ID2212 Network Programming with Java
Lecture 6

Distributed Objects.
Java IDL (CORBA) and Java RMI

Leif Lindback, Vladimir Vlassov
KTH/ICT/SCS
HT 2016

QOutline

Revisited: Distributed Computing
— Architectures
— Implementation Approaches

Basics of a Distributed Object Architecture
Java IDL (CORBA)
Java RMI: Remote Method Invocation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Review:
Architectures of Distributed
Applications

* Two-tier architecture: Clients and Servers

* Three-tier architecture:
— First tier: clients with GUI
— Middle tier: business logic
— Third tier: System services (databases)

* Peer-to-peer architecture: Equal peers

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Existing Implementation Approaches

* Message passing via sockets
* RPC: Remote Procedure Calls

* Distributed objects (RMI)

— DCOM.: Distributed Component Object Model
(Microsoft, homogeneous implementation)

— CORBA: Common Object Request Broker
Architecture (OMG, heterogeneous)

— Java RMI (Oracle, homogeneous)

— Enterprise Java Beans (EJB) — Distributed
component architecture for building integrated

enterprise services

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Motivation for RPC and RMI

* Message passing over socket connections is
somewhat low level for distributed applications

— Typically, client/server interaction is based on a
request/response protocol

— Requests are typically mapped to procedures or
method invocations on objects located on the server

* A better approach for client/server applications
is to use

— Remote Procedure Calls
* Rendezvous (like in ADA, Concurrent C)

— Remote Method Invocation — in OO environment

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Remote Method Invocation (RMI)

* Remote method invocation (RMI) is the
mechanism to invoke a method in a remote
object

— the object-oriented analog of RPC in a distributed

OO environment, e.g. OMG CORBA, Java RMI,
DCOM

— RPC allows calling procedures over a network
— RMI invokes object's methods over a network

* Location transparency: invoke a method on a
stub like on a local object (via stack)

* Location awareness: the stub makes remote call
across a network and returns a result via stack

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 6
RMI

Remote Method Invocation

a{

m(x) { i
return x*5 I
} |
r = a.m(x); } 9|
ol
a{// stub =
m(x) { I
;. Ezzjhﬁz Xwith a, m, x a_skeleton { // skeleton I
. g » ’ ~~‘\\\ m() { :
i . 3. Receive Msg
4. Unmarshal x |
5. result = a.m(x) _
6. Marshal result
Network 7. Send Msg with result
/,,< -r
}

8. Receive Msg with result]| g
9. Unmarshal result
10. Return result

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Parameter Passing

Parameters are passed in an RMI message and not via
a local stack

— data of primitive types are passed by values

— objects are passed either by values (replication) or by
references

Objects can be heterogeneous
— different implementation languages

— different target virtual machines and operating systems
Different representations of primitive types

— convert data representation across different implementation

Composite Types (e.g., structures, objects)

— need to be flattened and reconstructed (marshal / unmarshal)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Marshaling/Unmarshaling

* Marshaling:
— done by client (i.e., caller)
— packing the parameters into a message
— flatten structures
— perform representation conversions if necessary

— also done by server (i.e., callee) for results

* Unmarshaling:

— done by receiver of message to extract parameters
or results

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Stubs and Skeletons

* Encapsulate (un)marshaling and communication
— Enable application code in both client and server to treat call
as local
* Stub is a proxy for the real object on the client
— represents the real object as a local object on the client
— contains information to locate the real object
— implements original interface with the same method signatures
but the methods perform remote calls to the real object
* Skeleton is on the server
— receives, unmarshals parameters
— calls original routine on the real object

— marshals and sends result (data, acknowledgment or
exception) to the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 10
RMI

Synchronous versus Asynchronous

Invocation

Void methods do not require a result to be sent to the
caller

Asynchronous invocation

— The method locally invoked on the stub immediately returns
and the calling thread proceeds as soon as the request is on its
way to the remote object

— The request is executed by the underlying layer in a separate
thread

— Problem: exceptions

Synchronous invocation

— The calling thread is suspended waiting for the remote
invocation to complete (for the invoked method to return)

— The calling thread proceeds as soon as it gets

acknowledgement from the remote object

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

11

Locating Objects

How does the caller get a reference to the remote object, i.e. stub?

