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Mobile Web Apps (1/2)

» Accessing browser-based internet services from a

handheld mobile device

e Core technologies: HTML, CSS and JavaScript
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Mobile Web Apps (2/2)

* Advantages*:
— Cross-platform compatibility

— Cheaper and easier to maintain
— Simple and ubiquitous access

* Disadvantages:
— Requires customization across different browser versions
— Limited access to mobile’s hardware and software
— Generally requires internet connection

* www.lionbridge.com: Mobile Web Apps vs. Native Apps: How to Make the Right Choice
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Mobile Native Apps

Built specifically for a particular device and operating
system

Advantages:

— Leverage the device specific hardware and software
— Work offline
— Better visibility in app stores, making money immediately

Disadvantages:

— Different versions of the app for different platforms
— Keeping apps up to date is costly

— Content publishers have to share information about their
subscribers with the app store
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A Sample Architecture of a Mobile Application
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Overview of Android Platform

 Android Operating System

* Application Lifecycle

Lecture 14: An overview of the Android Programming



Android Operating System (1/2)

* Google’s Linux based open-source OS that includes:

— Linux kernel optimized for mobile and embedded devices

— Open-source application development libraries such as SQLite,
OpenGL, and a media manager

— A runtime to host and execute Android applications, including Android
Runtime (ART)

— An application framework to expose system services to the application
layer, including the window manager and location manager, databases,
telephony and sensors

— A user interface framework used to host and launch applications
— A set of core pre-installed applications
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Android Operating System (2/2)
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Dalvik Virtual Machine (1/2)

The process virtual machine (VM) in Google's Android
operating system
Runs the apps on Android devices.

Programs are commonly written in Java and compiled to

bytecode.
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Dalvik Virtual Machine (2/2)

 Then converted from Java Virtual Machine-compatible
.class files to Dalvik-compatible .dex (Dalvik Executable)

files before installation on a device.

 In Android 5, a new virtual machine — Android Runtime

(ART) — replaced Dalvik as the platform default.
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Application Lifecycle (1/2)

Android applications have limited control over their own
lifecycle.

Each application runs in its own process.

Applications have different priorities.
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Application Lifecycle (2/2)

* Android can kill applications without warning, to free
resources for higher-priority applications.

e An application’s priority 1s equal to that of its highest-
priority component.

« It’s important to structure the application to ensure that it
has the right priority for the work it’s doing.
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Application Lifecycle: Application States (1/3)
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Figure taken from “Professional Android 4 Application Development (3rd Edition)”.
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Application Lifecycle: Application States (2/3)

Active: includes application components the user is interacting

with.

Visible: those activities which aren’t in the foreground but still

can affect what the user sees on screen.
Started service: processes hosting services.

Background: processes hosting Activities which aren’t visible

and don’t have any running services.

Empty: a process having no active application component
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Application Lifecycle: Application States (3/3)

| (@ And now let’s watch an example!
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Android Programming

Android SDK

Application Model and Components
Processes and Threads

Permissions

Networking

Location
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Development Environment

First, download Android Studio. It includes:

Integrated Development Environment (IDE)
Android SDK Tools

Android Platform-tools

The latest Android platform

The latest Android system image for the emulator

Notice that, you need to have JDK installed beforehand.
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Android SDK (1/3)

* Provides the API libraries and developer tools necessary

to build, test, and debug apps for Android.

 Includes:

— Build Tools: all the tools required to compile and build the app.

— SDK Tools: Contains main tools for debugging and testing, plus other

utilities that are required to develop an app.
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Android SDK (2/3)

SDK Platform-tools: Contains platform-dependent tools for developing

and debugging your application.
Documentation: the latest documentation for the Android platform APIs.

SDK Platform: It includes an android.jar file with a fully compliant

Android library.
System Images: Required system images for the Android emulator.

Google APIs: APIs which adds special Google features to your apps.
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Android SDK (3/3)

— Android support: a set of code libraries that provide backward-

compatible versions of Android framework APIs as well as features that

are only available through the library APIs

— Google Play Billing: Provides the static libraries and samples that allow

you to integrate billing services in your app with Google Play.

— Google Play Licensing: Provides the static libraries and samples that
allow you to perform license verification for your app when distributing

with Google Play.
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Application Model and Components

Every Android application consists of some loosely

coupled components and the application manifest.

The manifest defines application’s metadata and the

components bindings.
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Application Components

Activities & UI design elements: The application’s presentation

layer.

Services: components that run in the background to perform long-

running operations.
Intents: a powerful inter-application message passing framework.
Broadcast Receivers: Intent listeners (not covered in this lecture)

Content Provider: manages a shared set of application data (not

covered in this lecture)
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Application Manifest

Every Android project includes a manifest file.

Defines the structure and metadata of the application, 1ts

components and requirements.

