
Distributed Objects.
Java IDL (CORBA) and Java RMI

Leif Lindbäck, Vladimir Vlassov

KTH/ICT/SCS

HT 2016

ID2212 Network Programming with Java
Lecture 6

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

2

Outline

• Revisited: Distributed Computing
– Architectures
– Implementation Approaches

• Basics of a Distributed Object Architecture

• Java IDL (CORBA)
• Java RMI: Remote Method Invocation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

3

Review:
Architectures of Distributed

Applications
• Two-tier architecture: Clients and Servers

• Three-tier architecture:
– First tier: clients with GUI
– Middle tier: business logic
– Third tier: System services (databases)

• Peer-to-peer architecture: Equal peers

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

4

Existing Implementation Approaches
• Message passing via sockets

• RPC: Remote Procedure Calls
• Distributed objects (RMI)
– DCOM: Distributed Component Object Model

(Microsoft, homogeneous implementation)

– CORBA: Common Object Request Broker
Architecture (OMG, heterogeneous)

– Java RMI (Oracle, homogeneous)
– Enterprise Java Beans (EJB) – Distributed

component architecture for building integrated
enterprise services

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

5

Motivation for RPC and RMI

• Message passing over socket connections is
somewhat low level for distributed applications
– Typically, client/server interaction is based on a

request/response protocol
– Requests are typically mapped to procedures or

method invocations on objects located on the server

• A better approach for client/server applications
is to use
– Remote Procedure Calls

• Rendezvous (like in ADA, Concurrent C)

– Remote Method Invocation – in OO environment

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

6

Remote Method Invocation (RMI)
• Remote method invocation (RMI) is the

mechanism to invoke a method in a remote
object
– the object-oriented analog of RPC in a distributed

OO environment, e.g. OMG CORBA, Java RMI,
DCOM

– RPC allows calling procedures over a network
– RMI invokes object's methods over a network

• Location transparency: invoke a method on a
stub like on a local object (via stack)

• Location awareness: the stub makes remote call
across a network and returns a result via stack

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

7

Remote Method Invocation
a {
 m(x) {
 return x*5
 }
}r = a.m(x);

a { // stub
 m(x) {
 1. Marshal x
 2. Send Msg with a, m, x

a_skeleton { // skeleton
 m() {
 3. Receive Msg
 4. Unmarshal x
 5. result = a.m(x)
 6. Marshal result
 7. Send Msg with result
 }
}

U
p

c
a
l
l

 8. Receive Msg with result
 9. Unmarshal result
 10. Return result
 }
}

Network

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

8

Parameter Passing
• Parameters are passed in an RMI message and not via

a local stack
– data of primitive types are passed by values

– objects are passed either by values (replication) or by
references

• Objects can be heterogeneous
– different implementation languages

– different target virtual machines and operating systems

• Different representations of primitive types
– convert data representation across different implementation

• Composite Types (e.g., structures, objects)
– need to be flattened and reconstructed (marshal / unmarshal)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

9

Marshaling/Unmarshaling

• Marshaling:
– done by client (i.e., caller)
– packing the parameters into a message
– flatten structures
– perform representation conversions if necessary

– also done by server (i.e., callee) for results

• Unmarshaling:
– done by receiver of message to extract parameters

or results

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

10

Stubs and Skeletons

• Encapsulate (un)marshaling and communication
– Enable application code in both client and server to treat call

as local

• Stub is a proxy for the real object on the client
– represents the real object as a local object on the client
– contains information to locate the real object
– implements original interface with the same method signatures

but the methods perform remote calls to the real object

• Skeleton is on the server
– receives, unmarshals parameters
– calls original routine on the real object
– marshals and sends result (data, acknowledgment or

exception) to the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

11

Synchronous versus Asynchronous
Invocation

• Void methods do not require a result to be sent to the
caller

• Asynchronous invocation
– The method locally invoked on the stub immediately returns

and the calling thread proceeds as soon as the request is on its
way to the remote object

– The request is executed by the underlying layer in a separate
thread

– Problem: exceptions

• Synchronous invocation
– The calling thread is suspended waiting for the remote

invocation to complete (for the invoked method to return)

– The calling thread proceeds as soon as it gets
acknowledgement from the remote object

Locating Objects
• How does the caller get a reference to the remote object, i.e. stub?
• One approach is to use a distributed Naming Service:

– Associate a unique name with a remote object and bind the name to
the object at the Naming Service.
• The name must be unique in current context.
• The record typically includes name, class name, object reference
• The object reference contains location information.