One approach is to use a distributed Naming Service:

— Associate a unique name with a remote object and bind the name to
the object at the Naming Service.
* The name must be unique in current context.
* The record typically includes name, class name, object reference
* The object reference contains location information.
— The object name is used by the client to lookup the Naming Service
for the object reference (stub).
— Problem of the primary reference: How does the client locate the
Naming Service? — configuration issues

Another way to get a reference to a remote object is to get it as a
parameter or a return value in a remote method invocation

Third way: to make a reference (IOR: Interoperable Object
Reference) and store/send it in a file

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

12

a-=

1
|

Use of the Naming Service

Naming
service
1 1 I— a = new ClassA();
[
|
| Naming.rebind(a, ‘“nameA”);
[
(ClassA) e —— : a {
Naming.lookup(“nameA”) ; L, m(x) { return x*5 <4
}
a.m(x);
Network
a{// stub a_skeleton { // skeletor
m(x) { m() {
} . . } B
} }
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 13

RMI

Remote Reference in Return

Naming @_ a = new ClassA();
service L~ Naming.rebind(a, “nameA”);

@/ |
I
[
_a = (ClassA) :
Naming.lookup(“nameA”); '

a {
- getB() {
return new ClassB(); } }

a { // stub a_skeleton { !

P —

<::> getB() { .. } } — getB(){ //up-ca11;<::>___|
}

network }

r—————-

[
A

__// get reference to B

l b = a.getB(); b {
| p(S)() { return S*S; } }
(9 MO
| |
{b{ {g)SE“b - - _, b_skeleton {
P e p(){ //up-call } }
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 14

RMI

Separate Interface from
Implementation. Interface Definition

Language (IDL)

A remote object is remotely accessed via its remote
interfaces.
Objects can be heterogeneous

— different implementation languages

— different target virtual machines and operating systems

Separate interface definition from implementation:

— Implementation may change, as long as the interface is
respected

Interface Definition Language (IDL)
— Describe interface for RMI (when using CORBA)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 15
RMI

Generating Stubs and Skeleton.
ID1L. Mappings

* Where do Stubs and Skeletons come from?

— writing (un)marshaling code is bugprone

— communication code has many details

— structure of code is very mechanical

* Answer:
— Stubs and Skeletons can be generated from IDL definitions

* Mapping from IDL to OO-language

— generates code for Stubs and Skeletons
— IDL to Java, C++, Smalltalk, COBOL, Ada

— Allows cross language invocations

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

16

Java RMI (Remote Method
Invocation)

java.rmi

Java RMI

* Java RMI is a Java only object-oriented
middleware.

* The Java RMI facility allows applications or
applets running on different JVMs, to interact
with each other by invoking remote methods.

— Remote reference (stub) is treated as local object.

— Method invocation on the reference causes the
method to be executed on the remote JVM.

— Serialized arguments and return values are passed
over network connections.

— Uses Object streams to pass objects “by value”.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

18

Some RMI Classes and Interfaces

java.rmi.Remote

— Interface that indicates interfaces whose methods may be
invoked from a non-local JVM -- remote interfaces.

java.rmi.Naming

— The RMI Naming Service client that is used to bind a name to
an object and to lookup an object by name at the name service
rmiregistry.

java.rmi.RemoteException

— The common superclass for a number of communication-
related RMI exceptions.

java.rmi.server.UnicastRemoteObject
— A class that indicates a non-replicated remote object.
— Exports servant to RMI runtime.

— Handles interaction between servant and RMI runtime.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 19
RMI

Developing a Distributed Application

with Java RMI
Typical steps:

1. Define a remote interface(s) tha extends java.rmi.Remote.

2. Develop a class (a.k.a. servant class) that implements the
interface.

3. Develop a server class that provide a container for servants,
i.e. creates the servants and registers them at the Naming
Service.

