
Message-Based Communication,
Java Message Service (JMS) API,

 JavaEmail API.
Java Naming and Directory Interface (JNDI).

Leif Lindbäck and Vladimir Vlassov

KTH/ICT/SCS

HT 2016

ID2212 Network Programming with Java
Lecture 8

Message-Oriented Middleware and
The Java Message Service API (JMS)

javax.jms
home page:

http://www.oracle.com/technetwork/java/jms/index.html

Lecture 8: JMS. JavaEmail API. JNDI

Message-Oriented Middleware,
MOM

 Enables the exchange of general-purpose
messages in a distributed application.

 Data is exchanged by message queuing, either
synchronously or asynchronously.

 Reliable message delivery is achieved using
message queues, and by providing security,
transactions and the required administrative
services.

Difference between MOM and
RPC/RMI

 When using RPC or RMI, the server must be available to accept
calls. If the server is down, the call can not be made.

 When using MOM, messages can be sent to servers that are down.
 Messages under a MOM system are placed into a queue and retrieved

whenever the server requests them.
 Whether the server is available at the time the message is sent is

irrelevant.

 Senders call the MOM, instead of calling the server directly.
 That way, applications can be relieved of non-functional

requirements, like interoperability, reliability, security, scalability,
performance, etc.

 It is up to the MOM (and its administrator) to handle that.

Lecture 8: JMS. JavaEmail API. JNDI 5

The Java Message Service API (JMS)

• JMS provides a Java API for an existing message queue. The
JMS specification defines how to call the provider, it does not
include a provider.

• Synchronous and Asynchronous message production (send)

• Synchronous message consumption (receive)

• Asynchronous message consumption by a message listener
registered as consumer.
– Message-driven EJBs asynchronously consume messages.

• Reliable messaging: Can ensure that a message is delivered
once and only once.

• JMS provider is a messaging agent performing messaging

Lecture 8: JMS. JavaEmail API. JNDI 6

Two Messaging Domains
• Queues: Point-to-Point (PTP) Messaging Domain

• Topics: Publish/Subscribe (pub/sub) Messaging Domain

• A stand-alone JMS provider can implement one or both domains.
• A Java EE provider must implement both domains.

Clients on Different Systems

• Clients can
communicate with each
other, when running on
different systems in a
network.
– The systems must be

visible to each other by
name (IP address) and
must have compatible
message queues.

– Configuration issue

77Lecture 8: JMS. JavaEmail API. JNDI

Lecture 8: JMS. JavaEmail API. JNDI 8

JMS Architecture
• A JMS application is composed of:

• A JMS provider
– There are many message queues that can be

used as JMS provider, e.g., Apache ActiveMQ,
RabbitMQ and IBM WebSphere MQ. The
GlassFish server also includes a JMS provider.

• JMS clients
– producing and/or consuming messages.

• Messages
– objects that communicate information between

JMS clients.

• Administered objects
– Destinations (D);

– Connection Factories (CF) described in
Administered Objects

– created by an administrator for the use of
clients

Lecture 8: JMS. JavaEmail API. JNDI 9

JMS Programming Concepts
• Administered Objects

– Connection Factory
– Destinations (queues, topics,

both)
• Connection
• Session
• Message Producers
• Message Consumers

– Message consumers
– Message listeners
– Message selectors

• Messages
– Headers, properties, bodies

• Queue Browsers

• Steps:
– Creating a connection and a session
– Creating message producers and

consumers
– Sending and receiving messages

Lecture 8: JMS. JavaEmail API. JNDI 10

ConnectionFactory

 An administered object, deployed to the server by the message
queue administrator.
 Encapsulates a set of connection configuration parameters,
defined by the administrator.
 Used by a JMS client to create a connection with a JMS
provider.
 When used in a Java EE server, the connection factory object is
created and injected by the server:

@Resource(mappedName="jms/MyConnectionFactory")

private static ConnectionFactory connectionFactory;

Lecture 8: JMS. JavaEmail API. JNDI 11

Destination

 An administered object, deployed to the server by the message
queue administrator.
 Encapsulates a provider-specific address.
 Used by a client to specify the target of messages it produces
and the source of messages it consumes.
 When used in a Java EE server, the connection factory object is
created and injected by the server:

@Resource(mappedName="jms/MyQueue")
private static Queue queue;

@Resource(mappedName="jms/MyTopic")
private static Topic topic;

Lecture 8: JMS. JavaEmail API. JNDI 12

Connection

 Encapsulates an open connection with a JMS provider.
 Typically represents an open TCP/IP socket between a client

and the service provider.
 Created by a ConnectionFactory:

Connection connection =
connectionFactory.createConnection();

...
connection.close();

13

Session

● A single-threaded context for producing and consuming
messages.

● Used to create message producers and consumers,
messages, queue browsers, temporary queues and topics.

