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Enterprise JavaBeans (EJB)

javax.ejb
home page:
http://www.oracle.com/technetwork/java/index-jsp-140203.html



QOutline

* Enterprise JavaBeans (EJB)
— Session
— Message-Driven

* Example: Bank Account Application — to be
considered at Exercise 4 (see slides of Exercise 4)
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Enterprise JavaBeans (EJB)

An EJB is a server-side components that exposes methods
for performing application logic

EJB 3

— Session Beans (stateless and stateful) represent actions (a single
action, a session)

* Performs a task for a client; optionally may implement a web service
— Message-driven Beans

* Acts as a listener for a particular messaging type, such as the Java
Message Service (JMS)

EJB 2

— Session Beans (stateless and stateful)

— Entity Beans represent persistent stateful entity (e.g. account,
person, customer). An entity bean — a row in a database

— Entity beans have been replaced by Java Persistence API entities.
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Session Beans

* Business process objects, for example, business
logic, workflow and similar

* A session bean represents a single client inside
the Application Server.
— Used only by one client at a time
— Lives for the session (or lifetime) of the calling client
* Two kind of sessions EJBs

— Stateless session EJBs
— Stateful session EJB
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A Stateful Session Bean

The bean class is annotated as @Stateful

Spans multiple client calls and retains state on
behalf of the individual client (conversational
state).

One bean instance per client.

— Values of instance variables represent the state of a
unique client session.
* A.k.a. the conversational state

— If the client removes the bean or terminates, the
session ends and the state disappears.

Example: A shopping cart
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A Stateless Session Bean

The bean class is annotated as @Stateless
Accommodates only a single request.

Does not maintain a conversational state with the
client.

— May contain state, but not conversational state related to a
specific client.

A pool of beans
— All instances of a stateless bean are equivalent
— Better scalability than stateful beans.

Example: A currency converter
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Business Interface of a Session

Bean

* A client uses a session bean through the
methods of the bean's business interface.

— The interface includes the business methods exposed
by the bean’s class

— The bean class implements the business interface

* A client of a session bean can be a web

component, an application client, or another
EJB
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Business Interface of a Session Bean
(contd)

* The client gets a reference to the session bean’s interface either through
injection or JNDI lookup

* The following example illustrates both options. Note that JNDI lookup is
very seldom required.

@WebServlet(name = "AdderServlet", urlPatterns = {"/AdderServlet"})
public class AdderServlet extends HttpServlet {
@EJB
private AdderRemote adder; //injection
//private AdderRemote adder = lookupAdderBeanRemote(); // through lookup
private AdderRemote lookupAdderBeanRemote() {
try {
Context ¢ = new InitialContext();
return (AdderRemote) c.lookup(
"java:global/Adder/Adder-ejb/AdderBean!adder.AdderRemote");
} catch (NamingException ne) {
Logger.getLogger(getClass().getName()).log(Level.SEVERE,
"exception caught", ne);

throw new RuntimeException(ne);

Lecture 12: Enterprise JavaBeans (EJBs) 9



Business Interface Design Options

Local interface for local clients on the same JVM
Remote interface for remote clients on different JVM

* Remote interface obeys the rules of Java RMI.
No-interface view for local clients

— All public methods of the bean class are automatically exposed to the
client

— Does not require a separate interface; there is no the implements
clause

— The same behavior as the local interface view
— Simplifies programming
Web Services interface
— Exposing business methods as Web Services
— Stateless session beans can be invoked over SOAP/HTTP
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A Session EJB with a Remote
Interface

An interface for remote access
Annotate the interface with the @GRemote annotation:

@Remote
public interface InterfaceName {

}

Annotate the bean class with GRemote, specifying the business
interface(s):

@Remote(InterfaceName.class)
public class BeanName implements InterfaceName

{
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A Session EJB with a L.ocal Interface

* An interface for local access
* Annotate the interface with the @Local annotation:

@Local
public interface InterfaceName {

}

* Annotate the bean class with @Local, specifying the business
interface(s):

@Local (InterfaceName.class)
public class BeanName implements InterfaceName

{
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A Session EJB without Interface

Annotate the bean class with @LocalBean annotation

@LocalBean
public class BeanName {

L o
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Deciding on Remote or L.ocal Access

* Tight or loose coupling of related beans:
— Tightly coupled beans depend on one another, and
they are good candidates for /ocal access.
* Type of client:

— To enable clients accessing the EJB direct, not
through a web interface, the EJB must allow remote
access,

— For EJBs accessed by web components or other
EJBs, local access is almost always preferred.

