ID2212, Network Programming with Java
Lecture 11

JavaServer Faces (JSF)
JavaServer Pages (JSP)

Leif Lindback
KTH/ICT/SCS
HT 2016

Content

Overview of JSF and JSP
JSF Introduction

JSF tags
Managed Beans

Expression language

JS]
JS!
JS]

P Standard Tag Library (JSTL)
F Navigation and validation

D Overview

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

Design of a Java EE application

* This 1s covered 1n the exercise

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

Two Different View Technologies

JavaServer Faces, JSF
— Newer
— Dynamic views

— Handles non-functional requirements like navigation,

validation, composite views and view templates.

— XHTML pages with JSF-specific tags that are converted
to XHTML tags.

— Handled by the JSF framework that run inside the

Servlet container.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 4
(JSP)

Two Different View Technologies,
Cont'd

* JavaServer Pages, JSP

— Older, left mainly for backwards compatibility
— Dynamic views
— Does not handle non-functional requirements.

— JSP pages with JSP-specific tags. The pages are

translated into Servlets.

— Handled by the Servlet container itself.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

Why Use JSF Instead of Plain JSP

Avoid writing infrastructure code for non-
functional requirements like navigation, validation,

composite views and view templates.
Thoroughly tested and proven to work well.
Lots of documentation, easy to get help.

Not using a framework means writing new code

which means introducing new bugs.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 6
(JSP)

Why Use JSF Instead of Plain JSP?
Cont'd

* Non-functional requirements are difficult to code.

* Callback style makes sure all calls to non-

functional requirements code are made at the right
time.

— Handled by the framework.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 7
(JSP)

JavaServer Faces. JSF

javax. faces

JSF Home page:

http://www.oracle.com/technetwork/java/javaee/overview/index.html

JSF tag library documentation:

https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-facelets/toc.htm

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 8
(JSP)

A Simple Example

* The example has two views.

Welcome - Mozilla Firefox
File Edit View History Bookmarks Tools Help

«»v c > [| http:/fiocalhost:8080/lec11/ L7/>*§~|Google

Please enter your name

Name: |Leif

Done > Connect

Welcome - Mozilla Firefox

File Edit View History Bookmarks Tools Help

*@v c /2 [| nitp:/localhost:8080/lecl1/faces/index.xhtml 77|v #§~/Google S

Welcome here, Leif!

|Done > Connect

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

A Simple Example, Cont'd

* The first JSF page, index.xhtml.

<7¥xm] version="1.0" encoding="UTE-8"7=
<htm1 xmins="http:// 3.org/ 19959, htn]
wmlns:h="http://Java.sun 1sf/htm] ">
<h:head:
<t1tlexWelcomes/t1t]ax
zfh:head=
<h:bhody:
<h3=Please enter your name</h3=
<h:form:
<p=Name: <h:inputText value="#{user.name}"/></p=
<p=<h:commandButton value="Enter" action="welcone"/></p=
<fh:form:
</h:bhody>
</ html=

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 10

(JSP)

A Simple Example, Cont'd

* The second JSF page, welcome.xhtml.

= T 4 - -
L) - = - - I 1 =
' —_ - i e o e e Ll S = = Fa - e W

<7xm]l version="1.0" encoding="UTF-8"7=

T
fu

xmins:h="http://java.sun.
<h:head:
<titlexWelcomes/t1tTe=
<fh:head=
<h:body>
<h3=Welcome here, #user.name}!l</h3>
<fh:bhody>

</html=

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

11

A Simple Example, Cont'd
* The managed bean, User.java.

package lecll,;

import java.io.Serializable;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;

@Named("uzer")
@SessionScoped
pubTlic class User implements Serializable {
private static final Tlong serialVersionUID = OxES0B5BE280335BE4L;

private String name;
public String getName() |

return name;

public void setName(String name) {
this.name = name;
}

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

12

Overview of JSF Architecture

* JSF has a component based architecture
— Treats view parts as Ul components.

— Maintains an internal component tree, 1t 1s organized as
a Document Object Model (DOM), or a Java FX UL.