– The object name is used by the client to lookup the Naming Service
for the object reference (stub).

– Problem of the primary reference: How does the client locate the
Naming Service? – configuration issues

• Another way to get a reference to a remote object is to get it as a
parameter or a return value in a remote method invocation

• Third way: to make a reference (IOR: Interoperable Object
Reference) and store/send it in a file

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

12

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

13

a = new ClassA();

a {
 m(x) { return x*5 };
 }

Use of the Naming Service

a_skeleton { // skeleton
 m() {
 ...
 }
}

Naming
service
Naming
service

Naming.rebind(a, “nameA”);

Network

a = (ClassA)
 Naming.lookup(“nameA”);

r = a.m(x);

a { // stub
 m(x) {
 …
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

14

Remote Reference in Return

network

a = new ClassA();
Naming.rebind(a, “nameA”);

a_skeleton {
 getB(){ //up-call;
 }
}

a = (ClassA)
 Naming.lookup(“nameA”);

a { // stub
 getB() { … } }

2

1

// get reference to B
b = a.getB();

3

b {
 p(S)() { return S*S; } }

b_skeleton {
 p(){ //up-call } }

6b { // stub
 p(S) { … } }

5

a {
 getB() {
 return new ClassB(); } }

Naming
service
Naming
service

4

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

15

Separate Interface from
Implementation. Interface Definition

Language (IDL)

• A remote object is remotely accessed via its remote
interfaces.

• Objects can be heterogeneous
– different implementation languages
– different target virtual machines and operating systems

• Separate interface definition from implementation:
– Implementation may change, as long as the interface is

respected

• Interface Definition Language (IDL)
– Describe interface for RMI (when using CORBA)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

16

Generating Stubs and Skeleton.
IDL Mappings

• Where do Stubs and Skeletons come from?
– writing (un)marshaling code is bug prone

– communication code has many details

– structure of code is very mechanical

• Answer:
– Stubs and Skeletons can be generated from IDL definitions

• Mapping from IDL to OO-language
– generates code for Stubs and Skeletons

– IDL to Java, C++, Smalltalk, COBOL, Ada

– Allows cross language invocations

Java RMI (Remote Method
Invocation)

java.rmi

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

18

Java RMI

• Java RMI is a Java only object-oriented
middleware.

• The Java RMI facility allows applications or
applets running on different JVMs, to interact
with each other by invoking remote methods.
– Remote reference (stub) is treated as local object.
– Method invocation on the reference causes the

method to be executed on the remote JVM.
– Serialized arguments and return values are passed

over network connections.
– Uses Object streams to pass objects “by value”.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

19

Some RMI Classes and Interfaces
• java.rmi.Remote

– Interface that indicates interfaces whose methods may be
invoked from a non-local JVM -- remote interfaces.

• java.rmi.Naming
– The RMI Naming Service client that is used to bind a name to

an object and to lookup an object by name at the name service
rmiregistry.

• java.rmi.RemoteException
– The common superclass for a number of communication-

related RMI exceptions.
• java.rmi.server.UnicastRemoteObject

– A class that indicates a non-replicated remote object.
– Exports servant to RMI runtime.
– Handles interaction between servant and RMI runtime.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

20

Developing a Distributed Application
with Java RMI

• Typical steps:
1. Define a remote interface(s) tha extends java.rmi.Remote.
2. Develop a class (a.k.a. servant class) that implements the

interface.
3. Develop a server class that provide a container for servants,

i.e. creates the servants and registers them at the Naming
Service.

4. Develop a client class that gets a reference to a remote
object(s) and calls its remote methods.

5. Compile all classes and interfaces using javac.
6. (optional) Generate stub classes for classes with Remote

interfaces using rmic
Since JDK 1.5, stubs are generated dynamically.