● Retains messages it consumes until they have been
acknowledged.

● A not transacted session with automatic acknowledgement
of messages:
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);
● A transacted session, messages are acknowledged on

commit:
Session session = connection.createSession(true, 0);

13Lecture 8: JMS. JavaEmail API. JNDI

Lecture 8: JMS. JavaEmail API. JNDI 14

MessageProducer

A message producer is created by a session, and used for
sending messages to a destination.

– Create a producer for a Destination object (Queue or
Topic):
MessageProducer producer =
session.createProducer(destination);

– Send messages by using the send method:
producer.send(message);

– Create an unidentified producer and specify a
destination when sending a message:
MessageProducer producer = session.createProducer(null);
producer.send(destination, message);

Lecture 8: JMS. JavaEmail API. JNDI 15

MessageConsumer

• A message consumer is created by a session and used for receiving
messages sent to a destination.

• Create a consumer for a Destination object (Queue or Topic):
 MessageConsumer consumer =
 session.createConsumer(dest);

• Start the connection and use the receive method to consume a message
synchronously.
connection.start();
Message m = consumer.receive();
Message m = consumer.receive(1000); // time out after a second

Lecture 8: JMS. JavaEmail API. JNDI 16

MessageListener

• A message listener acts as an asynchronous event handler
for messages.
– Implements the MessageListener interface, wich has one

method, onMessage.

public void onMessage(Message message);

• Register the message listener with a specific
MessageConsumer

Listener myListener = new Listener();
consumer.setMessageListener(myListener);

Lecture 8: JMS. JavaEmail API. JNDI 17

Messages

• A JMS message has three
parts:

1. (required) a header,

2. (optional) properties,

3. (optional) a body.

• A header contains
predefined fields with
values that both clients
and providers use to
identify and to route
messages.

Header Field Set By

JMSDestination

send or
publish
method

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID

JMSTimestamp

JMSCorrelationID
Client

JMSReplyTo

JMSType

JMSRedelivered JMS provider

Lecture 8: JMS. JavaEmail API. JNDI 18

Message Body
Types

• Five message body formats (a.k.a.
message types)

TextMessage message =
 session.createTextMessage();
message.setText(msg_text);
producer.send(message);
...
Message m = consumer.receive();
if (m instanceof TextMessage) {
 TextMessage message = (TextMessage)

m;
 System.out.println(”Message:"

 + message.getText());
} else {
 // Handle error
}

Message Type Contents

TextMessage A String object (for example, the
contents of an XML file).

MapMessage A set of name-value pairs, names
as String and values as primitive
types. Entries can be accessed
sequentially by enumerator or
randomly by name.

BytesMessage A stream of bytes.

StreamMessage A stream of primitive values.

ObjectMessage A Serializable object.

Message Nothing, but header fields and
properties only.

JavaMail API

javax.mail
home page:

http://www.oracle.com/technetwork/java/javamail/index.html

Lecture 8: JMS. JavaEmail API. JNDI

JavaMail Programming Concepts
● Session, a basic email session
● Message, an email
● Address, an email address of a recipient or a sender
● Transport, a facility used to connect to the mail server

and to send a message
● Store, an email store
● Folder, an email folder
● Authenticator, knows how to obtain authentication for

a network connection. Usually, by prompting the user.

Lecture 8: JMS. JavaEmail API. JNDI 30

Session

• A basic mail session

• An object of the Session class

• For example:

Properties props = new Properties();
// Fill props with any information, e.g. mail server,
// protocol, username
Session session = Session.getDefaultInstance(props,
 Authenticator);
// The authenticator object will be called to retrieve the
// user's credentials, for example password.

31

Authenticator

• An object to access to the mail server using a
username and password.

• Develop a subclass of Authenticator that is
used to create a PasswordAuthentication
object when authentication is necessary.

• Instantiate the Authenticator subclass and pass
it to the Session object.

31Lecture 8: JMS. JavaEmail API. JNDI

32

Message

• An email message to be sent

• An object of a Message subclass
– such as javax.mail.internet.MimeMessage – a

email message that understands MIME types and
headers

• For example:

MimeMessage message = new MimeMessage(session);
message.setText("Hello");
message.setSubject("First");

32Lecture 8: JMS. JavaEmail API. JNDI

Lecture 8: JMS. JavaEmail API. JNDI 33

Address

• An email address of a recipient or a sender – an object of
the javax.mail.internet.InternetAddress class

• For example:

Address fromAddress =
 new InternetAddress(“vlad@kth.se”, “Vladimir Vlassov”);
Address toAddress =
 new InternetAddress(“leifl@kth.se”);
Address ccAddress =
 new InternetAddress(“id2212_teachers@ict.kth.se”);
message.setFrom(fromAddress);
message.addRecipient(Message.RecipientType.TO, toAddress);
message.addRecipient(Message.RecipientType.CC, ccAddress);
message.addRecipient(Message.RecipientType.BCC, fromAddress);

34

Transport

• An object of the Transport class used to connect to the
mail server and to send a message;
– Uses a specific protocol for sending messages (usually SMTP).