— index.xhtml 1n the initial example has three
components. The first, a form, is the ancestor of the

other two, a button and a text field.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 13
(JSP)

Overview of JSF Architecture,
Cont'd

* Each tag in a page has an internal associated tag

handler class inside JSF.

— The tag handler classes are organized according to the

component tree.

* The internal JSF classes handles translation of JSF
tags to HTML tags, interpretation of Http requests,

calls to managed beans etc.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 14
(JSP)

The Phases of a JSF Request

Hitp Request)[FEestore Wiew

Mo Hitp Parameters

A

| Apphy Eecuest Yalues)I

Process Walidations]

YWalidation Errors

®< Http Reponse Eender Eesponse I rvoke Application](

A/

Update Model Yalues]

Lecture 11: JavaServer Faces (JSF), JavaServer Pages

(JSP)

15

The Phases of a JSF Request

* Restore View Phase

— Retrieves the component tree (1.e. tree of internal tag
handler classes) for the page 1f it was displayed
previously. It the page 1s displayed the first time the

component tree 1s instead created.

— If there are no Http parameters in the request JSF skips
directly to the Render Response phase.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 16
(JSP)

The Phases of a JSF Request, Cont'd

* Apply Request Values Phase

— The Http request parameters are placed in a hash table

that 1s passed to all objects in the component tree.

— Each object i1dentifies the parameters belonging to the
component it represents and stores those parameter

values.

— Values stored 1n objects in the component tree are called

local values.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 17
(JSP)

The Phases of a JSF Request, Cont'd

* Process Validations Phase

— It 1s possible to attach validators to user editable components

(typically text fields) in a JSF page, using JSF tags.

— Example of validators are that a field 1s not empty, that a
parameter is an integer, that it is a string of a certain length

etc.

— In this phase, the validators are executed to check that the

local values are correct.

— If some validation fails JSF skips to the Render Response
phase and redisplays the current page with error messages

about the failed validations.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 18
(JSP)

The Phases of a JSF Request, Cont'd

Update Model Values Phase

— The local values are used to update managed beans by

invoking setter methods.

— Managed beans and their properties are identified by

their names.

— Inthe index.html page in the 1nitial example the
user enters their name 1n a text field that has the value

user .name.

— This means the name 1s sent to the method setName in

the managed bean that is named user.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 19
(JSP)

The Phases of a JSF Request, Cont'd

Invoke Application Phase
— Here the method specified by the action attribute of

the component that caused the Http request 1s called.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 20
(JSP)

The Phases of a JSF Request, Cont'd

* Render Response Phase

— Here the next view 1s created.

— Everything in the XHTML page except JSF tags is

unchanged.

— JSF tags are transformed to XHTML tags by the objects in

the component tree.

— Getter methods in managed beans are called in order to
retrieve values. In the welcome . xhtml page in the initial
example the value user.name is retrieved by a call to the

method getName 1n the managed bean that 1s named user.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 21
(JSP)

Tag Libraries in JSF

* JSF tag library documentation 1s found at

https://docs.oracle.com/javaee/7/javaserver -
faces-2-2/vdldocs-facelets/toc.htm

* HTML

— Used to create HTML elements.

— The recommended prefix is A:

— Some 1mportant tags are covered below.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

22

Tag Libraries in JSF

* Core

— Used to add objects , such as validators, listeners and
AJAX support, to HTML elements.

— The recommended prefix is f:

— Example 1n the slides explaining validation.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

23

Tag Libraries in JSF, Cont'd

* Facelets

— Used to create composite views, €.g. views that have
common components like header, footer and menu,

without using duplicated code.
— The recommended prefix is ui:

— Not covered in this course.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

24

Tag Libraries in JSF, Cont'd

* Composite Components
— Used to create custom components.
— The recommended prefix 1s composite.

— Not covered in this course.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

25

Tag Libraries in JSF, Cont'd

* JSTL (JSP Standard Tag Library) Core

— Utility tags managing for example flow control.
— The recommended prefix 1s c:

— Some important tags are covered below.

* JSTL (JSP Standard Tag Library) Functions

— Utility functions mainly for handling strings.
— The recommended prefix is fn.