7. Start the Naming service rmiregistry
8. Start the server on a server host, and run the client on a client

host.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

21

Architecture of a Client-Server
Application with Java RMI

ClientClient
RemoteServant obj =
 (Servant)Naming.lookup(
 “rmi://host/name“);

ServerServer
Servant obj = new Servant();
Naming.bind(“name“, obj);

Local calls
Remote calls

rmiregistryrmiregistry

StubStub RemoteServant
interface

TCP-based Transport LayerTCP-based Transport Layer

RMI RuntimeRMI Runtime

SkeletonSkeleton

Servant
object

Servant
object

RMI RuntimeRMI Runtime

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

22

Declaring and Implementing a Remote
Interface (1/2)

• A remote interface must extend the java.rmi.Remote
– Each method must throw java.rmi.RemoteException

• A class may implement one or several remote interface
– The class should extend the UnicastRemoteObject class or must

be exported via the static call
 UnicastRemoteObject.exportObject(Remote obj)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

23

Declaring and Implementing a Remote
Interface (2/2)

• An object of the class that implements the remote
interface is called a servant.
– A servant is created by a server. The local RMI runtime is

started when the server exports the servant.
– The servant and the server can be encapsulated into one class

(typically, a primary class).

• A stub and a skeleton are generated from a servant class
by the JDK.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

24

The Naming Service rmiregistry.
The Naming Client Naming

• A Remote object can be registered with a specified name at the
Naming service, rmiregistry, provided in the JDK.
– A registered object can be pointed to by a URL of the form
rmi://host:port/objectName

– The URL indicates host/port of rmiregistry – default
localhost:1099.

• The Naming class provides a static client of the RMI registry.

• A server binds a name to an object:
try {
 Bank bankobj = new BankImpl(“CityBank”);
 Naming.rebind(“rmi://” + host + ”:” +

port + ”/CityBank”, bankobj);
 System.out.println(bankobj + " is

ready.");
} catch (Exception e) {

e.printStackTrace();
}

• A client looks up a remote reference:
String bankURL = “rmi://theHost/CityBank”;
try {
 bankobj = (Bank) Naming.lookup(bankURL);
} catch (Exception e) {
 System.out.println("The runtime failed: "+

e);
 System.exit(0);
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

25

Loading Classes

• Note that required class files must be available to the RMI client,
the RMI server, and the rmi registry.

• Class files required by an RMI application can be loaded either the
usual way, from the local file system, or by calling a file server.

• When loading class files from the local file system, all class files
must as usual be available in a directory specified by the class path.

• When downloading class files from a file server, the URL of the
server shall be specified when starting the RMI application, using
the java.rmi.server.codebase property.
– That property can be set in the command line of an application,

for example:
• -Djava.rmi.server.codebase=http://myserver.com/classes/
• See: https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/

javarmiproperties.html

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

26

Loading Classes From File Server

RMI clientRMI client

2. Client makes a Naming.lookup

3. The registry returns an
 instance of the stub

4. Client requests the stub class and other
 class files from the code base

5. The HTTP server returns
 the class files

RMI
registry

RMI
registry

URL location
(file, ftp, http)
URL location
(file, ftp, http)

ServantServant

ServerServer

1. Server binds a servant to a name

java.rmi.server.codebase =
http://myHost/mydir/

myHost

JVM

Note that class files for stub, remote interface, and
classes used in the remote interface, must be
available to both server, registry and client.

Starting rmiregistry programmatically

• Before rebind/bind

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

27

try {
 LocateRegistry.getRegistry(1099).list();
} catch (RemoteException e) {
 LocateRegistry.createRegistry(1099);
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

28

Parameters and Returns in Java
RMI

• Primitive data types and non-remote Serializable objects are
passed by values.
– If an object is passed by value, it is cloned at the receiving JVM, and

its copy is no longer consistent with the original object.
– The class name collision problem. Versioning.

• Remote objects are passed by references.
– A remote reference can be returned from a remote method. For

example:
try {

 // lookup for the bank at rmiregistry
 Bank bankobj = (Bank)Naming.lookup(bankname);

 // create a new account in the bank,
 // account is a remote object.

 Account account = bankobj.newAccount(clientname);
 account.deposit(value);

} catch (Rejected e) { handle the exception }
…

– A remote object reference can be passed as a parameter to a remote
method.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

29

Example: A Bank Manager

• An application that controls accounts.
• Remote interfaces:

– Account – deposit, withdraw, balance;
– Bank – create a new account, delete an account, get

an account;

• Classes that implement the interfaces:
– BankImpl – a bank servant class that implements the
Bank interface used to create, delete accounts;

– AccountImpl – a account servant class that
implements the Account interface to access accounts.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

30

Bank and Account Remote Interfaces
• The Bank interface:

 package bankrmi;
import java.rmi.*;
import bankrmi.Account;
import bankrmi.RejectedException;
public interface Bank extends Remote {
 public Account newAccount(String name) throws RemoteException,
 RejectedException;
 public Account getAccount(String name) throws RemoteException;
 public boolean deleteAccount(String name) throws RemoteException;
 public String[] listAccounts() throws RemoteException;
}

