ID2212 Network Programming with Java
Lecture 10

Enterprise Java Technologies (Part 1 of 3)
Component Architecture.
Overview of Java EE.

Java Servlets

Leif Lindback, Vladimir Vlassov
KTH/ICT/SCS
HT 2016

QOutline

* Component Architecture

* Overview of the Java Platform Enterprise
Edition, Java EE

* Java Servlets

Lecture 10: Overview of Java EE; Servlets

Component Architecture

Component Architecture: Why and How

Component Architecture

* Consists of components that live in containers.

* A component is a piece of code, in Java EE usually a
class, that solves some of the application's functional
requirements.

* The work done by a component is application specific.

* A container 1s a framework that solves some of the
application's non-functional requirements.

* The work done by a container is independent of the
application. The same container 1s used for different
applications.

Lecture 10: Overview of Java EE; Servlets

The Three-Tier Model

* The three -tier architecture allows maintaining state
information, improving security, performance, scalability
and availability.

* Also gives higher cohesion (bettter separation of concern),
since business logic and data storage are separated.
— Client in the first tier - presentation layer

— Business logic in 2nd tier - security and personalization of the
client

— System services (and databases) in 3rd tier — services and storage

3rd tier
1st tier 2nd tier DBMS
Client
@ —Cor)= Fr
logic Data
~

Services

Why Component Architecture

Not using an existing framework means writing
new code which means introducing new bugs.

Decrease of the need for in-house expertise

Existing frameworks are thoroughly tested and
proven to work well.

It is easy to get help with frequently used
frameworks.

Lecture 10: Overview of Java EE; Servlets 6

Why Component Architecture (cont'd)

* Code handling non-functional requirements is
very similar in different applications.

— Non-functional requirements include scalability,
performance, availability, etc.

— Also, non-functional requirements are difficult to
code.
* Callback style makes sure all calls to non-
functional requirements code are made at the
right time.

Lecture 10: Overview of Java EE; Servlets 7

How Component Architecture

* Component

a program building block for an application;

presents a manageable, discrete chunk of logic (functionality);
implements a set of well-defined interfaces.

Examples: pricing component, billing component

* Container

an application program or a subsystem in which the
component lives;

Component’s context;
creates, manages and “glues” components;

provides life cycle management, security, deployment, and
runtime services for components it contains (component
contract).

Examples: Web container (for JSF pages and servlets), EJB
container (for EJBs)

Lecture 10: Overview of Java EE; Servlets

How Component Architecture
(cont’d)

* Specifications
— For components, containers (hosts), and tools (development,
deployment)
— Set of conventions (standards) for
* Container (Context) Services
* APIs (classes, interfaces, methods, constructors)
— Names
— Semantics

* A well-defined component architecture is a set of
standards (specifications) allowing different vendors to
write compatible components, containers and tools

Lecture 10: Overview of Java EE; Servlets

Development and Deployment

* Development tools

— for developing components. The most used Java EE
IDEs are:

* NetBeans (netbeans.org)
* Eclipse (eclipse.org)

* Deployment tools

— for configuring and deploying components. The
GlassFish server has the following tools:

* Asant (GlassFish command line interface)
* NetBeans (Integrated with GlassFish)
* Admin console (GlassFish web interface)

Lecture 10: Overview of Java EE; Servlets

10

An Application Server

Run time environment for component-based
applications

— Applications are deployed and run on an application
server
Provides containers and services for applications
made of components.

— Services: security, management, naming, thread pools,
persistence, transactions, etc.
Some Java EE Application Servers:
— GlassFish (Oracle, Java EE reference implementation)
— Payara (open source GlassFish clone)
— WebSphere (IBM)
— WebLogic (Oracle)
— Wildfly (Red Hat)

Lecture 10: Overview of Java EE; Servlets 11

Client-Side Components

May provide some type of user interface (GUI)
— Get user input and direct to a server
— Present (display) a server response to the user
— Perform client-side (pre- and post-) processing
— Run in browsers or as standalone applications

HTML pages, using HTTP
Andriod/i0S apps, using web services

Standalone programs (Java or other language),
using for example web services.

Lecture 10: Overview of Java EE; Servlets 12

Server-Side Components

* Offer services (server-side operations)

— Provide dynamic-content web documents, accessing
databases, authentication, transactions, etc.

