
An Overview of the Android Programming

Hooman Peiro Sajjad
KTH/ICT/SCS

HT 2016

ID2212 Network Programming with Java
Lecture 14

References

• http://developer.android.com/training/index.html

• Developing Android Apps by Google (online course)

• Course ID2216 Developing Mobile Applications

– Offered by the Communication Systems department

– Course responsible: Associate Professor Konrad Tollmar

2Lecture 14: An overview of the Android Programming

Outline

• Mobile Web Apps vs. Native Apps

• Android Platform

• Android Programming

• User Experience

3Lecture 14: An overview of the Android Programming

Mobile Web App / Native App

4Lecture 14: An overview of the Android Programming

Mobile Web Apps (1/2)

• Accessing browser-based internet services from a

handheld mobile device

• Core technologies: HTML, CSS and JavaScript

55Lecture 14: An overview of the Android Programming

Mobile Web Apps (2/2)
• Advantages*:

– Cross-platform compatibility
– Cheaper and easier to maintain
– Simple and ubiquitous access

• Disadvantages:
– Requires customization across different browser versions
– Limited access to mobile’s hardware and software
– Generally requires internet connection

* www.lionbridge.com: Mobile Web Apps vs. Native Apps: How to Make the Right Choice

66Lecture 14: An overview of the Android Programming

Mobile Native Apps
• Built specifically for a particular device and operating

system

• Advantages:
– Leverage the device specific hardware and software
– Work offline
– Better visibility in app stores, making money immediately

• Disadvantages:
– Different versions of the app for different platforms
– Keeping apps up to date is costly
– Content publishers have to share information about their

subscribers with the app store

77Lecture 14: An overview of the Android Programming

A Sample Architecture of a Mobile Application

88Lecture 14: An overview of the Android Programming

Overview of Android Platform

• Android Operating System

• Application Lifecycle

99Lecture 14: An overview of the Android Programming

Android Operating System (1/2)
• Google’s Linux based open-source OS that includes:

– Linux kernel optimized for mobile and embedded devices
– Open-source application development libraries such as SQLite,

OpenGL, and a media manager
– A runtime to host and execute Android applications, including Android

Runtime (ART)
– An application framework to expose system services to the application

layer, including the window manager and location manager, databases,
telephony and sensors

– A user interface framework used to host and launch applications
– A set of core pre-installed applications

1010Lecture 14: An overview of the Android Programming

Android Operating System (2/2)

1111Lecture 14: An overview of the Android Programming

Dalvik Virtual Machine (1/2)

• The process virtual machine (VM) in Google's Android

operating system

• Runs the apps on Android devices.

• Programs are commonly written in Java and compiled to

bytecode.

1212Lecture 14: An overview of the Android Programming

Dalvik Virtual Machine (2/2)

• Then converted from Java Virtual Machine-compatible

.class files to Dalvik-compatible .dex (Dalvik Executable)

files before installation on a device.

• In Android 5, a new virtual machine – Android Runtime

(ART) – replaced Dalvik as the platform default.

1313Lecture 14: An overview of the Android Programming

Application Lifecycle (1/2)
• Android applications have limited control over their own

lifecycle.

• Each application runs in its own process.

• Applications have different priorities.

1414Lecture 14: An overview of the Android Programming

Application Lifecycle (2/2)
• Android can kill applications without warning, to free

resources for higher-priority applications.

• An application’s priority is equal to that of its highest-
priority component.

• It’s important to structure the application to ensure that it
has the right priority for the work it’s doing.

1515Lecture 14: An overview of the Android Programming

Application Lifecycle: Application States (1/3)

1616Lecture 14: An overview of the Android Programming

Figure taken from “Professional Android 4 Application Development (3rd Edition)”.

Application Lifecycle: Application States (2/3)

• Active: includes application components the user is interacting

with.

• Visible: those activities which aren’t in the foreground but still

can affect what the user sees on screen.

• Started service: processes hosting services.

• Background: processes hosting Activities which aren’t visible

and don’t have any running services.

• Empty: a process having no active application component

1717Lecture 14: An overview of the Android Programming

Application Lifecycle: Application States (3/3)

And now let’s watch an example!