— Some example tags are covered below.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

26

Tag Library Declaration

* Tag libraries must be declared in the XHTML page

where they are used.

* This i1s done 1in the <HTML> tag.

* The index.xhtml in the mitial example uses
the HTML tag library. It 1s declared as follows.

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 27
(JSP)

Some Tags in the HTML Tag Library

head, renders the head of the page.

body, renders the body of the page.

form, renders an HTML form.

inputText, renders an HTML text field.
inputSecret, renders an HTML password field.

outputLabel, renders a plain text label for another

component.
outputText, renders plain text.

commandButton, renders a submit button.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 28
(JSP)

Attributes for The HTML Tags

 All tags mentioned on the preceding page, except

head and body, have the following attributes.

— 1d, gives a unique name to the component. All components
have a unique name. It is assigned by JSF if not stated
explicitly with the 1d tag.

— value, specifies the component's currently displayed value.
This can be an expression that refers to a property in a
managed bean. If so, the value will be read from the bean
when the component is displayed and stored to the bean

when the component is submitted.

— rendered, a boolean expression that tells whether the

component 1s displayed or not.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 29
(JSP)

Attributes for The HTML Tags,
Cont'd

* The outputLabel tag also has the for
attribute.

* Specifies for which other component this component 1s
a label. The label 1s normally displayed immediately to
the left of that other component.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 30
(JSP)

Attributes for The HTML Tags,
Cont'd

* The commandButton tag also has the action

attribute.
* Tells what to do when the user clicks the button.

* Can be the name of a XHTML page, without the
.xhtml extension. In this case the specified page is
displayed.

* Can also be the name of a method 1in a managed bean,

in this case that method is invoked.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 31
(JSP)

Plain HTML Tags Instead of HTML
Tag Library

* It Is allowed to use plain html tags instead of the HTML
tag library and the h: prefix.

* In this case, tags that shall be managed by JSF must have
attributes in the http://xmlns.jcp.org/jsf

namespace.

* The following slide illustrates this for the HTMLS
datalist tag, which has no corresponding tag in the JSF
HTML tag library.

Plain HTML Tags Instead of HTML
Tag Library

<?xml version='1.0' encodinig='UTF-8' ?>

<!'DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:jsf="http://xmlns.jcp.org/jsf">

<body>
<form>
<input list="browsers"/>
<datalist id="browsers">
<option value="Internet Explorer"/>
<option jsf:id="abc" value="#{data.browser}"/>
</datalist>
</form>
</body>

</html>

JSTL (JSP Standard Tag Library)
Core Tags

* choose, an 1f statement.

<c:choose>
<c:when test="#{condition}">
The condition was true.
</c:when>
<c:otherwise>
The condition was false.
</c:otherwise>
</c:choose>

* If the boolean condition specified in the test
attribute 1s true, the when block 1s executed, 1f not
the otherwise block 1s executed.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 34
(JSP)

JSTL (JSP Standard Tag Library) Core
Tags, Cont'd

forEach, a loop statement.
<c:forEach var="element" items="#{myList}"
varStatus="status" >
Element number #{status.count} is #{element}
</c:forEach>

The var attribute specifies the name of the variable holding the

current element's value. This variable 1s used when the value
shall be displayed.

The 1tems attribute refers to the collection that shall be iterated

oVer.
The varStatus attribute defines a variable that holds
information like the current element's index in the collection.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 35
(JSP)

Functions In the JSTL (JSP Standard

Tag Library) Functions Library

Note that these are functions, not tags.

contains (str, substr),returns true if

str contains substr.

startsWith (str, substr,returns true if

str starts with substr.
length (str), returns the length of str.

And many more.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 36
(JSP)

JSTL (JSP Standard Tag Library), Cont'd

* Example:

<C:choose:
<C:when test="#{fn:containslgnoreCase(user.name, 'leif J}"=
<h3=Sorry, you are banned!</h3=
< fc:when=
<c:otherwise:
<h3=Welcome here, #{user.name}!l</h3=
< fc:otherwise:
< fec:choosex

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 37
(JSP)

Managed Beans

* Managed beans are plain Java classes.

