

Assesed homework 1.

The first set of homework is due on the Lecture where we cover “Differentiation and Distributional Derivatives” **preliminary date 18th November**. The date can change depending on how fast we progress.

Assignment 1: Show that

1. If $f(\mathbf{x}) : \mathcal{D} \mapsto \mathbb{R}$ is continuous on $\mathcal{D} \subset \mathbb{R}^n$ then $f(\mathbf{x})$ is measurable on \mathcal{D} .
2. If $g(\mathbf{x}) : \mathcal{D} \mapsto \mathbb{R}$ is measurable and $f(x) : \mathbb{R} \mapsto \mathbb{R}$ is continuous then $f(g(\mathbf{x}))$ is measurable. A sketch of the argument is enough.
3. If $f : [a, b] \mapsto \mathbb{R}$ is differentiable at every $x \in [a, b]$ then f' is measurable.

Assignment 2: Show that there exists a minimizer $u \in L^2(\mathcal{D})$ of

$$J(u) = \int_{\mathcal{D}} \left(|u(\mathbf{x})|^2 + |u(\mathbf{x}) - f(\mathbf{x})|^{3/2} \right) d\mathbf{x}.$$

Here \mathcal{D} is a bounded and measurable set and $f \in L^{3/2}(\mathcal{D})$ is a given function.

Assignment 3: Consider the following function defined on \mathbb{R}^3

$$f(\mathbf{x}) = \begin{cases} \frac{1}{|\mathbf{x}|} & \text{if } |\mathbf{x}| \neq 0 \\ 0 & \text{if } |\mathbf{x}| = 0. \end{cases}$$

Also let q_j be an enumeration of the rationals \mathbb{Q}^3 .

1. Show that

$$F(\mathbf{x}) = \sum_{j=1}^{\infty} \frac{f(\mathbf{x} - q_j)}{2^j} \in L^2(B_1(0)).$$

2. Show that $F(\mathbf{x})$ is not bounded on any open set $U \subset B_1(0)$.

Assignment 4: Let \mathcal{D} be a domain then we say that “ f_j converges in measure to f_0 ”, $f_j \hookrightarrow f_0$, if f_j and f_0 are measurable on \mathcal{D} and, for any $\epsilon > 0$,

$$\lim_{j \rightarrow \infty} m(\{\mathbf{x} \in \mathcal{D}; |f_j(\mathbf{x}) - f_0(\mathbf{x})| > \epsilon\}) = 0,$$

where m is the Lebesgue measure.

Show that if

1. \mathcal{D} is bounded and measurable and
2. $f_j \hookrightarrow f_0$ and
3. there exists a $g \in L^1(\mathcal{D})$ such that $|f_j(\mathbf{x})| \leq g(\mathbf{x})$

then $\|f_j - f_0\|_{L(\mathcal{D})} \rightarrow 0$ as $j \rightarrow \infty$.