1818Lecture 14: An overview of the Android Programming

Android Programming

• Android SDK

• Application Model and Components

• Processes and Threads

• Permissions

• Networking

• Location

1919Lecture 14: An overview of the Android Programming

Development Environment

• First, download Android Studio. It includes:

– Integrated Development Environment (IDE)

– Android SDK Tools

– Android Platform-tools

– The latest Android platform

– The latest Android system image for the emulator

• Notice that, you need to have JDK installed beforehand.

20Lecture 14: An overview of the Android Programming

Android SDK (1/3)

• Provides the API libraries and developer tools necessary

to build, test, and debug apps for Android.

• Includes:
– Build Tools: all the tools required to compile and build the app.

– SDK Tools: Contains main tools for debugging and testing, plus other

utilities that are required to develop an app.

21Lecture 14: An overview of the Android Programming

Android SDK (2/3)

– SDK Platform-tools: Contains platform-dependent tools for developing

and debugging your application.

– Documentation: the latest documentation for the Android platform APIs.

– SDK Platform: It includes an android.jar file with a fully compliant

Android library.

– System Images: Required system images for the Android emulator.

– Google APIs: APIs which adds special Google features to your apps.

22Lecture 14: An overview of the Android Programming

Android SDK (3/3)

– Android support: a set of code libraries that provide backward-

compatible versions of Android framework APIs as well as features that

are only available through the library APIs

– Google Play Billing: Provides the static libraries and samples that allow

you to integrate billing services in your app with Google Play.

– Google Play Licensing: Provides the static libraries and samples that

allow you to perform license verification for your app when distributing

with Google Play.

23Lecture 14: An overview of the Android Programming

Application Model and Components

• Every Android application consists of some loosely

coupled components and the application manifest.

• The manifest defines application’s metadata and the

components bindings.

24Lecture 14: An overview of the Android Programming

Application Components

• Activities & UI design elements: The application’s presentation

layer.

• Services: components that run in the background to perform long-

running operations.

• Intents: a powerful inter-application message passing framework.

• Broadcast Receivers: Intent listeners (not covered in this lecture)

• Content Provider: manages a shared set of application data (not

covered in this lecture)

25Lecture 14: An overview of the Android Programming

Application Manifest

• Every Android project includes a manifest file.

• Defines the structure and metadata of the application, its

components and requirements.

• AndroidManifest.xml

26Lecture 14: An overview of the Android Programming

Manifest Example

27Lecture 14: An overview of the Android Programming

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"
android:label="@string/app_name" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>

Activities

• Each activity represents a screen that an application can
present to its users.

• To create an activity, you must create a subclass of
Activity.

• Implement callback methods inherited from Activity
class.

• Two important callback methods:
– onCreate(): called when creating the activity.
– onPause(): indicates that the user might be leaving.

28Lecture 14: An overview of the Android Programming

Activities: Example
public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
}

Lecture 14: An overview of the Android Programming 29

Activity Lifecycle

3030Lecture 14: An overview of the Android Programming

Figure taken from “developer.android.com/training/basics/activity-lifecycle/starting.html”.

User Interface Design

Some UI terminologies in Android:
• Views: the base class for all visual interface elements.

• View Groups: extensions of the View class that can contain multiple

child Views.

• Fragments: A Fragment represents a behavior or a portion of user

interface in an Activity. Fragments have their own lifecycle, state, and

back stack.

• Activities: represents the window or screen being displayed. To

display a UI, you assign a View to an Activity.

Lecture 14: An overview of the Android Programming 31

User Interface: Example (1/2)
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="top"
android:orientation="vertical"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<TextView
android:id="@+id/chatTextView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_above="@+id/sendButton"
android:layout_alignParentTop="true"
android:layout_gravity="top"
android:background="@android:color/holo_green_light" />

32Lecture 14: An overview of the Android Programming

User Interface: Example (2/2)
<Button

android:id="@+id/sendButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@+id/chatTextInput"
android:layout_alignRight="@+id/chatTextView"
android:layout_alignTop="@+id/chatTextInput"
android:layout_toRightOf="@+id/chatTextInput"
android:text="@string/send" />

<EditText
android:id="@+id/chatTextInput"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/chatTextView"
android:layout_alignParentBottom="true"
android:layout_marginBottom="16dp"
android:ems="10"
android:inputType="textMultiLine" >

<requestFocus />
</EditText>

</RelativeLayout>

33Lecture 14: An overview of the Android Programming

Intent

Intents work as a message-passing mechanism both within
and between applications.