Lecture 12: Enterprise JavaBeans (EJBs) 14



Deciding on Remote or L.ocal Access
(contd)

* Semantics:

Remote calls use pass-by-value semantics, local calls
use pass-by-reference.

* Component distribution:

— Server-side components can be distributed among
multiple machines for scalability.

— Web components may run on a different server than
EJBs, but this is very seldom useful.

* Performance:

— Remote calls are slower than local calls.
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Example: Adder Service

* A client-server application

— A user enters an integer number via an HTML form and gets a sum
accumulated by the Adder application.

* The Adder application includes:
— The index.xhtml JSF page
— The Adder managed bean

— The AdderBean EBJ (session, stateful) that accumulates a sum of
integers entered by a user, and returns the sum on request

Application Server

Web Browser |
—* faces/index.xhtml — Adder

HTML form client i
|

|

Web container (servlet engine) EJB container

Lecture 12: Enterprise JavaBeans (EJBs)

|
|
|
E >AdderBean,
|
|
|

J—



Client

* An HTML Form in a Web page (index.xhtml)

<?xml version='l.0' encoding='UTE-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http: //www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http: //java.sun.com/jsf/html">
<h:head>
<title>Adder site</title=
</h:head>

<h:body=>
<hl>Adder Site</hl>
<h3>The running total is #{adder.total}</h3>
<h: form>
<p><h:outputLabel for="operand" value="Please enter an integer: "/=
<h:inputText id="operand" value="#{adder.operand}"/>
</p>
<p><h:commandButton value="Add"/=</p>
</h:form=
</h:body:>
</html>



Adder Managed Bean

* The Adder managed bean is a client of the Adder EJB

package se.kth.id2212.1lec12.view;

import java.io.Serializable,

import javax.ejb.EJB;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

import se.kth.1id2212.lec12.model.AdderBean;

@Named(value = "adder™ )
@SessionScoped
public class Adder implements Serializable {

private static final long serialVersionUID = -3552965833778221283L;

@EJB
private AdderBean adderBean;
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Adder Managed Bean (cont'd)

public int getTotal() {
return adderBean.getTotal();

}

public void setOperand(Integer operand) {
adderBean.add(operand);

}

public Integer getOperand() {
return null;

}
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Adder EJB (Stateful Session Bean)

— Interface operations:
public void add (int number)
public int getTotal()

— private int total; // state of the bean
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Adder EJB (contd)

package se.kth.1d2212.lec12.model;

import javax.ejb.Stateful;

@Stateful
public class AdderBean {
private int total;

public void add(int operand) A
total = total + operand;

h

public int getTotal() {
return total;

h
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Message-Driven Beans

A message-driven bean is an EJB that allows Java EE
applications to process messages asynchronously.
— Normally acts as a JMS message listener.

Defference between m-d beans and session beans

— Clients do not access m-d beans by method calls through
interfaces;

* M-d bean instead implements the MessageListener interface
with the onMessage method.

A m-d bean resembles a stateless session bean

— M-d bean instances retain no conversational state for a specific
client;

— All instances of a m-d bean are equivalent;
— A single m-d bean can process messages from multiple clients.
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Features of Message-Driven EJBs

Stateless.

Execute upon receipt of a single client message.
Invoked asynchronously.

Can be transaction-aware.

An example is a log service
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Client Interaction with a Message-
Driven Bean

* A client interacts with a m-d bean through JMS by
sending messages to the destination for which the
message-driven bean class is the JMS message listener.

* An m-d bean’s class is annotated @MessageDriven with

a name of the bean’s destination, e.g.
@MessageDriven(mappedName = "jms/Queue")

* When a message arrives, the container calls the
message-driven bean's onMessage method to process
the message.
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Life Cycles of EJBs

* Stateful session bean

Message-driven bean

Timeout

1. Remove method
or Timeout

2. PreDestroy callbacks,

if any

1. Dependency injection,
if any

2. PostConstruct callbacks,
if any PrePassivate

callbacks, if any

Ready — Passive

PostActivate
callbacks, if any

* Stateless session bean

1. Dependency injection, if any
2. PostConstruct callbacks, if any

Does Not

Exist

PreDestroy callbacks, if any

1. Dependency injection, if any

/’ 2. PostConstruct callback, if any w

Does Not

onMessage

Ready

Exist

K PreDestroy callback, if any 4'/

During the bean’s lifetime, the EJB
Container invokes methods annotated
@PostConstruct, @PrePassivate,
@PostActivate, @PreDestroy, @GRemove.