— Must have a public no-arg constructor.

— Must have a scope annotation, e.g. @SessionScoped, see next

slide for more examples.

— Annotated @Named (“myName”), where myName becomes the

name of the bean.

* The beans are managed by the CDI (Context and
Dependency Injection) container.
— Part of Java EE

— Creates and connects objects according to specifications in

annotations.

— Powerful framework, but not covered 1n this course.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

38

Managed Beans, Cont'd

* All managed beans have a scope which defines their life time.

Some scope annotations are:

— ApplicationScoped, the object will exist for the entire

application life time.

— SessionScoped, the object will be discarded when the

current Http session ends.

— ConversationScoped, a conversation can be started and
stopped manually in the code. If it 1s not, 1t has the life time
of a Http request. Unlike sessions, conversations are unique

for each browser tab and therefore thread safe.

— RequestScoped, the object will be discarded when the

current Http request 1s handled.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 39
(JSP)

Managed Beans, Example

package lecll;

import java.io.Serializable;
import javax.inject.Mamed;
import javax.enterprise.context.SessionScoped;

@Named{"uszer")
@SessionScoped
pubTic class User implements Serializable {
private static final long serialVersionUID = OxES085BE280336BE4L;

private String name;
public String getName() {

return names;

public wvoid setName(String name) {
this.namne = name;
3

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

40

Expression Language

* The expression language 1s used 1n dynamic
expressions in JSF (and JSP) pages.
— Stateless, variables can not be declared.
— Statements are written between # { and }

— The result of an EL statement 1s a string.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

41

Expression Language, Cont'd

* The syntax 1s
#{something.somethingElse}, where

something is for example one of the following:
— The name of a managed bean.

— param, whichisa java.util.Map containing all
HTTP request parameters. If there are more parameters
with the same name the first is returned.

— paramValues, whichisa java.util.Map
containing all HTTP request parameters. No matter how
many parameters there are with the specified name a
java.util.List with all of them i1s returned.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 42
(JSP)

Expression Language, Cont'd

—header, whichi1sa java.util.Map containing all
HTTP headers. If there are more headers with the same
name the first 1s returned.

— headerValues, whichisa java.util.Map
containing all HTTP headers. No matter how many
headers there are with the specified name a
java.util.List with all of them i1s returned.

— cookie, whichisa java.util.Map containing all
HTTP cookies.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 43
(JSP)

EL, The Operators . and [}]

* If the operator . is used
(# {something.somethingElse}) the
following must be true.

— somethingisa java.util.Map or a managed
bean.

— somethingElseisakeyina java.util.Map or
a property 1n a managed bean or a method 1n a managed
bean.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 44
(JSP)

EL, The Operators . and [], Cont'd

* If the operator [] 1s used
(# {something[“somethingElse”]}) the
following must be true.

— somethingisa java.util.Map, a managed bean,
an array ora java.util.List.

— If somethingElse 1s a string (surrounded by double
quotes, V) it mustbe akeyina java.util.Map, a
property in a managed bean, an index to an array or an
indextoa java.util.List.

— If somethingE1lse is not surrounded by double
quotes it must be a valid EL statement.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 45
(JSP)

EL Examples

* If these are managed beans:

@Named (“person”)
public class PersonBean {
@Inject private DogBean dog;

public DogBean getDog() {
return dog;

}
}

@Named (“dog”)
public class DogBean {
private String name;

public String getName () {
return name;

}
}

* Then 1t 1s allowed to write # {person.dog.name} or
#{person[dog["name"]]}.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 46
(JSP)

EL Examples, Cont'd

* Input from an HTML form:

<form>
Address: <input type="text" name="address">
Phonel: <input type="text" name="phone">
Phone2: <input type="text" name="phone">
</form>

* Can be read like this:

The address is #{param.address}
Phonel is #{param.phone}

Phonel is #{paramValues.phone[0]}
Phone2 is #{paramValues.phone[1l]}

* However, there 1s seldom any need for this since
request parameters are normally handled by managed
beans.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 47
(JSP)

The EL Operators

* Remember that JSF/JSP pages are views and thus not the
place for a lot of calculations.