Using Intents you can:
• Explicitly, start a particular Service or Activity using its

class name
• Implicitly, start an Activity or Service by requesting an

action on a piece of data
• Broadcast the occurrence of an event

34Lecture 14: An overview of the Android Programming

Explicit Start of a New Activity
Intent intent = new Intent(MainActivity.this,

MyContactsActivity.class);

startActivityForResult(intent, PICK_CONTACT);

35Lecture 14: An overview of the Android Programming

Implicit Start of a New Activity
Intent intent = new Intent(Intent.ACTION_PICK,

Contacts.CONTENT_URI);

startActivityForResult(intent, PICK_CONTACT);

36Lecture 14: An overview of the Android Programming

Service (1/3)

• A Service is an application component that can perform long-running

operations in the background and does not provide a user interface.

• A service can run in the background to perform work even while the

user is in a different application.

• A component can bind to a service to interact with it and even

perform inter-process communication (IPC).

• A service might handle network transactions, play music, perform

file I/O

37Lecture 14: An overview of the Android Programming

Service (2/3)
• To create a service, you must create a subclass of Service.

• You need to override the callback methods to control the behavior
of the service:

– onStartCommand(): when another component requests the

service to start.

– onBind(): when another component wants to bind with the service

– onCreate(): when the service is first created.

– onDestroy(): when the service is no longer used and is being

destroyed.

38Lecture 14: An overview of the Android Programming

Service (3/3)

Declare the service in the manifest

<manifest ... >
...
<application ... >

<service android:name=".ExampleService" />
...

</application>
</manifest>

39Lecture 14: An overview of the Android Programming

Processes

40Lecture 14: An overview of the Android Programming

• By default, all components of the same application run in

the same process.

• You can define in the manifest, that different

components of the same application are to be run in

different processes.

android:process="string"

Threads (1/2)

41Lecture 14: An overview of the Android Programming

• When an application is launched, the system creates a

thread of execution for the application, called "main.“

• The main thread is called UI thread because: it interacts

the Android UI components.

• Performing long operations such as network access or

database queries will block the whole UI.

Threads (2/2)

42Lecture 14: An overview of the Android Programming

• The Andoid UI toolkit is not thread-safe, so do not

manipulate your UI from a worker thread.

• Remember these two rules:

1. Do not block the UI thread

2. Do not access the Android UI toolkit from outside the

UI thread

Threads: Example (1/3)

43Lecture 14: An overview of the Android Programming

An example of wrong implementation:

public void onClick(View v) {

new Thread(new Runnable() {

public void run() {

Bitmap b = loadImageFromNetwork("http://example.com/image.png");

mImageView.setImageBitmap(b);

}

}).start();

}

Worker thread is updating ImageView which is not thread-
safe.

Threads: AsyncTask (1/3)

44Lecture 14: An overview of the Android Programming

• Correct implementation using AsyncTask

• AsyncTask performs the blocking operations in a worker

thread and then publishes the results on the UI thread.

• you must subclass AsyncTask and implement the

doInBackground() callback method.

• To update the UI, you should implement

onPostExecute()

Threads: AsyncTask (2/3)

45Lecture 14: An overview of the Android Programming

public void onClick(View v) {

new DownloadImageTask().execute("http://example.com/image.png");

}

private class DownloadImageTask extends AsyncTask<String, Integer, Bitmap> {

protected Bitmap doInBackground(String... urls) {
return loadImageFromNetwork(urls[0]);

}
protected void onProgressUpdate(Integer… progress) {

setProgressPercent(progress[0]);
}
protected void onPostExecute(Bitmap result) {

mImageView.setImageBitmap(result);
}

}

Threads: AsyncTask (3/3)

46Lecture 14: An overview of the Android Programming

private class DownloadImageTask extends AsyncTask<String, Integer, Bitmap> {

protected Bitmap doInBackground(String... urls) {
return loadImageFromNetwork(urls[0]);

}

protected void onProgressUpdate(Integer… progress) {
setProgressPercent(progress[0]);

}

protected void onPostExecute(Bitmap result) {
mImageView.setImageBitmap(result);

}
}

params

result

progress

Permissions

47Lecture 14: An overview of the Android Programming

• A basic Android application has no permission associated

with it by default, so it cannot access data on the device.

