ID2212 Network Programming with Java
Lecture 14

An Overview of the Android Programming

Hooman Peiro Sajjad
KTH/ICT/SCS

HT 2016

References

 http://developer.android.com/training/index.html

« Developing Android Apps by Google (online course)

* Course ID2216 Developing Mobile Applications

— Offered by the Communication Systems department

— Course responsible: Associate Professor Konrad Tollmar

Lecture 14: An overview of the Android Programming

Outline

Mobile Web Apps vs. Native Apps
Android Platform
Android Programming

User Experience

Lecture 14: An overview of the Android Programming

Mobile Web App / Native App

Native App Web App

. amazoncouk
amazonco.uk Welcome
| '\;{ | Wish List
f h Anr u y -
|Search Amazon.co.uk GO
Q Get the Amazon App for Androld
—_ o ,. .) ! ') ¢ = 1
N ! Kindle
. } Touch -
Simple-to-
! use
; (pr— touchscreen
: h Learn More
Shop All Departments
Books v
Music, DVD & Games v
SignIn Kindle v
i : Flactranice .

Lecture 14: An overview of the Android Programming

Mobile Web Apps (1/2)

» Accessing browser-based internet services from a

handheld mobile device

e Core technologies: HTML, CSS and JavaScript

Lecture 14: An overview of the Android Programming

Mobile Web Apps (2/2)

* Advantages*:
— Cross-platform compatibility

— Cheaper and easier to maintain
— Simple and ubiquitous access

* Disadvantages:
— Requires customization across different browser versions
— Limited access to mobile’s hardware and software
— Generally requires internet connection

* www.lionbridge.com: Mobile Web Apps vs. Native Apps: How to Make the Right Choice

Lecture 14: An overview of the Android Programming

Mobile Native Apps

Built specifically for a particular device and operating
system

Advantages:

— Leverage the device specific hardware and software
— Work offline
— Better visibility in app stores, making money immediately

Disadvantages:

— Different versions of the app for different platforms
— Keeping apps up to date is costly

— Content publishers have to share information about their
subscribers with the app store

Lecture 14: An overview of the Android Programming 7

A Sample Architecture of a Mobile Application

- Lobby

{ QServer

create/join

reqgister game

Game App

ame
Instance

x
-

Lecture 14: An overview of the Android Programming

Overview of Android Platform

 Android Operating System

* Application Lifecycle

Lecture 14: An overview of the Android Programming

Android Operating System (1/2)

* Google’s Linux based open-source OS that includes:

— Linux kernel optimized for mobile and embedded devices

— Open-source application development libraries such as SQLite,
OpenGL, and a media manager

— A runtime to host and execute Android applications, including Android
Runtime (ART)

— An application framework to expose system services to the application
layer, including the window manager and location manager, databases,
telephony and sensors

— A user interface framework used to host and launch applications
— A set of core pre-installed applications

Lecture 14: An overview of the Android Programming 10

Android Operating System (2/2)

Lecture 14: An overview of the Android Programming

11

Dalvik Virtual Machine (1/2)

The process virtual machine (VM) in Google's Android
operating system
Runs the apps on Android devices.

Programs are commonly written in Java and compiled to

bytecode.

Lecture 14: An overview of the Android Programming 12

Dalvik Virtual Machine (2/2)

 Then converted from Java Virtual Machine-compatible
.class files to Dalvik-compatible .dex (Dalvik Executable)

files before installation on a device.

 In Android 5, a new virtual machine — Android Runtime

(ART) — replaced Dalvik as the platform default.

Lecture 14: An overview of the Android Programming 13

Application Lifecycle (1/2)

Android applications have limited control over their own
lifecycle.

Each application runs in its own process.

Applications have different priorities.

Lecture 14: An overview of the Android Programming 14

Application Lifecycle (2/2)

* Android can kill applications without warning, to free
resources for higher-priority applications.

e An application’s priority 1s equal to that of its highest-
priority component.

« It’s important to structure the application to ensure that it
has the right priority for the work it’s doing.

Lecture 14: An overview of the Android Programming

15

Application Lifecycle: Application States (1/3)

Critical Priority
[1. Active Process]
- N | High Priority

2. Visible Process

v

. ™
3. Started Service Process
\ w,
<G J
|
r N | Low Priority

4. Background Process

v

5. Empty Process

Figure taken from “Professional Android 4 Application Development (3rd Edition)”.

Lecture 14: An overview of the Android Programming

16

Application Lifecycle: Application States (2/3)

Active: includes application components the user is interacting

with.

Visible: those activities which aren’t in the foreground but still

can affect what the user sees on screen.
Started service: processes hosting services.

Background: processes hosting Activities which aren’t visible

and don’t have any running services.