• The Account interface
package bankrmi;
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Account extends Remote {
 public float getBalance() throws RemoteException;
 public void deposit(float value) throws RemoteException,
 RejectedException;
 public void withdraw(float value) throws RemoteException,
 RejectedException;
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

31

A Fragment of the Bank Implementation
package bankrmi;
import java.rmi.*;
import java.util.*;
public class BankImpl extends UnicastRemoteObject implements Bank {
 private String bankName;
 private Map<String, Account> accounts = new HashMap<String, Account>();
 public BankImpl(String bankName) throws RemoteException {
 super();
 this.bankName = bankName;
 }
 public synchronized Account newAccount(String name) throws RemoteException,
 RejectedException {
 AccountImpl account = (AccountImpl) accounts.get(name);
 if (account != null) {
 throw new RejectedException("Rejected: Bank: " + bankName +
 " Account for: " + name +
 " already exists: " + account);
 }
 account = new AccountImpl(name);
 accounts.put(name, account);
 return account;
 }
 public synchronized Account getAccount(String name) {
 return accounts.get(name);
 }
 public synchronized String[] listAccounts() {
 return accounts.keySet().toArray(new String[1]);
 }
 ...
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

32

The Account Implementation
package bankrmi;
import java.rmi.*;
public class AccountImpl extends UnicastRemoteObject implements Account {
 private float balance = 0;
 private String name;
 public AccountImpl(String name) throws RemoteException {
 super();
 this.name = name;
 }
 public synchronized void deposit(float value) throws RemoteException,
 RejectedException {
 if (value < 0) {
 throw new RejectedException("Rejected: Account " + name +
 ": Illegal value: "+value);
 }
 balance += value;
 }
 public synchronized void withdraw(float value) throws RemoteException,
 RejectedException {
 if (value < 0) {
 throw new RejectedException("Rejected: Account " + name +
 ": Illegal value: "+value);
 }
 if ((balance - value) < 0) {
 throw new RejectedException("Rejected: Account " + name +
 ": Negative balance on withdraw: " +
 (balance – value));
 }
 balance -= value;
 }
 public synchronized float getBalance() throws RemoteException {
 return balance;
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

33

The Server

package bankrmi;
public class Server {
 private static final String USAGE =
 "java bankrmi.Server <bank_rmi_url>";
 private static final String BANK = "Nordea";
 public Server(String bankName) {
 try {
 Bank bankobj = new BankImpl(bankName);
 java.rmi.Naming.rebind(bankName, bankobj);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 public static void main(String[] args) {
 if (args.length > 1 || (args.length > 0 &&
 args[0].equalsIgnoreCase("-h"))) {
 System.out.println(USAGE);
 System.exit(1);
 }
 bankName = (args.length > 0) ? args[0] : BANK;
 new Server(bankName);
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

34

A Fragment of a Simple Client
package bankrmi;
import bankrmi.*;
import java.rmi.*;
public class SClient {
 static final String USAGE = "java Client <bank_url> <client> <value>";
 String bankname = “Noname";
 String clientname = “Noname";
 float value = 100;
 public SClient(String[] args) {
 //... Read and parse command line arguments (see Usage above)

 try {
 Bank bankobj = (Bank) Naming.lookup(bankname);
 Account account = bankobj.newAccount(clientname);

 account.deposit(value);
 System.out.println (clientname + "'s account: $" + account.balance());
 } catch (Rejected e) {
 System.out.println(e); System.exit(0);

 } catch (Exception se) {
 System.out.println("The runtime failed: " + se);

 System.exit(0);
 }
 }
 public static void main(String[] args) {
 new SClient(args);
 }
}

Java IDL (CORBA)

Reference implementation of OMG
CORBA for Java

org.omg.CORBA

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

36

Four Components of OMA
(Object Management Architecture)

• By the Object Management Group (OMG) consortium
that operates since 1989. See: http://www.omg.org

1. Object Model (Glossary of terms)
– Concepts: class, object, attribute, method, inheritance, etc.
– UML (Unified Modeling Language) is a standard for object

modeling.

2. CORBA (Common Object Request Broker Architecture)
– A mechanism for communication between objects

– Specification, related APIs and tools

– Object Request Broker (ORB) is implementation of CORBA

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

37

Four Components of OMA (cont)
3. CORBA Services

– Horizontal services common for any objects: Naming, Security, Life
Cycle, Transactions, Events, etc.