When a client calls a business method on a
bean, which does not exists or is passive, the
container constructs the bean or activates
the bean to make it ready.
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Networking with WebSockets

javax.websocket

home page: http://www.oracle.com/technetwork/articles/java/jsr356-
1937161.html



Outline

Web Based Communication
HTTP Limitations
WebSocket Contribution

The WebSocket API in JavaEE

Endpoints
Sending/Receiving Messages
Encoders/Decoders

Accessing Sessions
WebSocket Clients

Networking with WebSockets
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HTTP Limitations

Half-Duplex (Request / Response based)

A client requests a resource and the server provides access to it
Verbose (adds communication overhead)
Complicated when resources change frequently

eg. Social networking, gaming, collaborative editing, financial
applications etc.

Polling is inefficient
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HTTP Limitations

Long Polling (Comet) offered small improvement

Establishes a persistent connection and waits for the server to push
data when it becomes available

Still requires a new connection (handshake) per update
Still adds the communication overhead of HTTP
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WebSockets Contribution

* WebSockets (RFC 6455) build on a single TCP
connection and offer bi-directional, full-duplex
communication through the web (HTTP)

* Message-Based communication (text, binary and ping-
pong messages)

* Offers addressing and protocol naming mechanisms to
support multiple services on one port (eg. 80)
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WebSockets Contribution

*WebSocket connection endpoints can be represented by URISs:
— ws://host:port/path?query (plain websocket connection)
— wss://host:port/path?query (encrypted websocket connection)

*They are currently supported by modern browsers through a
JavaScript API to allow

— Endpoints connection
— Callbacks for Sending/Receiving messages and connection state events
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WebSockets Contribution

A websocket connection 1s established by upgrading a HTTP
connection. Browser and server exchange the following handshake.

GET /path/to/websocket/endpoint HTTP/1.1

Host: localhost

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: xqBt3ImNzJbYqRINxEFlkg==
Origin: http://localhost

Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade
Sec-WebSocket-Accept: K7DJLdLoolwlG/MOpvWFB3y3FE&=
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Messaging Over WebSockets

* WebSockets 1s a protocol enabling transport over a
network, much like TCP or UDP.

* [t 1s often convenient to use a higher level protocol
on top of WebSockets, instead of using plain
websockets endpoints.

* There are many such protocols, for example

* Web Application Messaging Protocol, WAMP

* Java Message Service, IMS
* Advanced Message Queuing Protocol, AMQP
* Extensible Messaging and Presence Protocol, XMPP



WebSockets in Java

*WebSockets were introduced in JavaEE 7.0

— javax.websocket and javax.websocket.server
— Supported by Web Containers (Tomcat 8, Glassfish 4.0, Jetty, WildFly)

*Endpoints are instances of the javax.websocket.Endpoint class
*There are two ways of defining Endpoints:

— Programmatic Endpoints: Extending javax.websocket.Endpoint and
overriding lifecycle methods

— Annotated Endpoints: Decorating classes with provided annotations.
This is generally preferred to the programmatic approach.
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Endpoints

*WebSocket Endpoints are not sockets! Sockets are stream-
based while Endpoints are message-based.

*WebSocket Server Endpoints are not servlets! The container
creates one Endpoint instance per connection.

*Any POJO can be converted into an Endpoint simply via using
appropriate WebSocket annotations.
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Annotated Endpoints

* Easier to Write
* A simple Endpoint that echoes back every text message:

@ServerEndpoint(“/echo”)
public class EchoEndpoint {

@OnMessage
public String doEcho(String textMsg) {
return textMsg;
}
}
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Programmatic Endpoints

* More complicated to write.
* A simple Endpoint that echoes back every text message:

public class EchoEndpoint extends Endpoint {

@Override
public void onOpen(final Session session, EndpointConfig eConf) {
session.addMessageHandler (new MessageHandler.Whole<String>() {

@Override
public void onMessage(String textMsg) {
try{
session.getBasicRemote().sendText(textMsg);
} catch(IOException ioe) {

}
}
});



Annotated Endpoints

Easier to Write
A simple Endpoint that echoes back every text message:

@ServerEndpoint(“/echo”)
public class EchoEndpoint {

@OnMessage
public String doEcho(String textMsg) {
return textMsg;
}
}
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Annotated Endpoints

* Annotated Endpoints are simpler and automatically deployed
with the Web Application on the relative path defined by the
ServerEndpoint annotation.

