ID2212 Network Programming with Java
Lecture 12

Enterprise JavaBeans (EJBs) and
WebSockets

Leif Lindbiack, Vladimir Vlassov,
Paris Carbone

KTH/ICT/SCS
HT 2016

Enterprise JavaBeans (EJB)

javax.ejb
home page:
http://www.oracle.com/technetwork/java/index-jsp-140203.html

QOutline

* Enterprise JavaBeans (EJB)
— Session
— Message-Driven

* Example: Bank Account Application — to be
considered at Exercise 4 (see slides of Exercise 4)

Lecture 12: Enterprise JavaBeans (EJBs)

Enterprise JavaBeans (EJB)

An EJB is a server-side components that exposes methods
for performing application logic

EJB 3

— Session Beans (stateless and stateful) represent actions (a single
action, a session)

* Performs a task for a client; optionally may implement a web service
— Message-driven Beans

* Acts as a listener for a particular messaging type, such as the Java
Message Service (JMS)

EJB 2

— Session Beans (stateless and stateful)

— Entity Beans represent persistent stateful entity (e.g. account,
person, customer). An entity bean — a row in a database

— Entity beans have been replaced by Java Persistence API entities.

Lecture 12: Enterprise JavaBeans (EJBs) 4

Session Beans

* Business process objects, for example, business
logic, workflow and similar

* A session bean represents a single client inside
the Application Server.
— Used only by one client at a time
— Lives for the session (or lifetime) of the calling client
* Two kind of sessions EJBs

— Stateless session EJBs
— Stateful session EJB

Lecture 12: Enterprise JavaBeans (EJBs) 5

A Stateful Session Bean

The bean class is annotated as @Stateful

Spans multiple client calls and retains state on
behalf of the individual client (conversational
state).

One bean instance per client.

— Values of instance variables represent the state of a
unique client session.
* A.k.a. the conversational state

— If the client removes the bean or terminates, the
session ends and the state disappears.

Example: A shopping cart

Lecture 12: Enterprise JavaBeans (EJBs)

A Stateless Session Bean

The bean class is annotated as @Stateless
Accommodates only a single request.

Does not maintain a conversational state with the
client.

— May contain state, but not conversational state related to a
specific client.

A pool of beans
— All instances of a stateless bean are equivalent
— Better scalability than stateful beans.

Example: A currency converter

Lecture 12: Enterprise JavaBeans (EJBs)

Business Interface of a Session

Bean

* A client uses a session bean through the
methods of the bean's business interface.

— The interface includes the business methods exposed
by the bean’s class

— The bean class implements the business interface

* A client of a session bean can be a web

component, an application client, or another
EJB

Lecture 12: Enterprise JavaBeans (EJBs) 8

Business Interface of a Session Bean
(contd)

* The client gets a reference to the session bean’s interface either through
injection or JNDI lookup

* The following example illustrates both options. Note that JNDI lookup is
very seldom required.

@WebServlet(name = "AdderServlet", urlPatterns = {"/AdderServlet"})
public class AdderServlet extends HttpServlet {
@EJB
private AdderRemote adder; //injection
//private AdderRemote adder = lookupAdderBeanRemote(); // through lookup
private AdderRemote lookupAdderBeanRemote() {
try {
Context ¢ = new InitialContext();
return (AdderRemote) c.lookup(
"java:global/Adder/Adder-ejb/AdderBean!adder.AdderRemote");
} catch (NamingException ne) {
Logger.getLogger(getClass().getName()).log(Level.SEVERE,
"exception caught", ne);

throw new RuntimeException(ne);

Lecture 12: Enterprise JavaBeans (EJBs) 9

Business Interface Design Options

Local interface for local clients on the same JVM
Remote interface for remote clients on different JVM

* Remote interface obeys the rules of Java RMI.
No-interface view for local clients

— All public methods of the bean class are automatically exposed to the
client

— Does not require a separate interface; there is no the implements
clause

— The same behavior as the local interface view
— Simplifies programming
Web Services interface
— Exposing business methods as Web Services
— Stateless session beans can be invoked over SOAP/HTTP
Lecture 12: Enterprise JavaBeans (EJBs) 10

