Practice Exam SF1677 Fall 2016

Total marks 35: The relationship between the marks and grades are
A: 31
B : 27
C: 23
D : 19
E:15
FX: 14.

A G^{+}on the first homework assignment corresponds to full mark (5 marks) on question 1 and a G^{+} on the second homework assignment corresponds to full mark (5 marks) on question 2.

All your answers should be proved unless otherwise stated.
Question 1: Let $h:[0,1) \mapsto \mathbb{R}$ be uniformly continuous. Prove that there exists a unique continuous $g:[0,1] \mapsto \mathbb{R}$ such that $g(x)=h(x)$ for every $x \in[0,1)$.
(5 marks)

Question 2: Let $f_{j} \rightrightarrows f_{0}$ in the set $S \subset \mathbb{R}^{n}$ and assume that $x_{j} \rightarrow x_{0} \in S$ for some sequence $x_{j} \in S$ and that f_{0} is continuous at x_{0}. Prove that $f_{j}\left(x_{j}\right) \rightarrow f_{0}\left(x_{0}\right)$.

Question 3: Assume that $f_{j} \rightrightarrows f_{0}$ on $[a, b]$ and that $f_{0} \in C^{0}([a, b])$. Prove that for every $\epsilon>0$ there exists a J_{ϵ} and a partition $P=\left\{a=x_{0}<x_{1}<\ldots<x_{N}=b\right\}$ such that

$$
j>J_{\epsilon} \Rightarrow U\left(f_{j}, P\right)-L\left(f_{j}, P\right)<\epsilon
$$

We do not assume that any of the functions f_{j} is continuous or integrable.
(5 marks)

Question 4:

1. State and prove the intermediate value theorem. Make sure that you mention when you use any property of the real numbers.
2. Provide a counterexample to the intermediate value property for continuous functions $f: \mathbb{Q} \mapsto \mathbb{R}$.
(5 marks)

Question 5: Define the concepts: metric space and compactness. Then prove, or disprove, that

$$
M=\left\{f \in C^{0}([a, b]) ;|f(x)-f(y)| \leq \sqrt{|x-y|} \text { for every } x, y \in[a, b], f(a)=0\right\}
$$

is a compact space under the metric $d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)|$. You may use any theorem from the course, without proof, as long as you state it correctly and show that the assumptions are verified.

Question 6: Let $S \subset[0,1]$ be the set of real numbers such that the decimal expansion (in base 10) does not contain any 1 or 9 . For instance $0.3333 \ldots \in S$ but $0.34923 \ldots \notin S$. Prove that S is a zero set.

Question 7: Let $\mathcal{A} \subset C^{0}([0,1])$ be a set such that

1. For every $x, y \in[0,1]$ and every $a, b \in \mathbb{R}$ there exists a function $f \in \mathcal{A}$ such that $f(x)=a$ and $f(y)=b$.
2. For any finite set $f_{1}, f_{2}, \ldots, f_{n} \in \mathcal{A}$ the function $g(x)=\max \left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) \in \mathcal{A}$.

Let $h \in C^{0}([0,1])$ and $\epsilon>0$. Prove that there exists a function $f_{\epsilon} \in \mathcal{A}$ such that $f_{\epsilon}(1 / 2)=h(1 / 2)$ and $f_{\epsilon}(x) \geq h(x)-\epsilon$ for every $x \in[0,1]$.