*There are annotations for every Endpoint lifecycle event:

Annotation Lifecycle Event Expected Parameters
OnOpen Connection Opened Session, EndpointConfig, PathParam
OnMessage Message Received Session, String|ByteBuffer|PongMessage|POJO,
PathParam
OnError Error Occurred Session, Throwable, PathParam
OnClose Connection Closed Session, CloseReason, PathParam
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Receiving Messages

* Currently the following message types are supported:

Message Type Description
String A message decoded and wrapped as a character string
ByteBuffer A message passed as a byte sequence to be manually de-
serialized
Pong Dummy message to be used for checking the connection
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Receiving Messages

*An Endpoint can have up to three message handlers

@ServerEndpoint(“/ireadeverything”)
public class ThreeTypeEndpoint {

@OnMessage
public void receiveText(Session session, String textMsg) {

}

@OnMessage
public void receiveBinary(Session session, ByteBuffer binaryMsg) {

}

@OnMessage
public void receivePong(Session session, PonglMessage pongMsg) {

}
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Sending Messages

*Each connection’s session object exposes two remote peer
interfaces for sending messages:

— RemoteEndpoint.Basic for blocking communication

— RemoteEndpoint.Async for asynchronous communication

@OnMessage
Public void messageBack(Session session, String str)

{

session.getBasicRemote().sendText(str); //blocks
session.getAsyncRemote().sendText(str): //returns instantly

}
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Encoders/Decoders

*For converting messages to/from POJOs the API offers the
following interfaces:

Interface Description
Encoder. Text<T> Encode from T to String
Encoder.Binary<T> Encode from T to binary
Decoder. Text<T> Decode from String to T
Decoder.Binary<T> Decode from binary to T
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Encoders/Decoders

*For each server Endpoint we can define many encoders and at
most one decoder per input type (String, Binary) as
ServerEndpoint annotation parameters.

@ServerEndpoint (
value = “/echoserver”,
encoders = {MyEncoderA.class, MyEncoderB.class},
decoders = {MyDecoder.class}

)

public class EchoServer{
@OnMessage
public void message(Session session, MyMessage msg){
}

}
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Encoders/Decoders

*Defining an encoder

public class MyEncoderA implements Encoder.Text<MyMessageA>{

@Override

public void init(EndpointConfig econf){}

@Override

public void destroy(){}

@Override

public String encode(MyMessageA myMsg){

return myMsg.getJson();

}

*Same for MyMessageB...

Networking with WebSockets 46



Encoders/Decoders

*Defining the decoder. For multiple type support there should be
one common superclass/interface defined.

public class MyDecoder implements Decoder.Text<MyMessage>{
@Override
public void init(EndpointConfig econf){}
@Override
public void destroy(){}
@Override
public MyMessage decode(String textMsg) throws DecodeException{
//parse textMsg

// MyMessageA and MyMessageB should inherit MyMessage
return new MyMessageA(textMsg);

- //or

return new MyMessageB(textMsg);

}
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Encoders/Decoders

*For sending a custom Message use the sendObject method of a
RemoteEndpoint.

MyMessageA myA = new MyMessageA();
MyMessageB myB = new MyMessageB();

Session.getBasicRemote.sendObject(myA);
Session.getAsyncRemote.sendObject(myA);
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Accessing Sessions

*A Session object provides access to all sessions connected to the
same endpoint. (useful for web applications where users interact
eg. chat, games, collaborative editing etc.)

@ServerEndpoint (“/myblackboard”)
public class Blackboard {
@OnMessage
public void onMessage(Session session, String msg){
try{
for(Session userSession : session.getOpenSession()) {
if(userSession.isOpen())
userSession.getBasicRemote().sendText (msg);
}
}
}
}

http://docs.oracle.com/javaee/7/tutorial/doc/websocket005.htm
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WebSocket Clients

*Typically WebSocket clients run in browsers, written in JavaScript.

var myWebscoket;

function connect() {
myWebSocket = new WebSocket(“ws://test.kth.se:8080/myblackboard”);
myWebSocket.onmessage = messageHandl;

}

var blackboardPanel = document.getElementById(“mypanel”);
function messageHandl(blackboardMsg) {

blackboardPanel.innerHTML += blackBoardMsg;
}
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More Info

* Javax.websocket API
* http://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html

* Specification
— http://tools.ietf.org/html/rfc6455
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