4. CORBA Facilities
– High level functionality for integrating objects

• User interface: drag-and-drop, compound documents
• System Management

• Task Management / Workflow

– Vertical services supporting particular industries
• Finance, Oil and Gas Exploration, Telecommunications (TMN/TINA-C) ,

10 other
– TMN is Telecommunications Management Network;

– TINA-C is Telecommunications Information Networking Architecture
Consortium

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

The Architecture of CORBA

38

ImplementationImplementation
repositoryrepository

Object implementationsObject implementations
(Servants)(Servants)

Object implementationsObject implementations
(Servants)(Servants)

StaticStatic
 SkeletonsSkeletons

ORBORB
InterfaceInterface

DynamicDynamic
SkeletonsSkeletons

Basic Object Adapter (BOA)Basic Object Adapter (BOA)
or Portable Object Adapter (POA)or Portable Object Adapter (POA)

ORB

CallerCaller

StaticStatic
StubsStubs

ORBORB
InterfaceInterface

InterfaceInterface
RepositoryRepository

DynamicDynamic
InvocationInvocation
InterfaceInterface

IIOPIIOP

ORB

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

39

CORBA Anatomy

• ORB: Object Request Broker
– makes it possible for CORBA objects to communicate with

each other by connecting objects making requests (clients) with
objects servicing requests (servants).

• BOA: Basic Object Adapter
– accepts call requests (as a meta-call),
– instantiates objects,
– initiates up-calls on skeletons,
– manages the Implementation Repository,
– different ORB vendors have completely different

implementation of BOA

• POA: Portable Object Adapter
– like BOA but portable between different ORB products

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

40

(cont’d) CORBA Anatomy

• A stub on the client side provides a static interface to
remote object services.
– resolves the remote object’s location
– performs remote method invocation via a local ORB

• Sends the object reference, the method name and parameters to
the destination ORB (skeleton) by using IIOP (Internet Inter-
ORB Protocol)

• Receives and unmarshals data in return

• A skeleton on the server side performs up-calls on a real
object
– transforms the call and parameters into the required format

and calls the object
– marshals result (or exception) and sends it over ORB

connection.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

41

ORB Protocols

• CORBA 2.0 defines standard protocols:
• GIOP: General Inter ORB Protocol

– Defines standard message format

• IIOP: Internet Inter ORB Protocol
– IIOP is the implementation of GIOP over TCP/IP
– IIOP-to-HTTP gateway and HTTP-to-IIOP gateway allow

CORBA clients to access Web resources and Web clients to
access CORBA resources.

• ESIOP: Environment Specific Inter ORB Protocol
– Allows ORBs to run on top of other standards (such as DCE:

Distributed Computing Environment consisting of standard
APIs: naming, DFS, RPC, etc.)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

42

IDL: Interface Definition
Language

• IDL is a purely declarative language: interface
declarations

• An IDL interface describes the attributes and methods
(operations) that are exported on the ORB.
– An interface can have several implementations.
– An object can implement several interfaces.

• IDL-to-language compilers are based on mapping from
IDL to the language (Java, C++, Smalltalk, COBOL,
Ada)

• A compiler generates
– An interface(s),
– A stub (a client proxy for remote calls),
– A skeleton (a server proxy for translating incoming calls to up-

calls)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

43

IDL Concepts

• Interface
– Similar to a class, but only defines the interface of an object,

without information on its representation in memory

• Operation
– Similar to a method or member function

– The direction of parameter must be specified: in, out, inout

• Attribute
– Does not define an attribute in memory

– Defines two operations for getting and setting the value

– readonly is used to suppress the function setting the value

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

44

Basic Data Types

• No int type
• No pointer type
• IDL types are defined in

terms of their semantics

IDL Javashort short

long int

unsigned short short

unsigned long int

float float

double double

char char

boolean boolean

octet byte

any class any

string String

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

45

Complex Types
• Build complex types from basic types in IDL:

– struct, enum, union, typedef
– array – fixed length collection
– sequence – variable length collection
– Object – reference to an IDL object (proxy)

• Mapping to Java
– sequence and array are mapped to the Java array type.
– enum, struct, and union are mapped to a final Java class that

implements the semantics of the IDL type.
– For example, array of bytes can be defined as:

typedef sequence <octet> bytes;
bytes getBytes(in string from) raises(cannotget);