AndroidManifest.xml
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Manifest Example

<application

android:allowBackup="true"”
android:icon="@drawable/ic_Launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>
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Activities

Each activity represents a screen that an application can
present to its users.

To create an activity, you must create a subclass of
Activity.

Implement callback methods inherited from Activity
class.
Two important callback methods:

— onCreate(): called when creating the activity.

— onPause(): indicates that the user might be leaving.
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Activities: Example

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
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Activity Lifecycle
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Figure taken from “developer.android.com/training/basics/activity-lifecycle/starting.html”.
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User Interface Design

Some Ul terminologies in Android:

* Views: the base class for all visual interface elements.

* View Groups: extensions of the View class that can contain multiple

child Views.

 Fragments: A Fragment represents a behavior or a portion of user
interface in an Activity. Fragments have their own lifecycle, state, and

back stack.

« Activities: represents the window or screen being displayed. To

display a U, you assign a View to an Activity.
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User Interface: Example (1/2)

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools" - :
android:layout_width="match_parent” w! SlmpleChat
android:layout_height="match_parent"
android:gravity="top"
android:orientation="vertical"”
android:paddingBottom="@dimen/activity_vertical _margin"
android:paddinglLeft="@dimen/activity_horizontal _margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<TextView
android:id="@+1id/chatTextView"
android:layout_width="match_parent"”
android:layout_height="match_parent”
android:layout_above="@+id/sendButton”
android:layout_alignParentTop="true"”
android:layout_gravity="top"
android:background="@android:color/holo_green_Light" />

) ~ Send
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User Interface: Example (2/2)

<Button
android:id="@+id/sendButton” o s
android:layout_width="wrap_content"” w! S Im p | E C h at
android:layout_height="wrap_content”
android:layout_alignBottom="@+1id/chatTextInput"
android:layout_alignRight="@+1d/chatTextView"
android:layout_alignTop="@+1d/chatTextInput"
android:layout_toRightOf="@+1d/chatTextInput”
android:text="@string/send" />

<EditText
android:id="@+1d/chatTextInput"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_alignLeft="@+id/chatTextView"
android:layout_alignParentBottom="true"
android:layout_marginBottom="16dp"
android:ems="10"
android:inputType="textMultilLine" >

<requestFocus />
</EditText>

) ~ Send

</Relativelayout>
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Intent

Intents work as a message-passing mechanism both within
and between applications.

Using Intents you can:

« Explicitly, start a particular Service or Activity using its
class name

« Implicitly, start an Activity or Service by requesting an
action on a piece of data

 Broadcast the occurrence of an event
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Explicit Start of a New Activity

. . . . . - SimpleChat CONTACTS
Intent intent = new Intent(MainActivity.this, ’

MyContactsActivity.class);

startActivityForResult(intent, PICK CONTACT);

Send
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Implicit Start of a New Activity

. B SimpleChat CONTACTS
Intent intent = new Intent(Intent.ACTION PICK, ’

Contacts.CONTENT URI);

startActivityForResult(intent, PICK CONTACT);

Send
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Service (1/3)

A Service 1s an application component that can perform long-running

operations in the background and does not provide a user interface.

A service can run in the background to perform work even while the

user is in a different application.

A component can bind to a service to interact with it and even

perform inter-process communication (IPC).

A service might handle network transactions, play music, perform

file I/O
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Service (2/3)

» To create a service, you must create a subclass of Service.

* Youneed to override the callback methods to control the behavior
of the service:

— onStartCommand(): when another component requests the

service to start.
— onBind(): when another component wants to bind with the service
— onCreate(): when the service is first created.

— onDestroy(): when the service is no longer used and is being

destroyed.
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Service (3/3)

Declare the service in the manifest

<manifest ... >

<application ... >
<service android:name=".ExampleService" />

</application>
</manifest>
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Processes

* By default, all components of the same application run in

the same process.

* You can define in the manifest, that different
components of the same application are to be run in

different processes.

—n

android:process="string"

Lecture 14: An overview of the Android Programming 40



Threads (1/2)

« When an application 1s launched, the system creates a

thread of execution for the application, called '""main.*

e The main thread is called Ul thread because: it interacts

the Android UI components.

 Performing long operations such as network access or

database queries will block the whole UL
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Threads (2/2)

 The Andoid Ul toolkit is not thread-safe, so do not

manipulate your UI from a worker thread.

 Remember these two rules:

1. Do not block the UI thread
2. Do not access the Android UI toolkit from outside the
UI thread
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Threads: Example (1/3)

An example of wrong implementation:

public void onClick (View v) {

new Thread (new Runnable () {
public void run () {
Bitmap b = 1loadImageFromNetwork ("http://example.com/image.png") ;

mImageView.setImageBitmap (b) ;

}
}) .start () ;

}

Worker thread 1s updating ImageView which 1s not thread-
safe.
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Threads: AsyncTask (1/3)

Correct implementation using AsyncTask

AsyncTask performs the blocking operations in a worker

thread and then publishes the results on the Ul thread.

you must subclass AsyncTask and implement the

doInBackground() callback method.