Empty: a process having no active application component

Lecture 14: An overview of the Android Programming 17

Application Lifecycle: Application States (3/3)

| (@ And now let’s watch an example!

Lecture 14: An overview of the Android Programming 18

Android Programming

Android SDK

Application Model and Components
Processes and Threads

Permissions

Networking

Location

Lecture 14: An overview of the Android Programming

19

Development Environment

First, download Android Studio. It includes:

Integrated Development Environment (IDE)
Android SDK Tools

Android Platform-tools

The latest Android platform

The latest Android system image for the emulator

Notice that, you need to have JDK installed beforehand.

Lecture 14: An overview of the Android Programming

20

Android SDK (1/3)

* Provides the API libraries and developer tools necessary

to build, test, and debug apps for Android.

 Includes:

— Build Tools: all the tools required to compile and build the app.

— SDK Tools: Contains main tools for debugging and testing, plus other

utilities that are required to develop an app.

Lecture 14: An overview of the Android Programming 21

Android SDK (2/3)

SDK Platform-tools: Contains platform-dependent tools for developing

and debugging your application.
Documentation: the latest documentation for the Android platform APIs.

SDK Platform: It includes an android.jar file with a fully compliant

Android library.
System Images: Required system images for the Android emulator.

Google APIs: APIs which adds special Google features to your apps.

Lecture 14: An overview of the Android Programming 22

Android SDK (3/3)

— Android support: a set of code libraries that provide backward-

compatible versions of Android framework APIs as well as features that

are only available through the library APIs

— Google Play Billing: Provides the static libraries and samples that allow

you to integrate billing services in your app with Google Play.

— Google Play Licensing: Provides the static libraries and samples that
allow you to perform license verification for your app when distributing

with Google Play.

Lecture 14: An overview of the Android Programming

23

Application Model and Components

Every Android application consists of some loosely

coupled components and the application manifest.

The manifest defines application’s metadata and the

components bindings.

Lecture 14: An overview of the Android Programming 24

Application Components

Activities & UI design elements: The application’s presentation

layer.

Services: components that run in the background to perform long-

running operations.
Intents: a powerful inter-application message passing framework.
Broadcast Receivers: Intent listeners (not covered in this lecture)

Content Provider: manages a shared set of application data (not

covered in this lecture)

Lecture 14: An overview of the Android Programming 25

Application Manifest

Every Android project includes a manifest file.

Defines the structure and metadata of the application, 1ts

components and requirements.

AndroidManifest.xml

Lecture 14: An overview of the Android Programming 26

Manifest Example

<application

android:allowBackup="true"”
android:icon="@drawable/ic_Launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Lecture 14: An overview of the Android Programming 27

Activities

Each activity represents a screen that an application can
present to its users.

To create an activity, you must create a subclass of
Activity.

Implement callback methods inherited from Activity
class.
Two important callback methods:

— onCreate(): called when creating the activity.

— onPause(): indicates that the user might be leaving.

Lecture 14: An overview of the Android Programming

28

Activities: Example

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

Lecture 14: An overview of the Android Programming

29

Activity Lifecycle

" Resumed
‘ \ (visible) / \
onResume() onPause()
ques.Jme() l
/" Started \'\-l L’ Paused
‘ \ (visible) - \(panlally visible) - |
onStart() onStop()

onStan()

< R

/ \ ‘ Stopped

—> Created onRestan()—< Sk %

onCreate() \a) (h) onDestroy()
I

lal Destroyed

Figure taken from “developer.android.com/training/basics/activity-lifecycle/starting.html”.

Lecture 14: An overview of the Android Programming 30

User Interface Design

Some Ul terminologies in Android:

* Views: the base class for all visual interface elements.

* View Groups: extensions of the View class that can contain multiple

child Views.

 Fragments: A Fragment represents a behavior or a portion of user
interface in an Activity. Fragments have their own lifecycle, state, and

back stack.

« Activities: represents the window or screen being displayed. To

display a U, you assign a View to an Activity.

Lecture 14: An overview of the Android Programming 31

User Interface: Example (1/2)

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools" - :
android:layout_width="match_parent” w! SlmpleChat
android:layout_height="match_parent"
android:gravity="top"
android:orientation="vertical"”
android:paddingBottom="@dimen/activity_vertical _margin"
android:paddinglLeft="@dimen/activity_horizontal _margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<TextView
android:id="@+1id/chatTextView"
android:layout_width="match_parent"”
android:layout_height="match_parent”
android:layout_above="@+id/sendButton”
android:layout_alignParentTop="true"”
android:layout_gravity="top"
android:background="@android:color/holo_green_Light" />

) ~ Send

Lecture 14: An overview of the Android Programming 32

User Interface: Example (2/2)

