and password.

* Develop a subclass of Authenticator that is
used to create a PasswordAuthentication
object when authentication is necessary.

* Instantiate the Authenticator subclass and pass
it to the Session object.

Lecture 8&: JMS. JavaEmail API. JNDI

31

Message

* An email message to be sent

* An object of a Message subclass

— such as javax.mail.internet.MimeMessage —a
email message that understands MIME types and
headers

* For example:

MimeMessage message = new MimeMessage(session);
message.setText("Hello");
message.setSubject("First");

Lecture 8&: JMS. JavaEmail API. JNDI

32

Address

* An email address of a recipient or a sender — an object of
the javax.mail.internet.InternetAddress class

* For example:

Address fromAddress =

new InternetAddress(“vlad@kth.se”, “Vladimir Vlassov”);
Address toAddress =

new InternetAddress(“leifl@kth.se”):
Address ccAddress =

new InternetAddress(“id2212 teachers@ict.kth.se”);
message.setFrom(fromAddress);
message.addRecipient(Message.RecipientType.TO, toAddress);
message.addRecipient(Message.RecipientType.CC, ccAddress);
message.addRecipient (Message.RecipientType.BCC, fromAddress);

Lecture 8&: JMS. JavaEmail API. JNDI

Transport

* An object of the Transport class used to connect to the
mail server and to send a message;

— Uses a specific protocol for sending messages (usually SMTP).

* For example:

message.saveChanges();
Transport transport = session.getTransport("smtp");
transport.connect();

transport.sendMessage(message, message.getAllRecipients());
transport.close();

Lecture 8&: JMS. JavaEmail API. JNDI

34

Store and Folder

Represent an email store and an email folder, respectively

An object of the Folder class 1s used for fetching
messages from an associated mail folder

For example:

Store store = session.getStore("pop3");

store.connect();

Folder folder = store.getFolder("INBOX");

folder.open(Folder.READ ONLY);

Message message[] = folder.getMessages();

System.out.println(((MimeMessage)message).
getContent());

folder.close(expunge);

store.close();

Lecture 8&: JMS. JavaEmail API. JNDI

35

N

o XN

Sending Email Messages

Get the system Properties.

Setup a mail server:

* Add the name of an SMTP server to the properties for the
mail.smtp.host property key.

Get a Session object based on the Properties.
Create a MimeMessage from the session.

Set the from field of the message.

Add recepient(s) to the message (to, cc, bce).
Set the subject of the message.

Set the content of the message.

Use a Transport to send the message.

Lecture 8&: JMS. JavaEmail API. JNDI 36

Fetching and Reading Email Messages

* Typical steps:

1.

nallb

® NS0

Get the system Properties.
Get a Session object based on the Properties.
Get a Store for your email protocol, either pop3 or imap.

Connect to the mail host's store with the appropriate username and
password.

Get the folder to read, e.g. the INBOX.
Open the folder read-only.
Get a directory of the messages in the folder (a list of messages).

Display the messages one by one (e.g. the “from” field, the
“subject” field, a message content).

Close the connection to the folder and store.

Lecture 8&: JMS. JavaEmail API. JNDI 38

Email or Message Queue?

* Both message queues (MOM) and email servers can be used to
create a loosely coupled, asynchronous messaging system
* Both provide guaranteed delivery.
* Both support point-to-point and publish/subscribe messaging
models.
* Message queues are cleaner and more powerful 1f the message
exchange needs to be machine-driven rather than human-driven.

* Message queues provide more programmatic control, are
transactional, and can give better throughput.

* Using emails has the advantages of being human-readable and of
using an infrastructure already available more or less
everywhere.

JNDI: Java Naming and Directory
Interface

javax.naming
home page:

http://www.oracle.com/technetwork/java/index-jsp-137536.html

Lecture 8&: JMS. JavaEmail API. JNDI

JNDI Programming Concepts

Name

— A generic name associated with an object or an object reference.

— A naming system determines the syntax that the name must follow.
Binding

— the association of a name with an object or object reference.
Context

— a set of bindings. The object of a binding might be another context. If so,
the contexts together form a tree.

Initial context
— the starting (root) context.
Naming service

— A server that enables binding names to objects and looking up objects by
names.

Directory service
— A server that provides a collection of named objects with attributes

Lecture 8&: JMS. JavaEmail API. JNDI 44

JNDI Programming Concepts (cont)

* Naming service

the means by which names are bound to objects and objects are
found by their names.

A client of the service can bind an object to a name, and look up an
object by its name.

Provides a lookup (resolution) operation that returns the object
with a given name

May provide operations for binding names, unbinding names, and
listing bound names.

The operations are performed within the context.

* Context (Naming Service)

A set of name-to-object bindings.
Has an associated naming convention.
Provides naming service operations performed in the context

Lecture 8&: JMS. JavaEmail API. JNDI 45

Storing Object in Naming Services

* Two general ways:
— Store a serialized version of the Java object.

— Store a reference with information how to construct or
locate an instance of the object, for example

* The class name

* A vector of RefAddr objects representing address(es) of objects

Lecture 8&: JMS. JavaEmail API. JNDI 46

Directories and Directory Service

* Directory
— A set of directory objects.

— A directory object i1s a named object with attributes, e.g. id/value
pairs.

— A directory can be searched for an object not only by its name but
also by its attributes.

* Directory service

— Many naming services are extended with a directory service. A
directory service associates names with objects and also allows
such objects to have attributes.

— A client of the service can bind an object to a name, set /change
object’s attributes, create subdirectories, search a directory for
objects by names and/or by attributes.

Lecture 8&: JMS. JavaEmail API. JNDI 47

JNDI Architecture

* JNDI provides a Java API for an existing naming or
directory service.

* The JDK includes for example the RMI and CORBA name
services, that can be used as JNDI implementations.

Java Application

JNDI API

Naming Manager

&

L . I I I il JNDI
III@ GE@ m Implementation
Possibilities

1 183

Lecture 8&: JMS. JavaEmail API. JNDI 48

)
'

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

