
Chapter 3

Lecture 3: Graphs and flows

Graphs: a useful combinatorial structure.
Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected

graph, strongly connected directed graph, tree, root, parent, child, ancestor, descendant, leaf.

Theorem 16. An n-node three has n-1 edges.

Theorem 17. For G = (V,E) undirected graph on n nodes any two of these statements implies
the third:
a) G is connected.
b) G does not contain cycle.
c) G has n− 1 edges.

Graph representations. There are two typical data structures to represent graphs:

• Adjacency matrix

• Adjacency list: n length array, each record containing the list of all adjacent nodes.

3.1 Graph connectivity and traversal, undirected and di-
rected graphs, bipartite graphs

Clearly, a graph is connected iff there is a path between any two nodes.

Problem. Connectivity problem: is graph G connected?

We answer the question by traversing the graph from an arbitrary node. If all nodes can be
reached, then the graph is connected.

Algorithm. Breadth-first search (BFS): adds nodes layer by layer, adding all neighbors of each
already discovered node. Layer Lj+1 consists of all nodes that do not belong to earlier layers, but
have an edge to a node in layer Lj .

Theorem 18. Let T be a BFS tree. Let nodes x and y belong to layers Li and Lj, and (x, y) be
an edge of G. Then |i− j| ≤ 1.

Proof. Proof by contradiction. Assume i < j − 1. Consider the point when the edges incident to x
are examined. Nodes discovered from x belong to layer Li+1 or earlier. This is contradiction.

Algorithm. Depth-first search (DFS): adds nodes along a path, then backtracks to not fully
discovered nodes. Recursive implementation is straightforward.

Theorem 19. Let T be a DFS tree. Let (x, y) be an edge of G, but not in T . Then one of x or y
is the ancestor of the other.

17

18 CHAPTER 3. LECTURE 3: GRAPHS AND FLOWS

Proof. Suppose x is reached first by the algorithm. If (x, y) is not added, it means that y is already
explored, which means, y was explored between the invocation and the end of the recursive call
DFS(x), which means y is a descendant of x.

Theorem 20. BFS and DFS can be implemented in O(m+ n) with adjacency list data structure,
and with queue respective stack for the dynamic data handling.

See slides and book for the algorithms.

Problem. Bipartiteness: Given graph G = (V,E), is he graph bipartite?

Lemma 13. If a graph is bipartite, then it cannot contain an odd cycle.

Theorem 21. Let G be a connected graph, and Li-s the layers produced by BFS. Then, one of
these holds:

1. There is no edge joining nodes of the same layer. Then G is bipartite.

2. There is an edge connecting nodes of the same layer. Then G has an odd cycle, and is not
bipartite.

Proof. Based on the theorem on the structure of BFS trees.

The following is not included in the book, but it is useful to know.

Definition. Euler tours: Given graph G = (V,E), an Euler trail is a trail that contains each
edge of G (exactly ones). If the trail is closed, then we have an Euler tour.

Theorem 22. Euler theorem: Given a connected graph G = (V,E), the the following statements
are equivalent:
(a) G is Eulerian (contains an Euler tour).
(b) Each vertex of G has even degree.
(c) The edge set of G can be partitioned into cycles.

Based on the theorem it is easy to find an Euler tour using the algorithm and data structures
proposed by Hierholzer, in O(m) time.

Now let us consider directed graphs.

Lemma 14. If u and v are mutually reachable and v and w are mutually reachable, then s and w
are mutually reachable.

Theorem 23. Test if G is strongly connected: run BFS from any node s on G and Grev. G is
strongly connected iff BFS reaches all nodes in both cases.

Definition. Directed acyclic graph (DAG): graph without directed cycle.

DAGs have several application areas, in network protocols as well as for dependent job schedul-
ing.

Definition. Topological ordering: of directed graph G is an ordering of its nodes as v1, v2...vn,
such as for every edge (vi, vj) we have i < j.

Lemma 15. In every DAG there is a node with no incoming edge.

Proof. Pick a node, and follow the edges backward. Since all nodes has an incoming edge, sooner
or later you reach the first node, or some other, already visited nodes.