<Button
android:id="@+id/sendButton” o s
android:layout_width="wrap_content"” w! S Im p | E C h at
android:layout_height="wrap_content”
android:layout_alignBottom="@+1id/chatTextInput"
android:layout_alignRight="@+1d/chatTextView"
android:layout_alignTop="@+1d/chatTextInput"
android:layout_toRightOf="@+1d/chatTextInput”
android:text="@string/send" />

<EditText
android:id="@+1d/chatTextInput"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_alignLeft="@+id/chatTextView"
android:layout_alignParentBottom="true"
android:layout_marginBottom="16dp"
android:ems="10"
android:inputType="textMultilLine" >

<requestFocus />
</EditText>

) ~ Send

</Relativelayout>

Lecture 14: An overview of the Android Programming 33

Intent

Intents work as a message-passing mechanism both within
and between applications.

Using Intents you can:

« Explicitly, start a particular Service or Activity using its
class name

« Implicitly, start an Activity or Service by requesting an
action on a piece of data

 Broadcast the occurrence of an event

Lecture 14: An overview of the Android Programming

34

Explicit Start of a New Activity

. - SimpleChat CONTACTS
Intent intent = new Intent(MainActivity.this, ’

MyContactsActivity.class);

startActivityForResult(intent, PICK CONTACT);

Send

Lecture 14: An overview of the Android Programming 35

Implicit Start of a New Activity

. B SimpleChat CONTACTS
Intent intent = new Intent(Intent.ACTION PICK, ’

Contacts.CONTENT URI);

startActivityForResult(intent, PICK CONTACT);

Send

Lecture 14: An overview of the Android Programming 36

Service (1/3)

A Service 1s an application component that can perform long-running

operations in the background and does not provide a user interface.

A service can run in the background to perform work even while the

user is in a different application.

A component can bind to a service to interact with it and even

perform inter-process communication (IPC).

A service might handle network transactions, play music, perform

file I/O

Lecture 14: An overview of the Android Programming 37

Service (2/3)

» To create a service, you must create a subclass of Service.

* Youneed to override the callback methods to control the behavior
of the service:

— onStartCommand(): when another component requests the

service to start.
— onBind(): when another component wants to bind with the service
— onCreate(): when the service is first created.

— onDestroy(): when the service is no longer used and is being

destroyed.

Lecture 14: An overview of the Android Programming 38

Service (3/3)

Declare the service in the manifest

<manifest ... >

<application ... >
<service android:name=".ExampleService" />

</application>
</manifest>

Lecture 14: An overview of the Android Programming

39

Processes

* By default, all components of the same application run in

the same process.

* You can define in the manifest, that different
components of the same application are to be run in

different processes.

—n

android:process="string"

Lecture 14: An overview of the Android Programming 40

Threads (1/2)

« When an application 1s launched, the system creates a

thread of execution for the application, called '""main.*

e The main thread is called Ul thread because: it interacts

the Android UI components.

 Performing long operations such as network access or

database queries will block the whole UL

Lecture 14: An overview of the Android Programming 41

Threads (2/2)

 The Andoid Ul toolkit is not thread-safe, so do not

manipulate your UI from a worker thread.

 Remember these two rules:

1. Do not block the UI thread
2. Do not access the Android UI toolkit from outside the
UI thread

Lecture 14: An overview of the Android Programming 42

Threads: Example (1/3)

An example of wrong implementation:

public void onClick (View v) {

new Thread (new Runnable () {
public void run () {
Bitmap b = 1loadImageFromNetwork ("http://example.com/image.png") ;

mImageView.setImageBitmap (b) ;

}
}) .start () ;

}

Worker thread 1s updating ImageView which 1s not thread-
safe.

Lecture 14: An overview of the Android Programming

43

Threads: AsyncTask (1/3)

Correct implementation using AsyncTask

AsyncTask performs the blocking operations in a worker

thread and then publishes the results on the Ul thread.

you must subclass AsyncTask and implement the

doInBackground() callback method.

To update the Ul you should 1mplement

onPostExecute()

Lecture 14: An overview of the Android Programming 44

Threads: AsyncTask (2/3)

public void onClick(View v) {

new DownloadIlmageTask().execute("http://example.com/image.png");

private class DownloadlmageTask extends AsyncTask<String, Integer, Bitmap> {

protected Bitmap doInBackground(String... urls) {
return loadlmageFromNetwork(urls[0]);

b

protected void onProgressUpdate(Integer... progress) {
setProgressPercent(progress[0]);

b

protected void onPostExecute(Bitmap result) {
mlImageView.setlmageBitmap(result);

j

§ Lecture 14: An overview of the Android Programming

45

Threads: AsyncTask (3/3)

protected Bitmap doInBackground(String. " urls)
return loadImageFromNetwork(urls[0]);

b

protected void onProgressUpdate(Integer... progress) { /result
setProgressPercent(progress[0]);

b

protected void onPostExecute(Bitmap result) {
mlImageView.setlmageBitmap(result);

b

Lecture 14: An overview of the Android Programming

46

Permissions

* A basic Android application has no permission associated

with 1t by default, so 1t cannot access data on the device.