• The Java class generated should have the same name as the
original IDL type.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

46

Passing Parameters and Returns

• CORBA sends all types across the network by
value, except objects
– Objects are passed by reference
– A proxy is constructed on the receiving end

• The OMG added a new specification called
”Pass-by-Value”
– Include Object by Value mapping
– Initiators were Sun and IBM
– Motivation: support for object migration and

replication
– RMI over IIOP

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

47

Java IDL (org.omg.CORBA)

• Java IDL is a reference implementation of CORBA in
Java

• Oracle delivers Java IDL in the JDK
– IDL-to-Java compiler

– Multi-protocol ORB (classes)

– Support for Java clients and servers (Name service, etc.)

• Java IDL is not a sophisticated product on the server
side:
– Doesn't have CORBA scalability and security features

– No CORBA Services except of Naming

• Java IDL will be useful on the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

48

Other Implementations of CORBA

• CORBA platforms from Progress Software
– http://web.progress.com/en/Product-Capabilities/corba.html

• The Micro Focus’s solution for CORBA Technology
(VisiBroker)
– http://www.microfocus.com/products/visibroker/index.aspx

• CORBA typically comes as a part of an enterprise
(application) server

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

49

Developing a Distributed Application
with Java IDL

1. Define interfaces with IDL
2. Compile the interfaces using idlj, which generates the Java

bindings for a given IDL file.
3. Develop an implementation for the interfaces (servants)
4. Develop a server (a container for servants) that initializes ORB and

creates the servants
5. Develop a client
6. Compile the client, the servants and the server (using javac)
7. Start the Naming Service tnameserv, which is the Common

Object Services (COS) Name Service
8. Start the server
9. Run the client

Step 1. Sample IDL Interfaces

module bankidl {
 interface Account {

readonly attribute float balance;
exception rejected { string reason; };
void deposit(in float value) raises (rejected);
void withdraw(in float value) raises (rejected);

 };

 interface Bank {
exception rejected { string reason; };
Account newAccount(in string name) raises

 (rejected);
Account getAccount (in string name);
boolean deleteAccount(in string acc);

 };
};

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

50

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

51

The IDL Interfaces (cont’d)

bank

account

Interface Account:
float balance
deposit(in float value)
withdraw(in float value)

Interface Bank:
Account newAccount(in string name)
Account getAccount (in string name)
boolean deleteAccount(in Account acc)

accountaccount

ServerServer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

52

Step 2. Compiling IDL to Java

• The IDL to Java compiler (idlj) generates:
– Interfaces:

• Bank.java, Account.java

– Stubs for the client side:
• _BankStub.java, _AccountStub.java

– Skeletons for the server side:
• When using BOA (backwards compatible to Java SE 1.4)
BankImplBase.java, AccountImplBase.java

• When using POA: BankPOA.java, AccountPOA.java
• Implementations of the interfaces should extend the skeletons.

– Helpers used to narrow a remote reference to its remote
interface:
• BankHelper, AccountHelper

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

53

Step 3. Implementing The
Interfaces.

• A servant is a class that implements the
interface(s) generated by a IDL to Java compiler.

• The servant class may extend an appropriate
skeleton (implementation base) class, for example:
public class BankImpl extends _BankImplBase

or (when using POA)
 public class BankImpl extends BankPOA

– In this way the servant implements the interface and
encapsulates the skeleton that accepts (remote) calls

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

54

Inheritance Structure

bankidl.BankImplbankidl.BankImplbankidl.BankImplbankidl.BankImpl

extendsextends

Written by programmerWritten by programmer

bankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBase

org.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImpl

extendsextends

implementsimplements
extendsextends

<interface><interface>
bankidl.Bankbankidl.Bank
<interface><interface>
bankidl.Bankbankidl.Bank

<interface><interface>
org.omg.CORBA.Objectorg.omg.CORBA.Object

<interface><interface>
org.omg.CORBA.Objectorg.omg.CORBA.Object

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

Used as signature typeUsed as signature type
in method declarationsin method declarations