* Arithmetic

— addition: +

— subtraction: -

— multiplication: *

— division: / or div

— remainder: % or mod
* Logical

—and: && or and

—or: | | or or

— not: ! or not

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 48
(JSP)

The EL Operators, Cont'd

* Relational
—equals: == or eq
— not equals: ! = or ne
— less than: < or 1t
— greater than: > or gt
— less than or equal to: <= or le

— greater than or equal to: >= or ge

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

49

EL. Null Values

* Since EL 1s used for user interfaces 1t produces the
most user friendly output.

* This means that (like HTML) 1t tries to silently 1gnore
€Irors.

* Null values does not generate any output at all, no
error messages are produced.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 50
(JSP)

Navigation

* What calls should be made to the model and which 1s
the next view, provided the user has clicked YYY 1n
view Z.Z7..

* The next view may differ depending on the outcome
of the call to the model.

* Answers to the above should be stated as a set of
navigation rules that are easy to change.

— The value of the action attribute of the button or link
the user invoked 1s called the outcome. The navigation

handling depends on the outcome.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 51
(JSP)

Static Navigation

* If the outcome 1s the name of a XHTML page then
that page 1s displayed.
— This 1s called static navigation. The outcome 1s always

the same.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 52
(JSP)

Dynamic Navigation

* A user action can often have different outcomes,

for example a login attempt might succeed or fail.

* In this case dynamic navigation must be used.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 53
(JSP)

Dynamic Navigation, Cont'd

* Using dynamic navigation the value of the action attribute must

be an expression identifying a method, for example
#{loginManager.validateUser}, assuming that there is
a managed bean named 1oginManager that has a method

called validateUser.

* The outcome will be the value that 1s returned by this method. If
the return value is not a St ring it will be converted to a

String by calling its toString method.
* The outcome could be the name of a XHTML page, just like

with static navigation. If so this page will be displayed.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 54
(JSP)

Dynamic Navigation, Cont'd

* It 1s not a good design that methods in the model
knows names of XHTML files.

* Therefore we want to have the action handling
method return a logical view name that 1s mapped
to a XHTML file name.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 55
(JSP)

Dynamic Navigation, Cont'd

* This is achieved by adding a navigation rule to the faces-

config.xml file
<navigation-rule>
<from-view-id>/login.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/welcome.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/login.xhtml</to-view-id>
</navigation-case>

</navigation-rule>

* The above means that if an action handling method specified on the
login.xhtml page returns success the welcome.xhtml page
is displayed next. If on the other hand the method returns failure
the login.xhtml page is displayed again.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 56
(JSP)

Dynamic Navigation, Cont'd

* Even though the action handling method now returns a
logical outcome, one could argue that we still have
some amount of mixture of business logic and view

handling.

* Consider for example a method withdraw in a bank
application. Such a method would normally be void,
but would now instead have to return the String
success only to indicate to JSF that the withdrawal

was successful.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 57
(JSP)

Dynamic Navigation, Cont'd

* To avoid this problem we can let the withdraw
method remain void, and instead add another
method, success, that returns t rue only if the last
transaction was successful. faces-config.xml

would then look as follows.

<navigation-rule>
<from-view-id>/withdraw.xhtml</from-view-id>
<navigation-case>
<if>#{bankManager.success}</if>
<to-view-id>/success.xhtml</to-view-id>
</navigation-case>

</navigation-rule>

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

58

No Matching Navigation Case

* If there 1s an outcome that does not correspond to
a XHTML file and that has no matching

navigation case, the last page 1s displayed again.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

59

Validation

* Check data entered by the user.

* If validation fails the same view 1s shown again

together with an error message.

* Which validations are to be made on what and
which error messages to show 1f they fail 1s
specified by attaching validators to user input

components.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

60

Validation, Cont'd

* Validation concerns only checks that can be done

without understanding the meaning of the input.
The check should not include business logic.
— For example that a field is not empty, that it contains an
integer or that it is an email address.
* Since some validation checks, like those

mentioned above, occur frequently they are
predefined in JSF.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 61
(JSP)

Validation Example

<h:inputText id="name" label="Name" value="#{user.name}">
<f:validateRequired/>

</h:inputText>

<h:message for="name"/>

The validateRequired tag checks that the text
field 1s not empty.

