
Chapter 4

Lecture 4: NP and computational
intractability

Listen to: Find the longest path, Daniel Barret
What do we do today:

• polynomial time reduction

• NP, co-NP and NP complete problems

• some examples for polynomial reduction to prove NP-completeness

• NP problems with special cases

At the same time we move from problems that had polynomial time algorithm solutions to
problems where such solutions do not exist.

We will use the following problems as examples:

Problem. Circuit-satisfiability: (Cook and Levin 1971) A circuit is a labelled, directed graph
(tree), with boolen operations at the nodes. Is there an assignment of values to the inputs such
that the output takes yes?

Problem. 3-Satisfiability (3-SAT): 3-SAT will be our ”root problem” later. Suppose we have
a set of X Boolean variables {x1, x2, ...xn}. A term t is xi or its negation x̄i. A clause Ci is a
disjunction of 3 terms, t1∨t2∨t3, and the conjunctive normal form is the conjunction C1∧C2∧...Ck.
Is the set of clauses satisfiable?

Problem. Independent set: In graph G = (V,E), two nodes i, j ∈ V are independent if eij /∈ E.
Given graph G and number k, does G contain an independent set of nodes of at least size k?

Problem. Vertex cover: Given graph G, a set of nodes S ⊆ V is a vertex cover, if for each
eij ∈ E at least one of i or j ∈ S. Given graph G and a number k, does G contain a vertex cover
of size at most k?

Problem. Set cover: Given a set U of elements, a collection of Si subsets of U , and a number
k. Does there exists a collection of at most k subsets, such as ∪Si = U?

Problem. Hamiltonian cycle: Given graph G, is there a cycle that visits each vertex exactly
once?

Problem. Traveling salesman: Given a set of distances on n cities, and a bound D, is there a
tour of length at most D?

Problem. Subset sum: Given natural numbers wi, w2, ...wn ∈ N and a target number W , is
there a subset of wi-s such that they add up to precisely W? (Note we considered the relaxed
version of this problem under dynamic programming.)

Problem. 3D matching: Given disjoint sets X, Y and Z each of size n and ordering triplets
T ⊆ X × Y × Z, does there exist a set of n triplets in T , such that each element in X ∪ Y ∪ Z is
contained in exactly one of these?

23

24 CHAPTER 4. LECTURE 4: NP AND COMPUTATIONAL INTRACTABILITY

4.1 Polynomial time reduction

Objective: we would like to classify problems according their difficulty. Tool: compare their relative
difficultly. This is what we call reduction.

X is at least as hard as Y.

Moreover, we would like to find a solution that works also for polynomial problems, and therefore
we introduce polynomial time reduction:

Can arbitrary instance of Y be solved using a polynomial number of computational steps,
plus polynomial number of calls to a black box that solves X?

If the answer is yes, we write:

Y ≤p X,

and say Y is polynomial-time reducible to X or X is at least as hard as Y.

Theorem 31. Suppose Y ≤p X. If X can be solved in polynomial time, then Y can be solved in
polynomial time.

Theorem 32. Suppose Y ≤p X. If Y can not be solved in polynomial time, then X can not be
solved in polynomial time.

Example. Independent set and Vertex cover. We can show that Independent set ≤p Vertex cover
and Vertex cover ≤p Independent set. It means that the two problems have the same difficulty.

Example. Vertex cover and Set cover. We can show that Vertex cover ≤p Set cover. We can not
show the opposite direction, so it means that: if we know how to solve set cover, we can call it
polynomial number of times to solve Vertex cover. Set cover is at least as hard as vertex cover.

Here is a possible 3-SAT expression:

(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3 ∨ x̄4)

.

Example. 3-SAT and Independent set: 3-SAT ≤p Independent set.

Theorem 33. Transitivity of reductions: If Z ≤p Y and Y ≤p X, then Y ≤p X

Example. Considering our previous examples, we have: 3-SAT ≤p Independent set ≤p Vertex
cover ≤p Set cover, that is, 3-SAT ≤p Set cover.