• For example:

message.saveChanges();
Transport transport = session.getTransport("smtp");
transport.connect();
transport.sendMessage(message, message.getAllRecipients());
transport.close();

34Lecture 8: JMS. JavaEmail API. JNDI

Lecture 8: JMS. JavaEmail API. JNDI 35

Store and Folder

• Represent an email store and an email folder, respectively
• An object of the Folder class is used for fetching

messages from an associated mail folder
• For example:
Store store = session.getStore("pop3");
store.connect();
Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);
Message message[] = folder.getMessages();
System.out.println(((MimeMessage)message).
 getContent());
folder.close(expunge);
store.close();

Lecture 8: JMS. JavaEmail API. JNDI 36

Sending Email Messages

1. Get the system Properties.
2. Setup a mail server:

• Add the name of an SMTP server to the properties for the
mail.smtp.host property key.

3. Get a Session object based on the Properties.
4. Create a MimeMessage from the session.
5. Set the from field of the message.
6. Add recepient(s) to the message (to, cc, bcc).
7. Set the subject of the message.
8. Set the content of the message.
9. Use a Transport to send the message.

Lecture 8: JMS. JavaEmail API. JNDI 38

Fetching and Reading Email Messages

• Typical steps:
1. Get the system Properties.

2. Get a Session object based on the Properties.

3. Get a Store for your email protocol, either pop3 or imap.

4. Connect to the mail host's store with the appropriate username and
password.

5. Get the folder to read, e.g. the INBOX.

6. Open the folder read-only.

7. Get a directory of the messages in the folder (a list of messages).

8. Display the messages one by one (e.g. the “from” field, the
“subject” field, a message content).

9. Close the connection to the folder and store.

Email or Message Queue?

● Both message queues (MOM) and email servers can be used to
create a loosely coupled, asynchronous messaging system

 Both provide guaranteed delivery.
 Both support point-to-point and publish/subscribe messaging

models.
 Message queues are cleaner and more powerful if the message

exchange needs to be machine-driven rather than human-driven.
● Message queues provide more programmatic control, are

transactional, and can give better throughput.
● Using emails has the advantages of being human-readable and of

using an infrastructure already available more or less
everywhere.

JNDI: Java Naming and Directory
Interface

javax.naming

home page:

http://www.oracle.com/technetwork/java/index-jsp-137536.html

Lecture 8: JMS. JavaEmail API. JNDI

JNDI Programming Concepts
• Name

– A generic name associated with an object or an object reference.
– A naming system determines the syntax that the name must follow.

• Binding
– the association of a name with an object or object reference.

• Context
– a set of bindings. The object of a binding might be another context. If so,

the contexts together form a tree.

• Initial context
– the starting (root) context.

• Naming service
– A server that enables binding names to objects and looking up objects by

names.

• Directory service
– A server that provides a collection of named objects with attributes

Lecture 8: JMS. JavaEmail API. JNDI 44

JNDI Programming Concepts (cont)

• Naming service
– the means by which names are bound to objects and objects are

found by their names.
– A client of the service can bind an object to a name, and look up an

object by its name.
– Provides a lookup (resolution) operation that returns the object

with a given name
– May provide operations for binding names, unbinding names, and

listing bound names.
– The operations are performed within the context.

• Context (Naming Service)
– A set of name-to-object bindings.
– Has an associated naming convention.
– Provides naming service operations performed in the context

Lecture 8: JMS. JavaEmail API. JNDI 45

Storing Object in Naming Services

• Two general ways:
– Store a serialized version of the Java object.

– Store a reference with information how to construct or
locate an instance of the object, for example

• The class name

• A vector of RefAddr objects representing address(es) of objects

Lecture 8: JMS. JavaEmail API. JNDI 46

Lecture 8: JMS. JavaEmail API. JNDI 47

Directories and Directory Service

• Directory
– A set of directory objects.
– A directory object is a named object with attributes, e.g. id/value

pairs.
– A directory can be searched for an object not only by its name but

also by its attributes.

• Directory service
– Many naming services are extended with a directory service. A

directory service associates names with objects and also allows
such objects to have attributes.

– A client of the service can bind an object to a name, set /change
object’s attributes, create subdirectories, search a directory for
objects by names and/or by attributes.

Lecture 8: JMS. JavaEmail API. JNDI 48

JNDI Architecture
• JNDI provides a Java API for an existing naming or

directory service.

• The JDK includes for example the RMI and CORBA name
services, that can be used as JNDI implementations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