4. Develop a client class that gets a reference to a remote
object(s) and calls its remote methods.

5. Compile all classes and interfaces using javac.

6. (optional) Generate stub classes for classes with Remote
interfaces using rmic

Since JDK 1.5, stubs are generated dynamically.
Start the Naming service rmiregistry

8. Start the server on a server host, and run the client on a client
host.

~

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 20
RMI

Architecture of a Client-Server
Application with Java RMI

rmiregistry
N
Server | 7 N
/
Servant obj = new Servant(); ," \\
Naming.bind (“name”, obj); 7 \\ Client

RemoteServant obj =
(Servant)Naming.lookup (

Servant “rmi://host/name”);
object | Pecal call
\%a > Remote calls
Skeleton «—Stub | RemoteServant
T \ interface
RMI Runtime RMI Runtime

TCP-based Transport Layer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 21
RMI

Declaring and Implementing a Remote
Interface (1/2)

* A remote interface must extend the java.rmi.Remote
— Each method must throw java.rmi.RemoteException

* A class may implement one or several remote interface

— The class should extend the UnicastRemoteObject class or must
be exported via the static call
UnicastRemoteObject.exportObject(Remote obj)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 22
RMI

Declaring and Implementing a Remote
Interface (2/2)

* An object of the class that implements the remote
interface is called a servant.

— A servant is created by a server. The local RMI runtime is
started when the server exports the servant.

— The servant and the server can be encapsulated into one class
(typically, a primary class).

* Astub and a skeleton are generated from a servant class
by the JDK.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 23
RMI

The Naming Service rmiregistry.

The Naming Client Naming

* A Remote object can be registered with a specified name at the
Naming service, rmiregistry, provided in the JDK.

— Avregistered object can be pointed to by a URL of the form
rmi://host:port/objectName

— The URL indicates host/port of rmiregistry — default

localhost:1099.

* The Naming class provides a static client of the RMI registry.

* Aserver binds a name to an object:
try {
Bank bankobj = new BankImpl(“CityBank”);

Naming.rebind(“rmi://"” + host + ":” +
port + ”/CityBank”, bankobj);

System.out.println(bankobj + "
ready.");

} catch (Exception e) {
e.printStackTrace();

is

}

String bankURL = “rmi://theHost/CityBank”;
try {

bankobj = (Bank) Naming.lookup(bankURL);
} catch (Exception e) {

System.out.println("The runtime failed:
e);

System.exit(0);
}

* Aclient looks up a remote reference:

II+

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java

24
RMI

Loading Classes

Note that required class files must be available to the RMI client,
the RMI server, and the rmi registry.

Class files required by an RMI application can be loaded either the
usual way, from the local file system, or by calling a file server.

When loading class files from the local file system, all class files
must as usual be available in a directory specified by the class path.

When downloading class files from a file server, the URL of the
server shall be specified when starting the RMI application, using
the java.rmi.server.codebase property.

— That property can be set in the command line of an application,
for example:
« -Djava.rmi.server.codebase=http://myserver.com/classes/

* See: https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
javarmiproperties.html

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 25
RMI

Loading Classes From File Server

Note that class files for stub, remote interface, and
classes used in the remote interface, must be
available to both server, registry and client.

2. Client makes a Naming.lookup

> RMI 1. Server binds a servant to a name
RMI client |+ registry | |_ _______________
3. The registry returns an i i
instance of the stub N ! JVM |
- |
! i Server !
4. Client requests-the stub class and other i ! !
|
¢ base v i Servant i
myHost ! i
|

5. ;l;lhe Il-ITTi?l server returns : . javarmiserver.codebase = |
¢ class ies URL location i http://myHost/mydir/ !
(file, ftp, http) | -----—------"----—--"---m - !

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 26

RMI

Starting rmiregistry programmatically

* Before rebind/bind

try {
LocateRegistry.getRegistry(1099).list();

} catch (RemoteException e) {
LocateRegistry.createRegistry(1099);

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 27
RMI

Parameters and Returns in Java
RMI

* Primitive data types and non-remote Serializable objects are
passed by values.

— 1If an object is passed by value, it is cloned at the receiving JVM, and
its copy is no longer consistent with the original object.

— The class name collision problem. Versioning.
* Remote objects are passed by references.

— A remote reference can be returned from a remote method. For
example:
try {
// lookup for the bank at rmiregistry
Bank bankobj = (Bank)Naming.lookup(bankname);

// create a new account in the bank,
// account 1s a remote object.

Account account = bankobj.newAccount(clientname);
account.deposit(value);
} catch (Rejected e) { handle the exception }

— A remote object reference can be passed as a parameter to a remote
method.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

28

Example: A Bank Manager

* An application that controls accounts.