We an translate it to say that the Set cover is at least as difficult as the 3-SAT.

4.2 Definition of complexity classes P, NP, co-NP

Superficial definition of NP class: a decision problem is in NP, if a ”yes” answer can be proved in
polynomial time. E.g., the satisfiability of a 3-SAT can be proved by giving a string x̄ that solves
the problem. The existence of a Hamiltonial cycle can be proved by the sequence of edges that form
a Hamiltonial cycle. In both cases the correctness of the solution can be checked in polynomial
time.

Now let’s see the exact definition.

Definition. Optimization/computation problem: the results is some finite string s. Decision
problem X: defined by the set of strings on which the answer is yes. An algorithm A for a decision
problem receives an input s, and outputs yes or no. A solves X, if A(s) = yes iff s ∈ X.

4.2. DEFINITION OF COMPLEXITY CLASSES P, NP, CO-NP 25

As an example, Problem Primes = {2,3,5,7,...}. AgrawalKayalSaxena (AKS) primality test is
an algorithm that solves the problem.

Another example, for G(V,E), the Problem Hamiltonial Cycle is given by all the sequences of
edges that form such a cycle. It is easy to construct and algorithm, that checks whether a list of
edges form a H-cycle.

Definition. Efficient certifier: (other names exist, like oracle, witness) Algorithm B(s, t) is a
certifier for decision problem X if for every string s, s ∈ X iff there exists a string t such that
C(s, t) = yes. B is an efficient certifier, if B as well as t is polynomial in s.

Example, back to the Hamilton cycle: t is the string of edges, B(t, s) is the algorithm that
checks whether t is a Hamilton-cycle.

Example: composite numbers: t is a nontrivial factor of number s, B(t, s) checks whether
1 < t < s and s is multiple of t.

Example: independent set problem: t is the identity of a set of at least k vertexes, and B checks
that no edge connects any pair of them (O(k2)).

Definition. NP: the set of all decision problems for which there is an efficient certifier.

NP comes from nondeterministic-polynomial, and stands for algorithms that run in polynomial
time, if we allow nondeterministic algorithm, these algorithms evaluate all branches of a decision
tree simultaneously.

Theorem 34. P ⊆ NP.

Proof. Consider a problem X ∈ P. We will show that it is in NP as well. Since it is in P, there is a
polynomial algorithm A that solves X.

We design the certifier B as follows: independently from t, B(s, t) simply returns the value A(s).
Note, X is a decision problem, so the answer is yes or no.

The fundamental question whether P=NP is open.

Definition. EXP: the set of all problems for which there is an exponential-time algorithm .

Definition. NP-complete problem: A decision problem X, (i) X ∈ NP, and ii) for all Y ∈ NP
Y ≤P X.

In words: X is NP complete, if it is in NP and every problem in NP can be reduced to X. (X is
at least as difficult as any other problem in NP.)

Theorem 35. Suppose X is NP-complete. Then X is solvable in polynomial time iff P=NP.

It is not at all straightforward though that NP-complete problems exist.
History: first NP-complete problem is the circuit satisfiability, then it was shown that it can be

reduced to 3-SAT. Which means, 3-SAT is NP-complete. Finally, 3-SAT can be reduced to several
other problems (see the Karp tree), and so on.

Theorem 36. The circuit-SAT problem is NP-complete.

We do not prove this here. However, the proof is based on the idea to convert any algorithm to
a circuit.

Example. Transforming the independent set problem to circuit-SAT.

Given a graph G, does it contain a two-node independent set?
This problem is of course NP. Now we construct a circuit that is an efficient certifier for the

problem. This certifier needs to be constructed for this specific graph G. The example in the book
is a certifier for a three node graph with edges vu and vw. The circuit gives a result ”yes”, if the
input is v=0, u=1, w=1.

Theorem 37. If Y is NP-complete and X is a problem in NP with the property that Y ≤P X,
then X is NP-complete.