The message tag displays the error message 1f the

validation failed.

It 1s possible to customize the error message, but that

1s outside this course.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 62
(JSP)

Composite Views

Views often consist of several parts like header, footer,

navigation menus, main content etc.
Many of these parts are common for different views.

In order to avoid duplicated code 1t must be possible to
reuse both page fragments (html) and page layout (div

tags, css).

Handled by the facelets tag library, but not covered in

this course.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 63
(JSP)

Internationalization (118n) and
localization (110n)

* Internationalization means to make it possible to
switch language. To add the possibility to show the
user interface in a new language should only require to
write the words in the new language, not any

additional coding.
* Localization means to add support for a new language.
* Handled by the JSF core tag library, but not covered in

this course.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 64
(JSP)

JSP: JavaServer Pages

javax.servlet. jsp
JSP Home page:

http://www.oracle.com/technetwork/java/javaee/tech/index.html

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

65

What Is JSP?

Framework used before JSF.

A JSP page 1s written in HTML and translated to a
Servlet by the Servlet container.

Dynamically-generated web content.

Does not handle non-functional requirements like
navigation and validation.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 66
(JSP)

The Life Cycle of a JSP

* At the first call:

— The container translates the JSP to a servlet (translation
time)

— The container compiles the servlet (compile time)

— The container instantiates the servlet the same way it
Instantiates any servlet.

— The container calls jspInit().

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 67
(JSP)

The Life Cycle of a JSP, Cont'd

* At all calls:

— The container calls jspservice() of the servlet that was
generated at the first call (request time).

* Ifthe JSP is unloaded from the container:

— The container calls jspbestroy().

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 68
(JSP)

A Translated JSP

* The JSP:

<html>
<head>
<title>Hello World!</title>
</head>

<body>
<hl>Hello World!</h1l>
</body>
</html>

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

69

A Translated JSP, Cont'd

* The generated servlet (Tomcat 5.5.15):

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public final class hw jsp extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime.JspSourceDependent {

private static java.util.List jspx dependants;

public Object getDependants() {
return jspx _dependants;

}
public void jspService(HttpServletRequest request,

HttpServletResponse response)
throws java.io.IOException, ServletException {

* The JSP's response is generated in _jspService()

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 70
(JSP)

A Translated JSP, Cont'd

* The generated servlet (cont):

JspFactory jspxFactory = null;

PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;

JspWriter out = null;

Object page = this;

JspWriter jspx out = null;
PageContext jspx page context = null;

try {
_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html");

pageContext = jspxFactory.getPageContext(this, request, response,
null, true, 8192, true);

_jspx_page_context = pageContext;

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

_jspx_out = out;

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

A Translated JSP, Cont'd

* The generated servlet (cont):

out.write("<html>\n");

out.write(" <head>\n");

out.write(" <title>Hello World!</title>\n");
out.write(" </head>\n");

out.write("\n");

out.write(" <body>\n");

out.write(" <h1l>Hello World!</h1>\n");
out.write(" </body>\n");
out.write("</html>\n");

out.write("\n");
} catch (Throwable t) {
if (!'(t instanceof SkipPageException)){
out = jspx out;
if (out !'= null && out.getBufferSize() !'= 0)
out.clearBuffer();
if (_jspx _page context != null) jspx page context.handlePageException(t);
}
} finally {
if (_jspxFactory != null) jspxFactory.releasePageContext(jspx page context);
}
}
}

The response is sent.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

Actions and Directives

* A directive 1s an 1nstruction to the container about
the translation of a JSP.
— Does not exist in the translated Java code.
— There are three directives: page, taglib and include.

— Written between <3@ and %>
(for example <%@page ... %>).

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 74
(JSP)

Actions and Directives., Cont'd

* An action 1s translated into Java code and executed
at request time.
— Syntax: <prefix:action name/>

— Standard actions are defined in the specification and
have the prefix jsp.