* Remote interfaces:
— Account - deposit, withdraw, balance;
— Bank - create a new account, delete an account, get
an account;
* Classes that implement the interfaces:

— BankImpl — a bank servant class that implements the
Bank interface used to create, delete accounts;

— AccountImpl — a account servant class that

implements the Account interface to access accounts.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

29

Bank and Account Remote Interfaces

* The Bank interface:

package bankrmi;

import java.rmi.*;

import bankrmi.Account;

import bankrmi.RejectedException;

public interface Bank extends Remote {
public Account newAccount(String name) throws RemoteException,

RejectedException;

public Account getAccount(String name) throws RemoteException;
public boolean deleteAccount(String name) throws RemoteException;
public String[] listAccounts() throws RemoteException;

}

* The Account interface
package bankrmi;
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Account extends Remote {
public float getBalance() throws RemoteException;
public void deposit(float value) throws RemoteException,
RejectedException;
public void withdraw(float value) throws RemoteException,
RejectedException;

A Fragment of the Bank Implementation

package bankrmi;
import java.rmi.*;
import java.util.*;
public class BankImpl extends UnicastRemoteObject implements Bank {
private String bankName;
private Map<String, Account> accounts = new HashMap<String, Account>();
public BankImpl(String bankName) throws RemoteException {
super() ;
this.bankName = bankName;
}
public synchronized Account newAccount(String name) throws RemoteException,
RejectedException {

AccountImpl account = (AccountImpl) accounts.get(name);

if (account '= null) {
throw new RejectedException("Rejected: Bank: " + bankName +
" Account for: " + name +
" already exists: " + account);
}

account = new AccountImpl(name);
accounts.put(name, account);
return account;
}
public synchronized Account getAccount(String name) {
return accounts.get(name);
}
public synchronized String[] listAccounts() {
return accounts.keySet().toArray(new String[1]);

}

The Account Implementation

package bankrmi;
import java.rmi.*;
public class AccountImpl extends UnicastRemoteObject implements Account {
private float balance = 0;
private String name;
public AccountImpl(String name) throws RemoteException {
super();
this.name = name;
}
public synchronized void deposit(float value) throws RemoteException,
RejectedException {
if (value < 0) {
throw new RejectedException("Rejected: Account " + name +
": Illegal value: "+value);
}

balance += value;
}
public synchronized void withdraw(float value) throws RemoteException,

RejectedException {
if (value < 0) {
throw new RejectedException("Rejected: Account " + name +
": Illegal value: "+value);
}

if ((balance - value) < 0) {
throw new RejectedException("Rejected: Account " + name +
": Negative balance on withdraw: " +
(balance — value));

}

balance -= value;

}

public synchronized float getBalance() throws RemoteException {
return balance;

}

1

The Server

package bankrmi;
public class Server {
private static final String USAGE =
"java bankrmi.Server <bank_rmi_url>";
private static final String BANK = "Nordea";
public Server(String bankName) {
try {
Bank bankobj = new BankImpl(bankName);
java.rmi.Naming.rebind(bankName, bankobj);
} catch (Exception e) {
e.printStackTrace();

¥
¥

public static void main(String[] args) {
if (args.length > 1 || (args.length > 0 &&
args[0].equalsIgnoreCase("-h"))) {
System.out.println(USAGE);
System.exit(1);
}
bankName = (args.length > 0) ? args[0] : BANK;
new Server(bankName);
}
}

A Fragment of a Simple Client

package bankrmi;
import bankrmi.*;
import java.rmi.*;
public class SClient {
static final String USAGE = "java Client <bank url> <client> <value>";
String bankname = “Noname";
String clientname = “Noname";
float value = 100;
public SClient(String[] args) {
//... Read and parse command line arguments (see Usage above)
try {
Bank bankobj = (Bank) Naming.lookup(bankname);
Account account = bankobj.newAccount(clientname);
account.deposit(value);
System.out.println (clientname + "'s account: $" + account.balance());
} catch (Rejected e) {
System.out.println(e); System.exit(0);
} catch (Exception se) {
System.out.println("The runtime failed: " + se);
System.exit(0);
}
}

public static void main(String[] args) {
new SClient(args);

}

Java IDL (CORBA)

Reference implementation of OMG
CORBA for Java

org.omg.CORBA

Four Components of OMA

(Object Management Architecture)

* By the Object Management Group (OMG) consortium
that operates since 1989. See: http://www.omg.org

1. Object Model (Glossary of terms)
— Concepts: class, object, attribute, method, inheritance, etc.

— UML (Unified Modeling LLanguage) is a standard for object
modeling.