Step 2.
Bank
Implementation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

55

public class BankImpl extends _BankImplBase {
 private String bankname = null;
 private Hashtable accounts = new Hashtable();
 public BankImpl(String name) {
 super();
 bankname = name;
 }
 public Account newAccount(String name) throws rejected {
 AccountImpl account = (AccountImpl) accounts.get(name);
 if (account != null) {
 throw new rejected("Rejected: Account for: "
 + name + " already exists");
 }
 account = new AccountImpl(name);
 accounts.put(name, account);

 return (Account)account;
 }
 public Account getAccount(java.lang.String name) {
 return (Account) accounts.get(name);
 }
 public boolean deleteAccount(String name) {
 AccountImpl account = (AccountImpl) accounts.get(name);
 if (account == null) {
 return false;
 }
 accounts.remove(name);
 return true;
 }
}

Step 3.
Account
Implementation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

56

package bankidl;
import bankidl.AccountPackage.rejected;
public class AccountImpl extends _AccountImplBase {
 private float balance = 0;
 private String name = null;

 public AccountImpl(java.lang.String name) {
 super();
 this.name = name;
 }
 public void deposit(float value) throws rejected {
 if (value < 0) {
 throw new rejected("Rejected: Illegal value: ” +
 value);
 }

 balance += value;
 }
 public void withdraw(float value) throws rejected {
 if (value < 0) {
 throw new rejected("Rejected: Illegal value: ” +
 Value);
 }

 if ((balance - value) < 0) {
 throw new rejected("Rejected: Negative balance”));
 }

 balance -= value;
 }
 public float balance() {
 return balance;
 }
}

Inheritance Structure with POATie.
The Tie Delegation Model.

• An IDL to Java compiler can generate a <interface>POATie class that
extends the skeleton.

• The implementation class may inherit from a different class and implement
the remote interface.

• Remote calls received by the tie object are directed to the implementation
object.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

57

bankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBase

org.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImpl

<interface><interface>
bankidl.Bankbankidl.Bank
<interface><interface>
bankidl.Bankbankidl.Bank

<interface><interface>
org.omg.CORBA.Objectorg.omg.CORBA.Object

<interface><interface>
org.omg.CORBA.Objectorg.omg.CORBA.Object

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

extendsextends

extendsextends
implementsimplements

Written by programmerWritten by programmer

BankImplBankImplBankImplBankImpl

implementsimplements

BankPOATieBankPOATieBankPOATieBankPOATie

extendsextends

Tied togetherTied together

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

58

Design Options (1/2)
• Choose an ORB implementation that suits you (price,

efficiency, etc.)
• Use either POA (standard Portable Object Adapter) or

BOA (non-standard Basic Object Adapter, which could
be more efficient)
1. To generate both client and server-side POA bindings, use

idlj -fall My.idl
• Generates MyPOA.java given an interface My defined in My.idl.
• You must implement My in a class that must inherit from MyPOA.

2. To generate BOA bindings backwards compatible to JDK 1.4,
use
idlj -fall -oldImplBase My.idl
• Generates _MyImplBase.java given an interface My defined in

My.idl.
• You must implement My in a class that must inherit from

_MyImplBase.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

59

Design Options (2/2)

Use a tie class when it is not convenient or possible to have
your implementation class inherit from either of the
skeletons MyPOA or _MyImplBase.
idlj –fallTIE My.idl

• Generates the tie class

– Wrap your implementation within My_Tie.
– For example:

 MyImpl myImpl = new MyImpl ();
My_Tie tie = new My_Tie (myImpl);
orb.connect (tie);

Step 4.
Server

(Using BOA,

Backwards

compatible to

JDK 1.4)

package bankidl;
import org.omg.*;
import org.omg.CORBA.ORB;
public class Server {
 public static void main(String args[]) {
 if (args.length != 3) {
 System.out.println(
 "usage: java Server <bankname> <-ORBInitialPort port>");
 System.exit(1);
 }
 try {
 ORB orb = ORB.init(args, null);
 BankImpl bankRef = new BankImpl(args[0]);
 orb.connect(bankRef);
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService”);
 NamingContext ncRef = NamingContextHelper.narrow(objRef);
 NameComponent nc = new NameComponent(args[0], "");
 NameComponent path[] = {nc};
 ncRef.rebind(path, bankRef);
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

60

Step 5. Client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

61

package bankidl;
import org.omg.CosNaming.*;
import org.omg.CORBA.ORB;
public class SClient {
 static final String USAGE = "java bankidl.SClient <bank> “ +
 “<client> <value> “ +
 “<-ORBInitialPort port>";
 Account account;
 Bank bankobj;
 String bankname = "SEB";
 String clientname = "Vladimir Vlassov";
 float value = 100;

 public static void main(String[] args) {
 if ((args.length > 0) && args[0].equals("-h")) {
 System.out.println(USAGE);
 System.exit(0);
 }
 new SClient(args).run();
 }