* Java Serviets, JavaServer Faces (JSF),
JavaServer Pages (JSP)
— Provides HTTP interface
— Deployed in a Servlet container
* Enterprise JavaBeans (EJB)
— Provides transaction management and persistence
— Deployed in an EJB container

Lecture 10: Overview of Java EE; Servlets

13

Component Architectures,
Some Existing Approaches

* Component Architectures from Microsoft
— .NET, COM, DCOM and COM++

* Common Object Request Broker Architecture
(CORBA) from the Object Management Group
(OMG)

* Java Enterprise Edition (Java EE) from Oracle
* PHP-based servers like Apache and NGINX
* Python-based servers like Zope and Django

Lecture 10: Overview of Java EE; Servlets

14

Java Platform, Enterprise Edition
(Java EE)

http://www.oracle.com/technetwork/java/
javaee/overview/index.html

Some Useful Links

* Java Platform, Enterprise Edition (Java EE)

— http://www.oracle.com/technetwork/java/javaee/overview/
index.html

* Java EE Training & Tutorials

— http://www.oracle.com/technetwork/java/javaee/documentation/
index.html

* The Java EE 7 Tutorial:
— http://download.oracle.com/javaee/7/tutorial/

Lecture 10: Overview of Java EE; Servlets 16

Java Platform EE: Enterprise
Java

° Targeted at the Presentation Logic

development of three-
Presentation laye
— Business Logic

tier architectures:
components are reusable Business Log;
and portable (on Applicafion Server)

. . Componen
— Application server must

follow the Java EE
specification and provide
specified set of services

Data layer

Lecture 10: Overview of Java EE; Servlets 17

Multi-Tiered Java EE Applications

Java EE Java EE
Application Application

—_

Application Dynamic .)
‘ Client I ‘HTML pagesI Client tier

Servlets

JSF Web tier

Database(s) I | Database(s) I EIS tier

Lecture 10: Overview of Java EE; Servlets

™

Enterprise EJB Business tier
Beans JPA
_

—_

Client
Machine

Application
Server
Machine

DBMS
Machine

18

The Java EE Technologies

* Four groups:
— Enterprise Application Technologies
— Web Application Technologies
— Management and Security Technologies
— Web Services Technologies

Lecture 10: Overview of Java EE; Servlets

19

Enterprise Application

Technologies

Enterprise JavaBeans (EJB)
— EJBs are the standard building blocks for business logic.
Java EE Connector Architecture

— An architecture for connecting the J2EE platform to heterogeneous
Enterprise Information Systems.

Java Message Service API (JMS)

— A specification of an API for message based communication. To
create, send, receive, and read messages.

Java Persistence API (JPA)
— Provides object-relational mapping.

Java Transaction API (JTA)

— An API for resource managers and transactional applications. Also
used in writing JDBC drivers, EJB containers and hosts.

JavaMail
— Provides an interface to a mail system.

Lecture 10: Overview of Java EE; Servlets 20

Web Application Technologies

 Java Serviets

— Process requests and construct responses, usually for HTML
pages
— Provides a gateway between Web clients and EJBs

* JavaServer Faces (JSI)

— An API for representing Ul components (elements of HTML
pages) and managing their state; handling events from
components; server-side data validation and conversion.

* JavaServer Pages Standard Tag Library (JSTL)

— Encapsulates core functionality common to many JSF
applications, e.g. iterator and conditional tags for handling
flow control, tags for manipulating XML documents,
internationalization tags, tags for accessing databases using
SQL, and commonly used functions.

Lecture 10: Overview of Java EE; Servlets

21

Web Services Technologies

Java API for RESTful Services (JAX-RS)
Java API for XML-Based Web Services (JAX-WS)
Java Architecture for XML Binding (JAXB)

— Provides a convenient way to bind an XML schema to a
representation in Java code.

SOAP with Attachments API for Java (SAAJ)

— Provides a standard way to send XML documents over the
Internet from the Java platform.

Lecture 10: Overview of Java EE; Servlets

22

Java EE Containers

EJB
container
HTTP Servlet container ™ EIB
HTTPS JavaS
_ ava erver
HTML Clients = > oo ylet Faces
JPA

Web Service Clients Database

Lecture 10: Overview of Java EE; Servlets 23

Java EE Servlet Container APIs

Web Container

JAX-RPC: Java API for XML-based RPC

JAX-WS: Java API for XML Web Services

SAAJ

JAX-RS: Java API for RESTful Web Services

JASPIC: Authentication SP Interface for

JACC: Authorization Contract for Containers

Web Services

WS Metadata

Management

JMS: Java Message Service

Java persistence

Connectors

JSP: JavaSderver Pages

JavaMail

EL: Expression Language

EJB Lite

Bean Validation

JSR299: Contexts and Dependency Injection

Managed Beans

Interceptors

JSR 330: Dependency Injection

Java SE

24

; Servlets

f Java EE

1€W O

Overv

Lecture 10

Java EE EJB Container APIs

EJB Container

JAX-RPC: API for XML-based RPC

SAAJ

JAX-WS: API for XML Web Services

JAX-RS: API for RESTful Web Services

JAXR: Java API for XML Registries

JASPIC: Authentication SP Interface for
Containers

JACC: Authorization Contract for Containers

Web Services

WS Metadata

Management

JMS: Java Message Service

Connectors

JT: Java Transaction API

Java Persistence

JavaMail

Bean Validation

JSR299: Contexts and Dependency injection

Managed Beans

Interceptors

JSR 330: Dependency Injection

Java SE

25

Lecture 10: Overview of Java EE; Servlets

A Java EE Application Server

* Hosts components in the middle tier of a three-
tier architecture.