Theorem 24. G is a DAG iff G has topological ordering.

Proof. Backward: By contradiction. Assume, G has topological ordering, but also a cycle. Let vi
be the lowest indexed node in C, and vj the node before vi in the cycle. Since j > i it contradicts
the existence of DAG.

Forward: by constructing a topological ordering, based on the lemma above.

See the algorithm in the slide. Algorithm complexity: O(n + m), if we keep track nodes that
become leave nodes, then we need to address all nodes, and all edges once.

3.2. MAXIMUM-FLOW IN DIRECTED GRAPHS 19

3.2 Maximum-flow in directed graphs

Definition. Flow, f in G = (V,E), ce:

• capacity condition: 0 ≤ f(e) ≤ ce,

• flow conservation: for each node v ∈ V , v 6= s, v 6= t,
∑

e into v f(e) =
∑

e out of v f(e).

The value of a flow f is ν(f) =
∑

e out of s f(e).

Problem. Given directed graph G = (V,E), with edge capacities ce ∈ N, a source node s and sink
node t. Find an s-t flow of maximum possible value.

Definition. Given a graph G and a flow f on G, the residual graph Gf is defined as:

• The node set of Gf is the same as that of G.

• For edge e = (u, v) ∈ G, f(e) < ce, there are ce − f(e) leftover units of capacity. These are
the forward edges in Gf .

• For edge e = (u, v) ∈ G, f(e) > 0, we add an edge e′ = (v, u) in Gf , ce′ = f(e). These are
the backward edges in Gf .

Algorithm. The Ford-Fulkerson Algorithm

See the book.
Note, the assumption of integer capacities is important, see a non-terminating example for

non-integer capacities in Wikipedia.
If you need to consider undirected graphs, you have to transform it to directed graphs, but

adding edges in opposite directions.
We need to prove that:

• The augmentation leads to flows. We need to check that the new f ′ is a flow: respects the
capacities and the flow conservation law.

• The algorithm terminates.

• The algorithm finds the maximum flow. (This will end up to be the max-flow min-cut theo-
rem.)

Theorem 25. The F-F algorithm can be implemented to run in O(mC) time, where C =
∑

e out of s ce.

Proof. The while loop of the algorithm increases the flow by at least 1 in each iteration, that is, the
maximum number of while iterations is C. The augmentation needs to find a path to t, this can be
done with BFS or DFS in O(m+ n) = O(m) time.

Now we will prove that the F-F algorithm finds the maximum flow.

Definition. A cut of G is a partition (A,B) of V , such that s ∈ A and t ∈ B. The capacity of the
cut is

∑
e out of A ce.

Lemma 16. For flow f and cut (A,B), the value of the flow ν(f) = fout(A)− f in(A).

Proof.
f in(s) = 0, fout(t) = 0

ν(f) = fout(s)− f in(s)

fout(v)− f in(v) = 0,∀v ∈ V \ {s, t}

ν(f) =
∑
A

(fout(v)− f in(v))

Considering, that there are three type of edges: inside set A, leaving A or coming to A, and edges
inside A bring the same amount of flow as they take away in the above equation, we have

ν(f) =
∑

e out of A

f(e)−
∑

e into A

f(e) = f out(A)− f in(A).

20 CHAPTER 3. LECTURE 3: GRAPHS AND FLOWS

Corollary 3.

ν(f) ≤ c(A,B).

This is an important consequence, since it means that the value of a flow is surely not higher
than any of the cuts.

Now let us consider f be the flow generated by the F-F algorithm. Note, it means that there is
no path form s to t in the residual graph Gf . Then, the following theorem holds.

Theorem 26. For f , there is an s−t cut (A∗, B∗) in G for which ν(f) = c(A∗, B∗). Consequently,
f has the maximum value of any flow.

Proof. A way to prove the theorem is to identify such a cut. We can do it as follows.

LetA∗ be the set of nodes that are reachable from s inGf . We will show thatA∗ andB∗ = V−A∗
is a cut we are looking for.

• (A∗, B∗) is an s− t cut, since t is definitely in B∗.