A Session EJB with a Remote
Interface

An interface for remote access
Annotate the interface with the @GRemote annotation:

@Remote
public interface InterfaceName {

}

Annotate the bean class with GRemote, specifying the business
interface(s):

@Remote(InterfaceName.class)
public class BeanName implements InterfaceName

{

Lecture 12: Enterprise JavaBeans (EJBs) 11

A Session EJB with a L.ocal Interface

* An interface for local access
* Annotate the interface with the @Local annotation:

@Local
public interface InterfaceName {

}

* Annotate the bean class with @Local, specifying the business
interface(s):

@Local (InterfaceName.class)
public class BeanName implements InterfaceName

{

Lecture 12: Enterprise JavaBeans (EJBs) 12

A Session EJB without Interface

Annotate the bean class with @LocalBean annotation

@LocalBean
public class BeanName {

L o

Lecture 12: Enterprise JavaBeans (EJBs)

13

Deciding on Remote or L.ocal Access

* Tight or loose coupling of related beans:
— Tightly coupled beans depend on one another, and
they are good candidates for /ocal access.
* Type of client:

— To enable clients accessing the EJB direct, not
through a web interface, the EJB must allow remote
access,

— For EJBs accessed by web components or other
EJBs, local access is almost always preferred.

Lecture 12: Enterprise JavaBeans (EJBs) 14

Deciding on Remote or L.ocal Access
(contd)

* Semantics:

Remote calls use pass-by-value semantics, local calls
use pass-by-reference.

* Component distribution:

— Server-side components can be distributed among
multiple machines for scalability.

— Web components may run on a different server than
EJBs, but this is very seldom useful.

* Performance:

— Remote calls are slower than local calls.

Lecture 12: Enterprise JavaBeans (EJBs) 15

Example: Adder Service

* A client-server application

— A user enters an integer number via an HTML form and gets a sum
accumulated by the Adder application.

* The Adder application includes:
— The index.xhtml JSF page
— The Adder managed bean

— The AdderBean EBJ (session, stateful) that accumulates a sum of
integers entered by a user, and returns the sum on request

Application Server

Web Browser |
—* faces/index.xhtml — Adder

HTML form client i
|

|

Web container (servlet engine) EJB container

Lecture 12: Enterprise JavaBeans (EJBs)

|
|
|
E >AdderBean,
|
|
|

J—

Client

* An HTML Form in a Web page (index.xhtml)

<?xml version='l.0' encoding='UTE-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http: //www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http: //java.sun.com/jsf/html">
<h:head>
<title>Adder site</title=
</h:head>

<h:body=>
<hl>Adder Site</hl>
<h3>The running total is #{adder.total}</h3>
<h: form>
<p><h:outputLabel for="operand" value="Please enter an integer: "/=
<h:inputText id="operand" value="#{adder.operand}"/>
</p>
<p><h:commandButton value="Add"/=</p>
</h:form=
</h:body:>
</html>

Adder Managed Bean

* The Adder managed bean is a client of the Adder EJB

package se.kth.id2212.1lec12.view;

import java.io.Serializable,

import javax.ejb.EJB;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

import se.kth.1id2212.lec12.model.AdderBean;

@Named(value = "adder™)
@SessionScoped
public class Adder implements Serializable {

private static final long serialVersionUID = -3552965833778221283L;

@EJB
private AdderBean adderBean;

Lecture 12: Enterprise JavaBeans (EJBs) 18

Adder Managed Bean (cont'd)

public int getTotal() {
return adderBean.getTotal();

}

public void setOperand(Integer operand) {
adderBean.add(operand);

}

public Integer getOperand() {
return null;

}

Lecture 12: Enterprise JavaBeans (EJBs)

19

Adder EJB (Stateful Session Bean)

— Interface operations:
public void add (int number)
public int getTotal()

— private int total; // state of the bean

Lecture 12: Enterprise JavaBeans (EJBs) 20

Adder EJB (contd)

package se.kth.1d2212.lec12.model;

import javax.ejb.Stateful;

@Stateful
public class AdderBean {
private int total;

public void add(int operand) A
total = total + operand;

h

public int getTotal() {
return total;

h

21

Message-Driven Beans

A message-driven bean is an EJB that allows Java EE
applications to process messages asynchronously.
— Normally acts as a JMS message listener.