To update the Ul you should 1mplement

onPostExecute()
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Threads: AsyncTask (2/3)

public void onClick(View v) {

new DownloadIlmageTask().execute("http://example.com/image.png");

private class DownloadlmageTask extends AsyncTask<String, Integer, Bitmap> {

protected Bitmap doInBackground(String... urls) {
return loadlmageFromNetwork(urls[0]);

b

protected void onProgressUpdate(Integer... progress) {
setProgressPercent(progress[0]);

b

protected void onPostExecute(Bitmap result) {
mlImageView.setlmageBitmap(result);

j
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Threads: AsyncTask (3/3)

protected Bitmap doInBackground(String. " urls)
return loadImageFromNetwork(urls[0]);

b

protected void onProgressUpdate(Integer... progress) { /result
setProgressPercent(progress[0]);

b

protected void onPostExecute(Bitmap result) {
mlImageView.setlmageBitmap(result);

b
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Permissions

* A basic Android application has no permission associated

with 1t by default, so 1t cannot access data on the device.

* To make use of protected features of the device, you must

give the related to permissions to your application.

e Permissions must be added to AndroidManifest.xml.

Example:

<uses-permission android:name="android.permission.READ CONTACTS" />
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Network and Internet Connectivity (1/4)

e There are different network technologies with different
speed, reliability and cost:

— Wi-Fi, GPRS, 3G, LTE and so on

« Application can manage these connections to ensure the
efficiency and responsiveness

* Networking in Android 1S handled via
ConnectivityManager.

 Changes in network connectivity are broadcasted by
Android to Intents.

Lecture 14: An overview of the Android Programming 48



Network and Internet Connectivity (2/4)

To utilize the network connectivity, following user

permissions are required:
INTERNET: Allows applications to open network sockets.

*ACCESS NETWORK STATE: Allows applications to

access information about networks.
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Network and Internet Connectivity (3/4)

To check if the network is connected:

ConnectivityManager connMgr = (ConnectivityManager)

getSystemService(Context. CONNECTIVITY SERVICE);

NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
if (networkInfo != null && networkInfo.isConnected()) {

// do network operations
}else {

// display error
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Network and Internet Connectivity (4/4)

The NetworkInfo object includes the type of the network
connection which 1s available.

« getType() returns the network connection type:

 TYPE MOBILE
 TYPE WIFI
TYPE WIMAX
TYPE ETHERNET
 TYPE BLUETOOTH
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Location (1/4)

e The central component of the location framework 1s the

LocationManager system service.

« Using Google Maps Android API, you can add maps to
your app based on Google Maps data.

« The application can acquire the user location utilizing GPS

and Android’s Network Location Provider.
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Location (2/4)

 Network Location Provider:
— Determines location through cell tower and Wi-Fi1 signals
— Works indoors and outdoors
— Responds faster
— Less battery power

+ GPS:
— Most accurate
— Only works outdoor
— Consumes battery quickly

— Slow
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Location (3/4)

You need to request user permission for either:

*ACCESS_FINE LOCATION: Allows an app to access precise location
from location sources such as GPS, cell towers, and Wi-F1.

*ACCESS_COARSE_LOCATION: Allows an app to access

approximate location derived from network location sources such as cell
towers and Wi-Fi.
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Location (4/4)

* Getting user location in Android works by means of
callback.

« First, acquire a reference to the system Location Manager

LocationManager locationManager =
(LocationManager) this.getSystemService (

Context.LOCATION SERVICE) ;
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[.ocation: Define a Listener

» Define a listener that responds to location updates

LocationListener locationlListener = new LocationListener () {

public void onLocationChanged (Location location) {
makeUseOfNewLocation (location) ;

}

public void onStatusChanged (String provider, int status,
Bundle extras) ({}

public void onProviderEnabled (String provider) {}

public void onProviderDisabled (String provider) {}

};
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Location : Register the Listener

» Register the listener with the Location Manager to receive

location updates

locationManager.requestLocationUpdates (
LocationManager .NETWORK PROVIDER, O,
0O, locationListener) ;
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I.ocation: LLast Known Location

« If you need to Get the last known location for the quick

location information:

String locationProvider =
LocationManager . NETWORK PROVIDER;
// Or use LocationManager.GPS PROVIDER
Location lastKnownLocation =

locationManager.getLastKnownLocation (locationProvider

) ;
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User Experience

A high quality app 1s more probable to have higher user
ratings, better rankings, more downloads.

Improve stability and eliminate bugs

Improve UI responsiveness, a slow and unresponsive Ul
will disappoint the users.

Improve the ease of use
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User Experience

 High quality User Interface
« Having the right set of features
* You can find many good suggestions and best practices to

improve your application following the link:

http://developer.android.com/training/index.html
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