• To make use of protected features of the device, you must

give the related to permissions to your application.

• Permissions must be added to AndroidManifest.xml.

Example:
<uses-permission android:name="android.permission.READ_CONTACTS" />

Network and Internet Connectivity (1/4)

48Lecture 14: An overview of the Android Programming

• There are different network technologies with different
speed, reliability and cost:
– Wi-Fi, GPRS, 3G, LTE and so on

• Application can manage these connections to ensure the
efficiency and responsiveness

• Networking in Android is handled via
ConnectivityManager.

• Changes in network connectivity are broadcasted by
Android to Intents.

Network and Internet Connectivity (2/4)

49Lecture 14: An overview of the Android Programming

To utilize the network connectivity, following user

permissions are required:

•INTERNET: Allows applications to open network sockets.

•ACCESS_NETWORK_STATE: Allows applications to

access information about networks.

Network and Internet Connectivity (3/4)

50Lecture 14: An overview of the Android Programming

To check if the network is connected:

ConnectivityManager connMgr = (ConnectivityManager)

getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();

if (networkInfo != null && networkInfo.isConnected()) {

// do network operations

} else {

// display error

}

Network and Internet Connectivity (4/4)

51Lecture 14: An overview of the Android Programming

• The NetworkInfo object includes the type of the network
connection which is available.

• getType() returns the network connection type:

• TYPE_MOBILE
• TYPE_WIFI
• TYPE_WIMAX
• TYPE_ETHERNET
• TYPE_BLUETOOTH

Location (1/4)

52Lecture 14: An overview of the Android Programming

• The central component of the location framework is the

LocationManager system service.

• Using Google Maps Android API, you can add maps to

your app based on Google Maps data.

• The application can acquire the user location utilizing GPS

and Android’s Network Location Provider.

Location (2/4)

53Lecture 14: An overview of the Android Programming

• Network Location Provider:
– Determines location through cell tower and Wi-Fi signals
– Works indoors and outdoors
– Responds faster
– Less battery power

• GPS:
– Most accurate
– Only works outdoor
– Consumes battery quickly
– Slow

Location (3/4)

54Lecture 14: An overview of the Android Programming

You need to request user permission for either:

•ACCESS_FINE_LOCATION: Allows an app to access precise location
from location sources such as GPS, cell towers, and Wi-Fi.

•ACCESS_COARSE_LOCATION: Allows an app to access
approximate location derived from network location sources such as cell
towers and Wi-Fi.

Location (4/4)

55Lecture 14: An overview of the Android Programming

• Getting user location in Android works by means of
callback.

• First, acquire a reference to the system Location Manager

LocationManager locationManager =
(LocationManager)this.getSystemService(

Context.LOCATION_SERVICE);

Location: Define a Listener

56Lecture 14: An overview of the Android Programming

• Define a listener that responds to location updates

LocationListener locationListener = new LocationListener() {

public void onLocationChanged(Location location) {
makeUseOfNewLocation(location);

}

public void onStatusChanged(String provider, int status,
Bundle extras) {}

public void onProviderEnabled(String provider) {}

public void onProviderDisabled(String provider) {}
};

Location : Register the Listener

57Lecture 14: An overview of the Android Programming

• Register the listener with the Location Manager to receive

location updates

locationManager.requestLocationUpdates(
LocationManager.NETWORK_PROVIDER, 0,
0, locationListener);

Location: Last Known Location

58Lecture 14: An overview of the Android Programming

• If you need to Get the last known location for the quick

location information:

String locationProvider =

LocationManager.NETWORK_PROVIDER;

// Or use LocationManager.GPS_PROVIDER

Location lastKnownLocation =

locationManager.getLastKnownLocation(locationProvider

);

User Experience

59Lecture 14: An overview of the Android Programming

• A high quality app is more probable to have higher user

ratings, better rankings, more downloads.

• Improve stability and eliminate bugs

• Improve UI responsiveness, a slow and unresponsive UI

will disappoint the users.

• Improve the ease of use

User Experience

60Lecture 14: An overview of the Android Programming

• High quality User Interface

• Having the right set of features

• You can find many good suggestions and best practices to

improve your application following the link:
http://developer.android.com/training/index.html