2. CORBA (Common Object Request Broker Architecture)

— A mechanism for communication between objects

— Specification, related APIs and tools
— Object Request Broker (ORB) is implementation of CORBA

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 36
RMI

Four Components of OMA (cont)

3. CORBA Services

— Horizontal services common for any objects: Naming, Security, Life
Cycle, Transactions, Events, etc.

4. CORBA Facilities

— High level functionality for integrating objects

* User interface: drag-and-drop, compound documents
* System Management
* Task Management / Workflow

— Vertical services supporting particular industries

* Finance, Oil and Gas Exploration, Telecommunications (TMN/TINA-C) ,
10 other

— TMN is Telecommunications Management Network;

— TINA-C is Telecommunications Information Networking Architecture

Consortium
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 37
RMI

The Architecture of CORBA

| Implementation |
Caller '_f _, | Interface repository
Repository
/ k Object implementations
Dynamic , Servants
Invocation tatic ORB T(I)
Interface tubs | Interface :
Static Dynamic
ORB \ SkeletoIs Skeletons | |
\ ORB Basic Qbject Adapter (BOA)
Interface | °F Portabje Object Adapter (POA)
100) I

L 4

ORB

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java

RMI

38

CORBA Anatomy

* ORB: Object Request Broker

— makes it possible for CORBA objects to communicate with

each other by connecting objects making requests (clients) with

objects servicing requests (servants).

* BOA: Basic Object Adapter

accepts call requests (as a meta-call),
instantiates objects,

initiates up-calls on skeletons,

manages the Implementation Repository,

different ORB vendors have completely different
implementation of BOA

* POA: Portable Object Adapter

like BOA but portable between different ORB products

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

39

(cont’d) CORBA Anatomy

A stub on the client side provides a static interface to
remote object services.

— resolves the remote object’s location

— performs remote method invocation via a local ORB

* Sends the object reference, the method name and parameters to
the destination ORB (skeleton) by using IIOP (Internet Inter-
ORB Protocol)

* Receives and unmarshals data in return

A skeleton on the server side performs up-calls on a real
object
— transforms the call and parameters into the required format
and calls the object
— marshals result (or exception) and sends it over ORB
connection.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 40
RMI

ORB Protocols

CORBA 2.0 defines standard protocols:
GIOP: General Inter ORB Protocol

— Defines standard message format

IHIOP: Internet Inter ORB Protocol
— IIOP is the implementation of GIOP over TCP/IP

— ITOP-to-HTTP gateway and HTTP-to-IIOP gateway allow
CORBA clients to access Web resources and Web clients to
access CORBA resources.

ESIOP: Environment Specific Inter ORB Protocol

— Allows ORBs to run on top of other standards (such as DCE:

Distributed Computing Environment consisting of standard
APIs: naming, DFS, RPC, etc.)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

41

IDL.: Interface Definition
Language

IDL is a purely declarative language: interface
declarations

An IDL interface describes the attributes and methods
(operations) that are exported on the ORB.

— An interface can have several implementations.

— An object can implement several interfaces.

IDL-to-language compilers are based on mapping from
IDL to the language (Java, C++, Smalltalk, COBOL,
Ada)

A compiler generates
— An interface(s),
— A stub (a client proxy for remote calls),

— A skeleton (a server proxy for translating incoming calls to up-

calls)
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 42
RMI

IDL Concepts

* Interface
— Similar to a class, but only defines the interface of an object,
without information on its representation in memory
* Operation
— Similar to a method or member function

— The direction of parameter must be specified: in, out, inout

* Attribute
— Does not define an attribute in memory
— Defines two operations for getting and setting the value
— readonly is used to suppress the function setting the value

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

43

Basic Data Types

* No int type

* No pointer type

* IDL types are defined in
terms of their semantics

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

short
long

unsigned short

unsigned long
float

double
char

boolean

octet
any

string

short
int
short
int
float
double
char

boolean

byte
class any

String

44

Complex Types

Build complex types from basic types in IDL:
— struct, enum, union, typedef

— array — fixed length collection
— sequence — variable length collection
— Object —reference to an IDL object (proxy)

Mapping to Java
— sequence and array are mapped to the Java array type.