Defference between m-d beans and session beans

— Clients do not access m-d beans by method calls through
interfaces;

* M-d bean instead implements the MessageListener interface
with the onMessage method.

A m-d bean resembles a stateless session bean

— M-d bean instances retain no conversational state for a specific
client;

— All instances of a m-d bean are equivalent;
— A single m-d bean can process messages from multiple clients.

Lecture 12: Enterprise JavaBeans (EJBs) 22

Features of Message-Driven EJBs

Stateless.

Execute upon receipt of a single client message.
Invoked asynchronously.

Can be transaction-aware.

An example is a log service

Lecture 12: Enterprise JavaBeans (EJBs) 23

Client Interaction with a Message-
Driven Bean

* A client interacts with a m-d bean through JMS by
sending messages to the destination for which the
message-driven bean class is the JMS message listener.

* An m-d bean’s class is annotated @MessageDriven with

a name of the bean’s destination, e.g.
@MessageDriven(mappedName = "jms/Queue")

* When a message arrives, the container calls the
message-driven bean's onMessage method to process
the message.

Lecture 12: Enterprise JavaBeans (EJBs) 24

Life Cycles of EJBs

* Stateful session bean

Message-driven bean

Timeout

1. Remove method
or Timeout

2. PreDestroy callbacks,

if any

1. Dependency injection,
if any

2. PostConstruct callbacks,
if any PrePassivate

callbacks, if any

Ready — Passive

PostActivate
callbacks, if any

* Stateless session bean

1. Dependency injection, if any
2. PostConstruct callbacks, if any

Does Not

Exist

PreDestroy callbacks, if any

1. Dependency injection, if any

/’ 2. PostConstruct callback, if any w

Does Not

onMessage

Ready

Exist

K PreDestroy callback, if any 4'/

During the bean’s lifetime, the EJB
Container invokes methods annotated
@PostConstruct, @PrePassivate,
@PostActivate, @PreDestroy, @GRemove.

When a client calls a business method on a
bean, which does not exists or is passive, the
container constructs the bean or activates
the bean to make it ready.

Lecture 12: Enterprise JavaBeans (EJBs) 26

Networking with WebSockets

javax.websocket

home page: http://www.oracle.com/technetwork/articles/java/jsr356-
1937161.html

Outline

Web Based Communication
HTTP Limitations
WebSocket Contribution

The WebSocket API in JavaEE

Endpoints
Sending/Receiving Messages
Encoders/Decoders

Accessing Sessions
WebSocket Clients

Networking with WebSockets

28

HTTP Limitations

Half-Duplex (Request / Response based)

A client requests a resource and the server provides access to it
Verbose (adds communication overhead)
Complicated when resources change frequently

eg. Social networking, gaming, collaborative editing, financial
applications etc.

Polling is inefficient

Networking with WebSockets 29

HTTP Limitations

Long Polling (Comet) offered small improvement

Establishes a persistent connection and waits for the server to push
data when it becomes available

Still requires a new connection (handshake) per update
Still adds the communication overhead of HTTP

Networking with WebSockets 30

WebSockets Contribution

* WebSockets (RFC 6455) build on a single TCP
connection and offer bi-directional, full-duplex
communication through the web (HTTP)

* Message-Based communication (text, binary and ping-
pong messages)

* Offers addressing and protocol naming mechanisms to
support multiple services on one port (eg. 80)

Networking with WebSockets 31

WebSockets Contribution

*WebSocket connection endpoints can be represented by URISs:
— ws://host:port/path?query (plain websocket connection)
— wss://host:port/path?query (encrypted websocket connection)

*They are currently supported by modern browsers through a
JavaScript API to allow

— Endpoints connection
— Callbacks for Sending/Receiving messages and connection state events

Networking with WebSockets 32

WebSockets Contribution

A websocket connection 1s established by upgrading a HTTP
connection. Browser and server exchange the following handshake.