• For all edges e out of A∗ f(e) = ce, since otherwise the head of the edge would be reachable
in Gf .

• For all edges e into A∗ f(e) = 0, since otherwise there would be an edge out of A∗ in Gf .

Consequently,

ν(f) = fout(A∗)− f in(A∗) =
∑

eout ofA∗

ce − 0 = c(A∗, B∗).

Now, we know that all flows have to be smaller than all the cuts, and we showed that is is
possible to find a flow that reaches the smallest cut capacity. Consequently, we can state the
following theorem.

Theorem 27. Max-flow Min-cut theorem: In every flow network, the maximum value of an
s− t flow is equal to minimum capacity of an s− t cut.

Corollary 4. A minimum cut can be found by the F-F algorithm in O(Cm) time.

Now lets see a simple application of the F-F algorithm.

Problem. Edge-Disjoint Paths in directed graphs: GivenG = (V,E), find the maximum number
edge disjoint paths from s ∈ V to t ∈ V .

We transform the problem to a max-flow problem, by assigning ce = 1 unit capacity to each
edge.

Theorem 28. There are k edge-disjoint paths in G iff the value of the maximum flow is at least k.

Proof. The two directions of the proof:
k edge disjoint path ⇒ the value of the max flow in G is at least k: the k paths can define the flow.
the value of the max flow in G is at least k ⇒ k edge disjoint path: we can show that the flow can
be separated into edge-disjoint paths.

The trivial consequence of the theorem that F-F can construct disjoint paths in O(mn) time.

Extensions: undirected graph (add directed edges), and node-disjoint path (substitute each node
with two nodes connected by and edge).

3.3. MAXIMUM MATCHING IN BIPARTITE GRAPHS 21

3.3 Maximum matching in bipartite graphs

Problem. Bipartite matching: Given G = (V,E), V = X ∪ Y , find a matching of maximum size.

Algorithm. F-F based matching: Extend G to G′, with a source and a sink node (see figure),
consider ce = 1, find maximum flow in G′.

Theorem 29. The size of the maximum matching in G is equal to the max flow in G′; and the
edges in the matching are the X-Y edges in the flow.

Proof. Let be M ′ the set of X-Y edges carrying flow in G′, and the maximum flow k. We want to
show that M is a matching and it carries k units.

• |M ′| = k: Consider a cut (A,B), A = s ∪ X. The value of the flow f = fout of A − finto A.
Since no edges go into A k edges through the cut need to carry the flow.

• Each node in X is the tail of at most one edge in M ′: since each can be reached by one unit
of flow only.

• Each node in Y is the head of at most one edge in M ′: as above.

Consequently, M ′ is a matching of size k.

The consequence is that the F-F algorithm finds maximum matching in O(nm) time.
It is possible to formulate the algorithm without extending the graph, following the method of

alternating paths. See the book.

Theorem 30. Hall’s theorem: Assume that the bipartite graph G has to sides |X| = |Y |. The
graph either has a perfect matching, or ∃A ⊆ X,such that Γ(A) < |A|, where Γ(A) is the sets of
nodes in Y that are adjacent to nodes in A. The perfect matching or a set A can be found in O(mn)
time.

The proof is based on the max-flow - min-cut theorem. See the book.

Problem. Minimum-cost perfect matching: Given bipartite graph G = (V,E), |X| = |Y | = n and
costs ce, find a perfect matching with minimum cost.

Minimum cost perfect matching can be found based on the alternating path approach, always
looking for cheapest alternating path. The running time is the time required for n shortest-path
computations.

See algorithm and proofs in the book. Often referred to as the Hungarian method, and has a
graph and a matrix based version.

3.4 What have we learned?

• Graph traversal with BFS and DFS

• Identification of bipartite graphs

• Identification of Euler graphs

• Similar results of directed graphs: strong connectivity, DAGs, topological ordering

• Flows and cuts

• Ford-Fulkerson, and the Max-flow min cut theorem.

• Disjoint paths

• Matching, perfect matching, minimum cost matching.

22 CHAPTER 3. LECTURE 3: GRAPHS AND FLOWS