— enum, struct, and union are mapped to a final Java class that
implements the semantics of the IDL type.
— For example, array of bytes can be defined as:
typedef sequence <octet> bhytes;
bytes getBytes(in string from) raises(cannotget);

The Java class generated should have the same name as the
original IDL type.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

45

Passing Parameters and Returns

* CORBA sends all types across the network by
value, except objects
— Objects are passed by reference
— A proxy is constructed on the receiving end

* The OMG added a new specification called
”Pass-by-Value”
— Include Object by Value mapping
— Initiators were Sun and IBM

— Motivation: support for object migration and
replication
— RMI over I1OP

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

46

Java IDL (org.omg. CORBA)

Java IDL is a reference implementation of CORBA in
Java

Oracle delivers Java IDL in the JDK

— IDL-to-Java compiler
— Multi-protocol ORB (classes)

— Support for Java clients and servers (Name service, etc.)

Java IDL is not a sophisticated product on the server
side:

— Doesn't have CORBA scalability and security features

— No CORBA Services except of Naming

Java IDL will be useful on the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

47

Other Implementations of CORBA

* CORBA platforms from Progress Software
— http://web.progress.com/en/Product-Capabilities/corba.html

* The Micro Focus’s solution for CORBA Technology
(VisiBroker)
— http://www.microfocus.com/products/visibroker/index.aspx

* CORBA typically comes as a part of an enterprise
(application) server

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 48
RMI

Developing a Distributed Application
with Java IDL

Define interfaces with IDL

Compile the interfaces using 1d1j, which generates the Java
bindings for a given IDL file.

Develop an implementation for the interfaces (servants)

Develop a server (a container for servants) that initializes ORB and
creates the servants

Develop a client
Compile the client, the servants and the server (using javac)

Start the Naming Service thameserv, which is the Common
Object Services (COS) Name Service

Start the server
Run the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 49
RMI

Step 1. Sample IDL Interfaces

module bankidl {
interface Account {
readonly attribute float balance;
exception rejected { string reason; };
void deposit(in float value) raises (rejected);
void withdraw(in float value) raises (rejected);

};

interface Bank {
exception rejected { string reason; };
Account newAccount(in string name) raises

(rejected);

Account getAccount (in string name);
boolean deleteAccount(in string acc);

}

}s

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

50

The IDL Interfaces (cont’d)

Interface Bank: Server

Account newAccount(in string name)
Account getAccount (in str1ng name)
boolean deleteAccount(in Account acc)bank

Interface Account:
float balance v
deposit(in float value)

withdraw(in float value)

account

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 51
RMI

Step 2. Compiling IDL to Java

* The IDL to Java compiler (1d1j) generates:
— Interfaces:
* Bank.java, Account.java
— Stubs for the client side:
* BankStub.java, AccountStub.java
— Skeletons for the server side:

* When using BOA (backwards compatible to Java SE 1.4)
BankImplBase. java, AccountImplBase. java

* When using POA: BankPOA.java, AccountPOA.java
* Implementations of the interfaces should extend the skeletons.

— Helpers used to narrow a remote reference to its remote
interface:

°* BankHelper, AccountHelper

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 52
RMI

Step 3. Implementing The

Interfaces.

* Aservantis a class that implements the
interface(s) generated by a IDL to Java compiler.

* The servant class may extend an appropriate

skeleton (implementation base) class, for example:
public class BankImpl extends BankImplBase

or (when using POA)
public class BankImpl extends BankPOA

— In this way the servant implements the interface and
encapsulates the skeleton that accepts (remote) calls

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 53
RMI

Inheritance Structure

org.omg.CORBA.portable.ObjectImpl

A
<interface>
org.omg.CORBA.Object
A
<interface> extends
bankidl.BankOperations
extends
<interface> [implements :
bankidl.Bank < bankidl ._B:nkImplBase
vxte
Used as signature type
in method declarations bankidl.BankImpl

Written by programmer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 54
RMI

public class BankImpl extends BankImplBase {

Step 2. private String bankname = null;

private Hashtable accounts = new Hashtable();

