EXAM IN FOUNDATION OF ANALYSIS SF27/13 MARCH 14 2016

The solutions shall be clearly written and every step carefully motivated. Each problem gives at most 3 points. The grades are: A: 22-24 p; B: 19-21p; C: 16-18p; D:14-15p; E:12-13p; Fx: 11p

- 1 Define the following concepts:
 - a) a real number
 - b) an equivalence relation
 - c) uniform continuity
- 2 Formulate the following theorems:
 - a) the chain rule
 - b) the contraction principle (Banach's fixed point theorem
 - c) the Stone-Weierstrass theorem
- 3 Let f be the limit of a uniformly convergent sequence of uniformly continuous functions between metric spaces. Prove that f also must be uniformly continuous.
- Suppose that (p_n) and (q_n) are Cauchy sequences in a metric space. Does the sequence (d(p_n,q_n) converge?
- 5 Find an example of a bijective continuous function which is not a homeomorphism.
- 6 Let X be the real vector space of functions from the natural numbers to the real numbers, such that f(n) →0 as n→∞. Define a norm on X by If II = the maximum of If (n) I as n varies over N. Prove that X is complete.
- 7. Let f: X x Y →R be continuous where X and Y are compact metric spaces.
 Let for each y in Y g(y) denote the minimum of f (x,y) as x varies over X. Prove that g is continuous.
- Let L denote the set of linear operators from Rⁿ to itself endowed with the operator norm. Define f: L → L by f (T)=exp(T(I-T)), where exp is the exponential function defined by its usual power series expansion. Is f locally invertible near the identity map I?

GOOD LUCK! Lasse