* Has containers for server-side components

— Servlet container for Web components: JSF, Servlets,
etc.

— EJB container for EJBs, etc.

— Provides services for the components, such as naming,
transactions.

— Connectivity with other tiers (client, databases)
— Provides access to the components from clients

— Provides access to the third tier (system
services, databases)

Lecture 10: Overview of Java EE; Servlets 26

Java Servlets

javax.servlet
javax.servlet.http

home page:
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Java Servlets

* AJava Serviet is a component in a Java EE
servlet container that interacts with clients
using a Web protocol, such as HTTP.

— Executes in server's JVM,
— Allow providing dynamic Web pages,
— Main usage is as Controller, calls the model

component that shall handle the request and
forwards request to the next view,

— Thus acts as gateway between Web clients and other
services, such as databases, EJBs, and JMS,

— Generates HTTP response.

Lecture 10: Overview of Java EE; Servlets 29

Java Servlets (cont’d)

* javax.servlet.Servlet interface can be used as
a generic interface for any service, not just
HTTP.

— Should be a request-response interaction

* A javax.servlet.http.HttpServlet interacts
with a client using HTTP protocol.

Lecture 10: Overview of Java EE; Servlets 30

How an HTTP Servlet Executes

The user submits an HI'ML form or clicks an
HTML link.

The browser sends the user’s query in a GET
(POST) request to a servlet pointed to by URL in
the request

GET /someResource?inputString=3 HTTP/1.1

The Web container instantiates the servlet if it does
not exist and invokes the service method, passing
request and response objects as parameters.

The servlet handles the request and writes a result
to the output stream of the response object

— The output stream is directed to the client.

Lecture 10: Overview of Java EE; Servlets 31

Executing Servlets

Server
Client Servlet Container
2. Call
1.Send HTTP request serviet
HTML 3. Servlet |Servlet
Page .4 Returnservietoutput | _ output

Lecture 10: Overview of Java EE; Servlets 32

Include and Forward

* Aservlet can include an output of another servlet:

RequestDispatcher dispatcher
= getServletContext () .getRequestDispatcher (" /banner") ;

if (dispatcher != null)

dispatcher.include (request, response);

* Aservlet can forward the request (with additional
attributes) to another servlet:

request.setAttribute ("message'", message) ;
request.setAttribute ("account",6 cashier.readAccount (acctNo)) ;

request.getRequestDispatcher ("/account") . forward (request,
response) ;

Lecture 10: Overview of Java EE; Servlets 33

The Life Cycle of a Servlet

* Controlled by the container in which the servlet is
deployed.
* When a request is mapped to a servlet, the
container:
— Loads the servlet class (if not loaded yet).

— Creates an instance of the servlet class (if it does not
exist) and invokes the init method to initialize the
servlet instance.

— Invokes the service method, passing request and
response objects.

* If the container needs to remove the servlet, it calls
the servlet's destroy method.

Lecture 10: Overview of Java EE; Servlets 34

Implementing the Servlet Interface.
Extending the HTTPServlet Class

* Aservlet class implements the Servlet interface either directly, or
more commonly, by extending the class HTTPServlet
* The Servlet interface
— 1init(ServletConfig config)
— Initializes the servlet and places it into service.

— The servlet can get a value of a named init parameter (if any)
by name using the ServletConfig object.

— The init parameters for the servlet are specified in the
deployment descriptor (i.e., web.xml file).

— service(ServletRequest req,
ServletResponse res)

— Allows the servlet to respond to a request after the servlet
has been initialized by the init method.

— destroy()

— Removes the servlet from service after all its threads have
exited or a timeout period has passed.

Lecture 10: Overview of Java EE; Servlets 35

Extending the HTTPServlet (Class

* Used to create an HTTP servlet suitable for a Web site.

* A subclass of HttpServlet must override at least one
of the following methods:

doGet — if the servlet supports HTTP GET requests
doPost — if the servlet supports POST requests
doPut — if the servlet supports PUT requests
doDelete —if the servlet supports DELETE requests

init and destroy
— to manage resources that are held for the life of the servlet

getServletInfo
— provides information about the servlet

Lecture 10: Overview of Java EE; Servlets 36

Servlet’s Request and Response

* A Web container creates and passes to the servlet’s
service methods (doGet, doPost, etc.) two objects:

— An HTTPServletRequest Object,
— An HTTPServletResponse oObject.
* The HTTPServletRequest interface allows to inspect the
request:

— getters (getHeader, getQueryString, getParameter, etc.),
— checkers (isRequestedSessionIdValid, etc.)
— methods to pass information between the servlet container and
a servlet or between interacting servlets
* The HTTPServletResponse interface provides
functionality for creating and sending a response (e.g.
output stream).