— Custom tags are defined by the developer and may have
any prefix (except reserved prefixes like jsp).

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 75
(JSP)

To Include Other Files

* The include directive:
—<%W@include file="header.jsp"%>

— The directive 1s replaced with the content of the
specified file (header. jsp) at translation time.

— Both static (for example HTML files) and dynamic
content (for example other JSP files) can be included.

— The path to the included file is specified relative to the
file with the include directive.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

76

To Include Other Files, Cont'd

* The jsp:include standard action:
— Syntax: <jsp:include page="header.jsp"/>
— The included page 1s translated to a servlet that 1s called

(thatis,1ts jspService () method is called) by the
including servlet at request time.

— Only JSPs can be included.

— The output of the included Servlet 1s inserted 1n the
output of the including Servlet.

— The path to the included page is a URL. It 1s either
relative to the URL of the including page or absolute
starting with the context root of the web application.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 77
(JSP)

To Include Other Files, Cont'd

* It 1s possible to pass parameters to the included
page 1f the 7 sp:include action is used.

— The following code should be placed in the including
page:

<Jsp:include page="header.]jsp">
<jsp:param name=subTitle" value="A dynamic subtitle"/>
</Jsp:include>

— The parameter subTit1le will be available as an
HTTP request parameter in the included page.

— It can be output like this:
<h3>${param.subTitle}</h3>

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 78
(JSP)

Error handling

* It 1s possible to define error pages. If an exception
occurs 1n a JSP (or servlet) the container forwards the
call to the error page.

— Error pages are defined like this in the deployment

descriptor:

<!-- An error page for a Java exception. The call is
forwarded to the error page if the specified exception or a
subclass of it is thrown. -->

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/errorpage.jsp</location>

</error-page>

<!-- An error page for an HTTP error -->
<error-page>
<error-code>404</error-code>
<location>/errorpage.jsp</location>
</error-page>

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 79
(JSP)

Error handling, Cont'd

* An example of an error page:

<%@ page isErrorPage="true" %>
<html>
<head>

<title>This page handles exceptions</title>
</head>

<body>
<h1>This page handles exceptions</hl>
<p>An ${pageContext.exception} was thrown. Its message was:
${pageContext.exception.message}</p>
</body>
</html>

I'his must always be written 1n an error page.

* This 1s the exception object that was thrown.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 80
(JSP)

NEVER EVER Write Java code 1n a
JSP

* There are ways to 1nsert Java code directly in a
JSP.

— Possible only for backwards compatibility

NEVER EVER do that!

— Gives high coupling and low cohesion.

— Makes the code inflexible, difficult to understand and
hard to maintain.

— Forces web page designers to learn Java programming.

Use EL and custom tags instead.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 81
(JSP)

The <%@taglib%> directive

* Used to declare custom tags that are used in a JSP
* Syntax:

<%@ taglib prefix="myTags" uri="uri/of/my/tld” %>
— The prefix attribute specifies the prefix part of the tag
(<myTags:someTag/>).

— The uri attribute tells the name of a TLD describing
the tags.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

82

To Write Your Own Tags

* There are many useful tags in JSTL.

* There are many third party taglibs, for example
Jakarta Tagblibs.

* Sometimes we still have to write new tags, there
are two types:

— Tag files look like ordinary JSPs but are called like
custom tags.

— Tag handlers are written 1n Java code.

— Only the latter are covered here.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

83

A Simple Tag

* The Java tag handler:

package se.kth.timetags;

import java.io.IOException;

import java.util.Date;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.tagext.SimpleTagSupport;

/**
* A tag that displays the current date and time.
*/

public class DateTimeTag extends SimpleTagSupport {

public void doTag() throws JspException, IOException {
JspWriter out = getJspContext().getOut();
out.print(new Date());

— The tag handler class must extend
javax.servlet.jsp.tagext.SimpleTagSupport

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

84

A Simple Tag, Cont'd

* The Java tag handler:

package se.kth.timetags;

import
import
import
import
import

/**

java.io.IOException;

java.util.Date;
javax.servlet.jsp.JspWriter;
javax.servlet.jsp.JspException;
javax.servlet.jsp.tagext.SimpleTagSupport;

* A tag that displays the current date and time.