* To make use of protected features of the device, you must

give the related to permissions to your application.

e Permissions must be added to AndroidManifest.xml.

Example:

<uses-permission android:name="android.permission.READ CONTACTS" />

Lecture 14: An overview of the Android Programming 47

Network and Internet Connectivity (1/4)

e There are different network technologies with different
speed, reliability and cost:

— Wi-Fi, GPRS, 3G, LTE and so on

« Application can manage these connections to ensure the
efficiency and responsiveness

* Networking in Android 1S handled via
ConnectivityManager.

 Changes in network connectivity are broadcasted by
Android to Intents.

Lecture 14: An overview of the Android Programming 48

Network and Internet Connectivity (2/4)

To utilize the network connectivity, following user

permissions are required:
INTERNET: Allows applications to open network sockets.

*ACCESS NETWORK STATE: Allows applications to

access information about networks.

Lecture 14: An overview of the Android Programming 49

Network and Internet Connectivity (3/4)

To check if the network is connected:

ConnectivityManager connMgr = (ConnectivityManager)

getSystemService(Context. CONNECTIVITY SERVICE);

NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
if (networkInfo != null && networkInfo.isConnected()) {

// do network operations
}else {

// display error

Lecture 14: An overview of the Android Programming 50

Network and Internet Connectivity (4/4)

The NetworkInfo object includes the type of the network
connection which 1s available.

« getType() returns the network connection type:

 TYPE MOBILE
 TYPE WIFI
TYPE WIMAX
TYPE ETHERNET
 TYPE BLUETOOTH

Lecture 14: An overview of the Android Programming 51

Location (1/4)

e The central component of the location framework 1s the

LocationManager system service.

« Using Google Maps Android API, you can add maps to
your app based on Google Maps data.

« The application can acquire the user location utilizing GPS

and Android’s Network Location Provider.

Lecture 14: An overview of the Android Programming 52

Location (2/4)

 Network Location Provider:
— Determines location through cell tower and Wi-Fi1 signals
— Works indoors and outdoors
— Responds faster
— Less battery power

+ GPS:
— Most accurate
— Only works outdoor
— Consumes battery quickly

— Slow

Lecture 14: An overview of the Android Programming

Location (3/4)

You need to request user permission for either:

*ACCESS_FINE LOCATION: Allows an app to access precise location
from location sources such as GPS, cell towers, and Wi-F1.

*ACCESS_COARSE_LOCATION: Allows an app to access

approximate location derived from network location sources such as cell
towers and Wi-Fi.

Lecture 14: An overview of the Android Programming 54

Location (4/4)

* Getting user location in Android works by means of
callback.

« First, acquire a reference to the system Location Manager

LocationManager locationManager =
(LocationManager) this.getSystemService (

Context.LOCATION SERVICE) ;

Lecture 14: An overview of the Android Programming 55

[.ocation: Define a Listener

» Define a listener that responds to location updates

LocationListener locationlListener = new LocationListener () {

public void onLocationChanged (Location location) {
makeUseOfNewLocation (location) ;

}

public void onStatusChanged (String provider, int status,
Bundle extras) ({}

public void onProviderEnabled (String provider) {}

public void onProviderDisabled (String provider) {}

};

Lecture 14: An overview of the Android Programming 56

Location : Register the Listener

» Register the listener with the Location Manager to receive

location updates

locationManager.requestLocationUpdates (
LocationManager .NETWORK PROVIDER, O,
0O, locationListener) ;

Lecture 14: An overview of the Android Programming 57

I.ocation: LLast Known Location

« If you need to Get the last known location for the quick

location information:

String locationProvider =
LocationManager . NETWORK PROVIDER;
// Or use LocationManager.GPS PROVIDER
Location lastKnownLocation =

locationManager.getLastKnownLocation (locationProvider

) ;

Lecture 14: An overview of the Android Programming 58

User Experience

A high quality app 1s more probable to have higher user
ratings, better rankings, more downloads.

Improve stability and eliminate bugs

Improve UI responsiveness, a slow and unresponsive Ul
will disappoint the users.

Improve the ease of use

Lecture 14: An overview of the Android Programming 59

User Experience

 High quality User Interface
« Having the right set of features
* You can find many good suggestions and best practices to

improve your application following the link:

http://developer.android.com/training/index.html

Lecture 14: An overview of the Android Programming 60