26 CHAPTER 4. LECTURE 4: NP AND COMPUTATIONAL INTRACTABILITY

4.2.1 Proving NP-Completeness

Given a new problem X we would like to prove that it is NP-complete.
Cook reduction (also known as polynomial-time Turing reduction) General reduction with poly-

nomial number of calls to black box:

1. Prove that X ∈ NP (that is, there is a poly-time certifier)

2. Choose a problem Y that is known to be NP-complete

3. Prove that Y ≤P X, that is, Y can be solved by multiple calls to a black box solving X.

Karp reduction, when there is only one call to the black-box: that is, we transform every instance
of Y into a single instance of X with the same answer (note, that Y is the problem that is known
to be NP-complete).

1. Prove that X ∈ NP

2. Choose a problem Y that is known to be NP-complete

3. Consider an arbitrary instance of sY , and show how to construct in polynomial time an
instance sX , such that sX=yes iff sY -yes.

4.2.2 Co-NP

Note that according to the definition of NP, there is no short proof (certificate) of a ”no” answer.

Definition. Complementary problem of X is X̄: s ∈ X̄ iff s /∈ X.

Definition. A problem X is in co-NP iff the complementary problem belongs to NP.

We do not know whether NP = co-NP. But we know that such equality would have serious
consequences:

Theorem 38. If NP 6= co-NP, then P 6= NP.

Proof. Prove the contrapositive statement: P = NP ⇒ NP = co−NP .
Assume P = NP :

X ∈ NP ⇒ X ∈ P ⇒ X̄ ∈ P ⇒ X̄ ∈ NP ⇒ X ∈ co−NP

and in the opposite direction

X ∈ co−NP ⇒ X̄ ∈ NP ⇒ X̄ ∈ P ⇒ X ∈ P ⇒ X ∈ NP.

.
Since we found NP ⊆ co−NP and co−NP ⊆ NP , NP = co−NP .

We know that if X ∈ P, then X ∈ NP and X ∈ co-NP, but we do not know whether P =
NP ∩ co−NP .

4.2.3 NP-hard

Definition. A problem X is NP hard, if for all Y ∈ NP Y ≤P X.

Note, that X does not need to be in NP , that is, it does not need to be a decision problem, and
there is no need for polynomial-time certificate.

So, we discussed the concept of NP NP-complete for the class of decision problems, but
most often we meet optimization problems. Clearly, by solving the optimization problem we
immediately have answer for the related decision problem:

decision problem ≤P optimization problem.

4.2. DEFINITION OF COMPLEXITY CLASSES P, NP, CO-NP 27

It also means that the optimization problem is at least as hard as the decision problem. It
also means that if the decision problem is hard, then the optimization problem is hard too. NP-
Hard but not NP-Complete problems are typically these optimization problems. Like, integer linear
programming is NP-hard.

Question: How about the opposite direction???? Often we can solve an optimization problem by
calling a decision problem in linear or sublinear times.

4.2.4 Reduction examples

Here we list three somewhat different examples. More can be found in the book.

Theorem 39. Independent set ≤P Vertex cover.

Proof. That is, we want to show that the Independent set problem can be solved by calling a Vertex
cover solver polynomial time. Consequence: vertex cover is at least as hard as independent set.
Consequence: if Independent set is NP (NP-complete) then the Vertex cover is NP (NP-complete).

Note, both of the problems are in NP, given the set of nodes it can be checked in O(k2) time
that none of them is connected by an edge, alt. it can me checked in O(m) time that all edges are
covered.

Lemma 17. Let G = (V,E). Then S ⊆ V is an independent set iff its complement V − S is a
vertex cover.

Proof. S ⊆ V is an independent set ⇒ V − S is a vertex cover: Consider an edge eij . Since S is
independent set, one of i, j must be in V −S, that is, eij is covered in V −S. It holds for all edges,
so V − S is vertex cover.

V − S is a vertex cover ⇒ S ⊆ V is an independent set: Proof by contradiction. Consider u, v
in S, such that there is an edge euv. But then there is this edge euv that is not covered by S ⊆ V ,
which contradicts to the assumption the it is a vertex cover. Consequently, there are no two nodes
connected by an edge in S, which means it is an independent set.