*/
public

class DateTimeTag extends SimpleTagSupport {

public void doTag() throws JspException, IOException {

JspWriter out = getJspContext().getOut();
out.print(new Date());

— The output of public void doTag() will be inserted in the
JSP's response.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages
(JSP)

85

A Simple Tag, Cont'd

* The tag library descriptor:

<?xml version="1.0" encoding="IS0-8859-1" 7>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee/web
jsptaglibrary 2 0.xsd" version="2.0"
>
<tlib-version>1.0</tlib-version>
<uri>timeTags</uri>
<tag>
<name>date-time</name>
<tag-class>course6b4056.timetags.DateTimeTag</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

— Simply copy this part.

— The version of the tag. Any value can be used.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 86
(JSP)

A Simple Tag, Cont'd

* The tag library descriptor:

<?xml version="1.0" encoding="IS0-8859-1" 7>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee/web
jsptaglibrary 2 0.xsd" version="2.0"
>
<tlib-version>1.0</tlib-version>
<uri>timeTags</uri>
<tag>
<name>date-time</name>
<tag-class>course6b4056.timetags.DateTimeTag</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

— The name of the taglib. Must be the same as the uri in
the taglib directive in the JSP. The ur1 is only a string, it
1s not interpreted in any way.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 87
(JSP)

A Simple Tag, Cont'd

* The tag library descriptor:

<?xml version="1.0" encoding="IS0-8859-1" 7>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee/web
jsptaglibrary 2 0.xsd" version="2.0"
>
<tlib-version>1.0</tlib-version>
<uri>timeTags</uri>
<tag>
<name>date-time</name>
<tag-class>course6b4056.timetags.DateTimeTag</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

— The name of the tag.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 88
(JSP)

A Simple Tag, Cont'd

* The tag library descriptor:

<?xml version="1.0" encoding="IS0-8859-1" 7>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee/web
jsptaglibrary 2 0.xsd" version="2.0"
>
<tlib-version>1.0</tlib-version>
<uri>timeTags</uri>
<tag>
<name>date-time</name>
<tag-class>course6b4056.timetags.DateTimeTag</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

— The name of the Java tag handler.

— The allowed content of the tags body.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 89
(JSP)

A Simple Tag, Cont'd

* Possible values of body-content in the tld:
— empty means the tag must not have a body.

— tagdependent means the body content 1s not interpreted
by the JSP. Its content 1s handled as plain text.

— scriptless means the body may contain EL but not Java
code. EL statements are interpreted.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 90
(JSP)

A Simple Tag, Cont'd

* The JSP:

<%@ taglib uri="timeTags" prefix="time" %>
<html>
<head>
<title>Clock</title>
</head>
<body>
<h1>Clock</h1>
<h3><time:date-time/>
</body>
</html>

— The name of the tld. Must be the same as in uri in the
TLD. The uri 1s not interpreted in any way.

— The prefix in the JSP.

— The name of the tag. Must be the same as in name in
the TLD.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 91
(JSP)

A Simple Tag, Cont'd

* The compiled Java class should be placed under
WEB-INF/classes in a directory matching the
package name. The example class 1s in the package
se.kth.timetags and should thus be placed

in the directory
WEB-INF/classes/se/kth/timetags

* The TLD should be placed in WEB-INF'.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 92

(JSP)

Where do the container look for tag

libraries?
* Atag library and its tag handlers are defined by the
TLD.

* To execute a tag the container must find a TLD
with the same ur1 as 1n the taglib directive in the
JSP with the tag.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 93
(JSP)

Where do the container look for tag
libraries? Cont'd

* The container looks for TLDs 1n these places:
— WEB-INF
— Directories under WEB-INF
— META-INF in jar files in WEB-INF/1ib

— Directories under META-INF 1n jar files in WEB-
INF/1ib

Lecture 11: JavaServer Faces (JSF), JavaServer Pages 94
(JSP)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