Bank public BankImpl(String name) {
. super();
Implementation .- _
}

public Account newAccount(String name) throws rejected {
AccountImpl account = (AccountImpl) accounts.get(name);
if (account !'= null) {
throw new rejected("Rejected: Account for: "
+ name + " already exists");
}
account = new AccountImpl(name);
accounts.put(name, account);
return (Account)account;
}
public Account getAccount(java.lang.String name) {
return (Account) accounts.get(name);
}
public boolean deleteAccount(String name) {
AccountImpl account = (AccountImpl) accounts.get(name);
if (account == null) {
return false;
}
accounts.remove(name);
return true;

Step 3.
Account
Implementation

Le

package bankidl;

import bankidl.AccountPackage.rejected;

public class AccountImpl extends _AccountImplBase {
private float balance = 0;
private String name = null;

public AccountImpl(java.lang.String name) {
super();
this.name = name;
}
public void deposit(float value) throws rejected {
if (value < 0) {
throw new rejected("Rejected: Illegal value: " +
value);
}
balance += value;
}
public void withdraw(float value) throws rejected {
if (value < 0) {
throw new rejected("Rejected: Illegal value: ” +
Value);
}
if ((balance - value) < 0) {
throw new rejected("Rejected: Negative balance”));
}
balance -= value;
}
public float balance() {
return balance;

}

Inheritance Structure with POATie.

The Tie Delegation Model.

An IDL to Java compiler can generate a <interface>P0AT1ie class that

extends the skeleton.

The implementation class may inherit from a different class and implement

the remote interface.

Remote calls received by the tie object are directed to the implementation

object.

<interface>
org.omg.CORBA.Object

org.omg.CORBA.portable.ObjectImpl

<interface>
bankidl.BankOperations

extends

T

extends
<int.erface> < i EIBIEIE‘E]LS _____
bankidl.Bank
I'\\ implements
BankImpl <= — Tied together -—

Written by programmer

——— bankidl. BankImplBase
T extends
..... —> | BankPOATie

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 57

RMI

Design Options (1/2)

Choose an ORB implementation that suits you (price,
efficiency, etc.)

Use either POA (standard Portable Object Adapter) or
BOA (non-standard Basic Object Adapter, which could
be more efficient)

1. To generate both client and server-side POA bindings, use
idlj -fall My.idl
* Generates MyPOA. java given an interface My defined in My. id1.
* You must implement My in a class that must inherit from MyPOA.

2. To generate BOA bindings backwards compatible to JDK 1.4,
use
idlj -fall -oldImplBase My.idl
* Generates MyImplBase.java given an interface My defined in
My.idl.
* You must implement My in a class that must inherit from
_MyImplBase.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 58
RMI

Design Options (2/2)

Use a tie class when it is not convenient or possible to have
your implementation class inherit from either of the
skeletons MyPOA or MyImplBase.

idlj —fallTIE My.idl

* Generates the tie class
— Wrap your implementation within My Tie.

— For example:

MyImpl myImpl = new MyImpl ();
My Tie tie = new My _Tie (myImpl);
orb.connect (tie);

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 59
RMI

Step 4. package bankidl;
import org.omg.*;
E; import org.omg.CORBA.ORB;
erver public class Server {
public static void main(String args[]) {
if (args.length != 3) {

(Using BOA, System.out.println(

Backwards "usage: java Server <bankname> <-ORBInitialPort port>");
compatible to } System.ex1it(1l);

JDK 1.4) try {

ORB orb = ORB.init(args, null);
BankImpl bankRef = new BankImpl(args[0]);
orb.connect(bankRef);
org.omg.CORBA.Object objRef =
orb.resolve _initial references("NameService”);

NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent(args[0], "");
NameComponent path[] = {nc};
ncRef.rebind(path, bankRef);
orb.run();

} catch (Exception e) {
e.printStackTrace();

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Step 5. Client

package bankidl;
import org.omg.CosNaming.*;
import org.omg.CORBA.ORB;
public class SClient {
static final String USAGE = "java bankidl.SClient <bank> “ +
“<client> <value> “ +
“<-0RBInitialPort port>";
Account account;
Bank bankobj;
String bankname = "SEB";
String clientname = "Vladimir Vlassov";
float value = 100;

public static void main(String[] args) {
if ((args.length > 0) && args[0].equals("-h")) {
System.out.println(USAGE);
System.exit(0);
}

new SClient(args).run();