GET /path/to/websocket/endpoint HTTP/1.1

Host: localhost

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: xqBt3ImNzJbYqRINxEFlkg==
Origin: http://localhost

Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade
Sec-WebSocket-Accept: K7DJLdLoolwlG/MOpvWFB3y3FE&=

Networking with WebSockets 33

Messaging Over WebSockets

* WebSockets 1s a protocol enabling transport over a
network, much like TCP or UDP.

* [t 1s often convenient to use a higher level protocol
on top of WebSockets, instead of using plain
websockets endpoints.

* There are many such protocols, for example

* Web Application Messaging Protocol, WAMP

* Java Message Service, IMS
* Advanced Message Queuing Protocol, AMQP
* Extensible Messaging and Presence Protocol, XMPP

WebSockets in Java

*WebSockets were introduced in JavaEE 7.0

— javax.websocket and javax.websocket.server
— Supported by Web Containers (Tomcat 8, Glassfish 4.0, Jetty, WildFly)

*Endpoints are instances of the javax.websocket.Endpoint class
*There are two ways of defining Endpoints:

— Programmatic Endpoints: Extending javax.websocket.Endpoint and
overriding lifecycle methods

— Annotated Endpoints: Decorating classes with provided annotations.
This is generally preferred to the programmatic approach.

Networking with WebSockets 35

Endpoints

*WebSocket Endpoints are not sockets! Sockets are stream-
based while Endpoints are message-based.

*WebSocket Server Endpoints are not servlets! The container
creates one Endpoint instance per connection.

*Any POJO can be converted into an Endpoint simply via using
appropriate WebSocket annotations.

Networking with WebSockets 36

Annotated Endpoints

* Easier to Write
* A simple Endpoint that echoes back every text message:

@ServerEndpoint(“/echo”)
public class EchoEndpoint {

@OnMessage
public String doEcho(String textMsg) {
return textMsg;
}
}

Networking with WebSockets 37

Programmatic Endpoints

* More complicated to write.
* A simple Endpoint that echoes back every text message:

public class EchoEndpoint extends Endpoint {

@Override
public void onOpen(final Session session, EndpointConfig eConf) {
session.addMessageHandler (new MessageHandler.Whole<String>() {

@Override
public void onMessage(String textMsg) {
try{
session.getBasicRemote().sendText(textMsg);
} catch(IOException ioe) {

}
}
});

Annotated Endpoints

Easier to Write
A simple Endpoint that echoes back every text message:

@ServerEndpoint(“/echo”)
public class EchoEndpoint {

@OnMessage
public String doEcho(String textMsg) {
return textMsg;
}
}

Networking with WebSockets 39

Annotated Endpoints

* Annotated Endpoints are simpler and automatically deployed
with the Web Application on the relative path defined by the
ServerEndpoint annotation.

*There are annotations for every Endpoint lifecycle event:

Annotation Lifecycle Event Expected Parameters
OnOpen Connection Opened Session, EndpointConfig, PathParam
OnMessage Message Received Session, String|ByteBuffer|PongMessage|POJO,
PathParam
OnError Error Occurred Session, Throwable, PathParam
OnClose Connection Closed Session, CloseReason, PathParam

Networking with WebSockets 40

Receiving Messages

* Currently the following message types are supported:

Message Type Description
String A message decoded and wrapped as a character string
ByteBuffer A message passed as a byte sequence to be manually de-
serialized
Pong Dummy message to be used for checking the connection

Networking with WebSockets 41

Receiving Messages

*An Endpoint can have up to three message handlers

@ServerEndpoint(“/ireadeverything”)
public class ThreeTypeEndpoint {

@OnMessage
public void receiveText(Session session, String textMsg) {

}

@OnMessage
public void receiveBinary(Session session, ByteBuffer binaryMsg) {

}

@OnMessage
public void receivePong(Session session, PonglMessage pongMsg) {

}

Networking with WebSockets 42

Sending Messages

*Each connection’s session object exposes two remote peer
interfaces for sending messages:

— RemoteEndpoint.Basic for blocking communication

— RemoteEndpoint.Async for asynchronous communication

@OnMessage
Public void messageBack(Session session, String str)

{

session.getBasicRemote().sendText(str); //blocks
session.getAsyncRemote().sendText(str): //returns instantly

}

Networking with WebSockets 43

Encoders/Decoders

*For converting messages to/from POJOs the API offers the
following interfaces:

Interface Description
Encoder. Text<T> Encode from T to String
Encoder.Binary<T> Encode from T to binary
Decoder. Text<T> Decode from String to T
Decoder.Binary<T> Decode from binary to T

Networking with WebSockets 44

Encoders/Decoders

*For each server Endpoint we can define many encoders and at
most one decoder per input type (String, Binary) as
ServerEndpoint annotation parameters.

@ServerEndpoint (
value = “/echoserver”,
encoders = {MyEncoderA.class, MyEncoderB.class},
decoders = {MyDecoder.class}

)

public class EchoServer{
@OnMessage
public void message(Session session, MyMessage msg){
}

}

Networking with WebSockets 45

Encoders/Decoders

*Defining an encoder

public class MyEncoderA implements Encoder.Text<MyMessageA>{

@Override

public void init(EndpointConfig econf){}

@Override

public void destroy(){}

@Override

public String encode(MyMessageA myMsg){

return myMsg.getJson();

}

*Same for MyMessageB...

Networking with WebSockets 46

Encoders/Decoders

*Defining the decoder. For multiple type support there should be
one common superclass/interface defined.

public class MyDecoder implements Decoder.Text<MyMessage>{
@Override
public void init(EndpointConfig econf){}
@Override
public void destroy(){}
@Override
public MyMessage decode(String textMsg) throws DecodeException{
//parse textMsg

// MyMessageA and MyMessageB should inherit MyMessage
return new MyMessageA(textMsg);

- //or

return new MyMessageB(textMsg);

}

Networking with WebSockets 47

Encoders/Decoders

*For sending a custom Message use the sendObject method of a
RemoteEndpoint.

MyMessageA myA = new MyMessageA();
MyMessageB myB = new MyMessageB();

Session.getBasicRemote.sendObject(myA);
Session.getAsyncRemote.sendObject(myA);

Networking with WebSockets 48

Accessing Sessions

*A Session object provides access to all sessions connected to the
same endpoint. (useful for web applications where users interact
eg. chat, games, collaborative editing etc.)

@ServerEndpoint (“/myblackboard”)
public class Blackboard {
@OnMessage
public void onMessage(Session session, String msg){
try{
for(Session userSession : session.getOpenSession()) {
if(userSession.isOpen())
userSession.getBasicRemote().sendText (msg);
}
}
}
}

http://docs.oracle.com/javaee/7/tutorial/doc/websocket005.htm

Networking with WebSockets 49

WebSocket Clients

*Typically WebSocket clients run in browsers, written in JavaScript.

var myWebscoket;

function connect() {
myWebSocket = new WebSocket(“ws://test.kth.se:8080/myblackboard”);
myWebSocket.onmessage = messageHandl;

}

var blackboardPanel = document.getElementById(“mypanel”);
function messageHandl(blackboardMsg) {

blackboardPanel.innerHTML += blackBoardMsg;
}

Networking with WebSockets 51

More Info

* Javax.websocket API
* http://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html

* Specification
— http://tools.ietf.org/html/rfc6455

Networking with WebSockets 52

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Networking with WebSockets
	Outline
	HTTP Limitations
	Slide 30
	WebSockets Contribution
	Slide 32
	Slide 33
	Slide 34
	WebSockets in Java
	Endpoints
	Annotated Endpoints
	Programmatic Endpoints
	Annotated Endpoints
	Slide 40
	Receiving Messages
	Slide 42
	Sending Messages
	Encoders/Decoders
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Accessing Sessions
	WebSocket Clients
	More Info