Step 5. Client (cont’d)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

62

public SClient(String[] args) {
 if (args.length > 2) {
 try {
 value = (new Float(args[2])).floatValue();
 } catch (NumberFormatException e) {
 System.out.println(USAGE);
 System.exit(0);
 }
 }
 if (args.length > 1) clientname = args[1];
 if (args.length > 0) bankname = args[0];
 try {
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");
 NamingContext ncRef = NamingContextHelper.narrow(objRef);
 NameComponent nc = new NameComponent(bankname, "");
 NameComponent[] path = {nc};
 bankobj = BankHelper.narrow(ncRef.resolve(path));
 } catch (Exception se) {
 System.out.println("The runtime failed: " + se);
 System.exit(0);
 }
 System.out.println("Connected to bank: " + bankname);
}

Step 5. Client (cont’d)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

63

 public void run() {
 try {
 account = bankobj.getAccount(clientname);
 if (account == null) {
 account = bankobj.newAccount(clientname);
 }
 account.deposit(value);
 System.out.println(clientname + "'s account: $" +
 account.balance());
 } catch (org.omg.CORBA.SystemException se) {
 System.out.println("The runtime failed: " + se);
 System.exit(0);
 } catch (bankidl.AccountPackage.rejected e) {
 System.out.println(e.reason);
 System.exit(0);
 } catch (bankidl.BankPackage.rejected e) {
 System.out.println(e.reason);
 System.exit(0);
 }
 }
}

Locating Objects

• Using Name Service
– The server creates the Bank object with the specified

name, e.g. “Nordea”, and makes it persistent
(ready).

– To obtain the object reference, the client via the
ORB contacts the Name Service of Java IDL, which
is started with the following command:
tnameserv -ORBInitialPort 1050

• Using Interoperable Object References (IOR)
– Server can store an object’s IOR (Interoperable

Object Reference) as a string to a file.
– Client can then fetch the reference from the file via a

web server.
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java

RMI
64

Server
Using IOR

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

65

package bankidl;
import org.omg.CORBA.ORB;

import java.io.*;
public class Serverl {
 public static final String USAGE =

 "usage: java bankidl.Serverl bankname dir";
 public static void main(String[] args) {
 if (args.length < 2) {

 System.out.println(USAGE); System.exit(1);
 }
 try {
 ORB orb = ORB.init(args, null);

 BankImpl bankRef = new BankImpl(args[0]);
 orb.connect(bankRef);
 File dir = new File(args[1]);

 if (!dir.exists()) {
 dir.mkdir();
 }

 String filename = dir + Character.toString(File.separatorChar) +
 args[0] + ".ior";
 File file = new File(filename);

 file.createNewFile();
 file.deleteOnExit();
 FileWriter writer = new FileWriter(file);
 writer.write(orb.object_to_string(bankRef));

 writer.close();
 orb.run();
 } catch (Exception e) {

 System.out.println(USAGE); System.exit(1);
 }
 }

}

Client
Using IOR

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

66

public class Clientl {
 static final String USAGE =
 "java bankidl.Client url <-ORBInitialPort port>";
 Bank bankobj;
 String bankname = "SEB";
 public static void main(String[] args) {
 if ((args.length > 0) && args[0].equals("-h")) {
 System.out.println(USAGE); System.exit(0);
 }
 new Clientl(args).run();
 }
 public Clientl(String[] args) {
 if (args.length < 1) {
 System.out.println(USAGE); System.exit(1);
 }
 try {
 URL bankURL = new URL(args[0]);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 (InputStream)bankURL.getContent()));
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =
 orb.string_to_object(in.readLine());
 bankobj = BankHelper.narrow(objRef);
 } catch (Exception se) {
 System.out.println("The runtime failed: " + se);
 System.exit(0);
 }
 System.out.println("Connected to bank: " + bankname);
 }

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

67

Integrating Java RMI with
CORBA

• RMI is an all-Java solution
– A good programming model

• CORBA is an enterprise distributed architecture
– A programming model not designed specifically for Java

– A mature middleware infrastructure

• RMI can run on top of IIOP
– The OMG adds a new specification called ”Pass-by-Value”

– See:
http://download.oracle.com/javase/7/docs/technotes/guides/
rmi-iiop/index.html

– Most of services in Java EE application server
implementations use either RMI or RMI/IIOP for
communication

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