So let us go back to our main theorem. Consider a graph G = (V,E). We would like to know
whether there is at least k independent nodes. We can get an answer by asking the Vertex cover
solver, whether there is a vertex cover with size at most |V | − k.

Theorem 40. Vertex cover ≤P Set cover.

We just proved that Vertex-cover is NP-complete. Clearly, Set cover is in NP, a set of subsets
Si is a good certificate. If we prove the above theorem, we prove that Set cover is NP-complete.

Proof. We are looking for a solution where Vertex cover calls the black box that solves set cover.
That is, for any graph G, we need to construct subset Sis.

We need to cover edges, therefore we select the set of items for set cover U = E.
A node covers all the edges it is connected to, so we define Si ⊆ U by all eij .
Now we claim that U can be covered with at most k subsets iff G has a vertex cover of at most

k.
⇒: If Si1 , ...Sil , l ≤ k is a set cover, then every edge in G is incident to one of ij-s, and set

{i1, ...il} is a vertex cover.
⇐: Quite the same reasoning.

Theorem 41. Hamiltonial Cycle ≤P Traveling salesman (called traveling salesperson nowadays).

Proof. That is, we want to show that the Hamiltonial Cycle problem can be solved by calling the
Traveling salesman solver polynomial time. Consequence: if Hamiltonial cycle is NP (NP-complete)
then the Traveling salesman is NP (NP-complete).

Note, both of the problems are NP, the sequence of nodes/cities visited is a good certificate.
Given graph G = (V,E), the question is, whether G has a Hamiltonial cycle. For (directed)

graph G we construct an instance of the TSP as follows: for each node v ∈ V we have a city v′.
We define d(v′, w′) = 1 if there is an edge ev,w ∈ G, and we define it 2 otherwise. There is a tour
of length n iff there is a Hamiltonian cycle in G.

28 CHAPTER 4. LECTURE 4: NP AND COMPUTATIONAL INTRACTABILITY

Theorem 42. 3-SAT ≤P Independent set. (Specifically, 3-SAT with k clauses, and independent
set with at least k nodes.)

Actually we should have started with this, since we know that 3-SAT in NP complete. So with
this theorem we can prove that the Independent set problem is NP-complete.

Proof. The independent set problem is NP as we have shown before.
Now we construct an instance of the independent set problem that solves a given 3-SAT problem.

That is, we try to define a graph where an independent set represents a solution. We will use the
reasoning, that we need to select one item from each claus (of three terms), such that the k selections
do not conflict.

Graph: n = 3k nodes, triangles represent a clause. Nodes from different triangles are connected
if they conflict in the SAT expression (xi, x̄i).

We need to show that 3-SAT is solvable iff there are at least k independent nodes in the graph.
3-SAT is solvable⇒ at least k independent nodes: Consider the nodes that represent terms with

value 1 in the SAT solution. There needs to be at least one of them in each triangle. Let S contain
one such a node from each triangle. They can not be connected by any ”cross triangle” edge, since
either x or (̄x) is 1. We have exactly k independent nodes in S.

At least k independent nodes ⇒ 3-SAT is solvable: we construct a solution for SAT based on
the independent set S. We set to 1 the variables that represent nodes in S, and 0 their negate. If
neither xi or x̄i is in S, then we set xi=1.

4.3 Special cases - when NP is not NP

Problem. Maximum independent set in trees (or forests)

We have seen that the existence of independent set of size k is NP-complete in general graphs.
However, if the graph has specific structure, specifically tree of forest, then the problem becomes P.

Proof. Greedy algorithm, based on the exchange argument.

Consequence: you need to be observant to the structure of the problem, and if you discover that
you always have a special case of a general problem, you need to prove that even this special case
is in the given complexity class.

4.4 What have we learned today?

• Polynomial reduction to establish complexity relationships.

• Decision and optimization problems.

• The contept of efficient certifier.

• Definition of P, NP, co-NP, NP-complete and NP-hard.

• Relationships of these, and things we do not know.

• Reduction examples.

• Special cases that turn out to be in P.