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Step 5. Client (cont’d)

public SClient(String[] args) {
if (args.length > 2) {
try {
value = (new Float(args[2])).floatValue();
} catch (NumberFormatException e) {
System.out.println(USAGE);
System.exit(0);
}
}
if (args.length > 1) clientname = args[1l];
if (args.length > 0) bankname = args[0];
try {
ORB orb = ORB.init(args, null);
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent(bankname, "");
NameComponent[] path = {nc};
bankobj = BankHelper.narrow(ncRef.resolve(path));
} catch (Exception se) {

System.out.println("The runtime failed: " + se);
System.exit(0);

}

System.out.println("Connected to bank: " + bankname);

62

Step 5. Client (cont’d)

public void run() {

try {
account = bankobj.getAccount(clientname);
if (account == null) {

account = bankobj.newAccount(clientname);
}
account.deposit(value);
System.out.println(clientname + "'s account: $" +
account.balance());

} catch (org.omg.CORBA.SystemException se) {
System.out.println("The runtime failed: " + se);
System.exit(0);

} catch (bankidl.AccountPackage.rejected e) {
System.out.println(e.reason);

System.exit(0);

} catch (bankidl.BankPackage.rejected e) {
System.out.println(e.reason);

System.exit(0);

Locating Objects

* Using Name Service

— The server creates the Bank object with the specified
name, e.g. “Nordea”, and makes it persistent
(ready).

— To obtain the object reference, the client via the
ORB contacts the Name Service of Java IDL, which

is started with the following command:
tnameserv -ORBInitialPort 1050

* Using Interoperable Object References (IOR)

— Server can store an object’s IOR (Interoperable
Object Reference) as a string to a file.

— Client can then fetch the reference from the file via a
web server.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 64
RMI

package bankidl;
import org.omg.CORBA.ORB;
import java.io.*;

E;‘Blf‘/(ﬂlf public class Serverl {

public static final String USAGE =
Using IOR "usage: java bankidl.Serverl bankname dir";
public static void main(String[] args) {

if (args.length < 2) {
System.out.println(USAGE); System.exit(1l);

}

try {
ORB orb = ORB.init(args, null);
BankImpl bankRef = new BankImpl(args[0]);
orb.connect(bankRef);
File dir = new File(args[1]);
if ('dir.exists()) {

dir.mkdir();
}
String filename = dir + Character.toString(File.separatorChar) +
args[0] + ".ior";

File file = new File(filename);
file.createNewFile();
file.deleteOnExit();
FileWriter writer = new FileWriter(file);
writer.write(orb.object_to_string(bankRef));
writer.close();
orb.run();

} catch (Exception e) {
System.out.println(USAGE); System.exit(1l);

public class Clientl {
static final String USAGE =
"java bankidl.Client url <-ORBInitialPort port>";
1 Bank bankobj ;
Client ank bankobj

String bankname = "SEB";
USing IOR public static void main(String[] args) {
if ((args.length > 0) && args[0].equals("-h")) {
System.out.println(USAGE); System.exit(0);
}

new Clientl(args).run();
}
public Clientl(String[] args) {
if (args.length < 1) {
System.out.println(USAGE); System.exit(1l);
}
try {
URL bankURL = new URL(args[0]);
BufferedReader in = new BufferedReader(
new InputStreamReader (
(InputStream)bankURL.getContent()));
ORB orb = ORB.init(args, null);
org.omg.CORBA.Object objRef =
orb.string_to_object(in.readLine());
bankobj = BankHelper.narrow(objRef);
} catch (Exception se) {

System.out.println("The runtime failed: " + se);
System.exit(0);

}

System.out.println("Connected to bank: " + bankname);

}

Integrating Java RMI with
CORBA

* RMI is an all-Java solution

— A good programming model

* CORBA is an enterprise distributed architecture
— A programming model not designed specifically for Java
— A mature middleware infrastructure

* RMI can run on top of IIOP
— The OMG adds a new specification called ”Pass-by-Value”

— See:
http://download.oracle.com/javase/7/docs/technotes/guides/
rmi-iiop/index.html

— Most of services in Java EE application server
implementations use either RMI or RMI/ITIOP for
communication

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

67

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