Lecture 10: Overview of Java EE; Servlets 37

package se.kth.id2212.lecturel0;

import
import
import
import
import
import
import

java.io.IOException;
java.io.PrintWriter;
servlet.ServletException;
servlet.annotation.WebServlet;
servlet.http.HttpServlet;
servlet.http.HttpServletRequest;
servlet.http.HttpServletResponse;

javax.
javax.
javax.
javax.
javax.

Example:
Hello World

@WebServlet(name = "HelloServlet", urlPatterns = {"/HelloServlet"})
public class HelloServlet extends HttpServlet {

@Override
protected void doGet(HttpServlietRequest request, HttpServlietResponse response)
throws ServletException, IOException {
response.setContentType("“text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

}

try

{

out.
out.
out.

out.
out.
out.
.println("</body>");
out.

out

println("<html>");

println("<head>");

println("<title>Servlet HelloServlet at " +
request.getContextPath() + "</title>");

println("</head>");

println("<body>");

println("<hl>Never ever write HTML code in a Servlet!</hl>");

println("</html>");

} finally {

}

out.

@Override
public String getServletInfo() {
return "This is the HelloWorld Servlet example. ID2212 course. KTH";

}

close();

Lecture 10: Overview of Java EE; Servlets

38

X _0O Serviet HelloServiet at /lecturel0 - Mozilla Firefox
File Edit View History Bookmarks Tools Help

Example, T _—

Disable + Cookies+ CSS5+ Forms+ Images+ Information+ Miscellaneous+ Qutline + Resize+

C Ont’ d Never ever write HTML code in a Servlet!

The generated HTML code:

<html>
<head>
<title>Servlet HelloServlet at /lecturelO</title>
</head>
<body>
<hl>Never ever write HTML code in a Servlet!</hl>
</body>
</html>

Lecture 10: Overview of Java EE; Servlets 39

Monitor and React to Servlet's Life
Cycle Events

Define listeners to receive and handle life-cycle events issued by the Servlet container
(context, session or request events). For example, a context listener:

@WebListener
public final class ContextListener implements
ServletContextListener {

private ServletContext context = null;
public void contextInitialized(ServletContextEvent event) {
context = event.getServletContext();
try {
BookDAO bookDB = new BookDAO();
context.setAttribute("bookDB", bookDB);
} catch (Exception ex) { e.printStackTrace();}

}

public void contextDestroyed(ServlietContextEvent event) {
context = event.getServletContext();

BookDAO bookDB =
(BookDAO) context.getAttribute("bookDB");

bookDB. remove();
context.removeAttribute("bookDB");

} Lecture 10: Overview of Java EE; Servlets

45

Servlet Life-Cycle Events and

Listeners

Source

Event

Listener Interface

Web context

Initialization and
destruction

javax.servlet.ServletContextListener

Attribute added, removed,
or replaced

javax.servlet.
ServletContextAttributelListener

Session

Creation, invalidation,
activation, passivation, and
timeout

javax.servlet.http.HttpSessionListener,
javax.servlet.http.
HttpSessionActivationListener

Attribute added, removed,
or replaced

javax.servlet.http.
HttpSessionAttributelListener

A servlet request has
started being processed by
web components

javax.servlet.ServletRequestListener

Attribute added, removed,
or replaced

javax.servlet.
ServletRequestAttributelListener

Filtering Requests and Responses

A web resource can be filtered by a chain of filters in a
specific order specified on deployment.

A filter is an object that can transform the header and
content (or both) of a request or response:
— Query the request and act accordingly;
— Block the request-and-response pair from passing any further;
— Modify the request headers and data;
— Modify the response headers and data.

A filter class is defined by implementing the Filter
interface.

See the javax.servlet package.

Lecture 10: Overview of Java EE; Servlets 47

Accessing the Web Context

* The context in which web components execute,
i.e. the servlet container

* To get the context, call the getServlietContext
method on the servlet.

* The context object implements the
ServletContext interface.

Lecture 10: Overview of Java EE; Servlets

48

Accessing the Web Context
(cont’d)

* The web context provides methods for accessing:

— Initialization parameters

— Resources associated with the web context,

* For example (see Slide 45), retrieving an object attribute

(set by the Context listener):
public class CatalogServlet extends HttpServliet {
private BookDBAO bookDB;

puvblic void init() throws ServletException {

bookDB =
(BookDBAO)getServletContext().getAttribute("bookDB");

if (bookDB == null)
throw new UnavailableException("Couldn't get database.");

Lecture 10: Overview of Java EE; Servlets 49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

