Vending machine

Design-exempel by Ingo Sander

William Sandqvist william@kth.se
System Control

We will design the block, System Control

Return only 10 cents coin.

William Sandqvist william@kth.se
Coin Receiver

The System Control unit controls a number of subsystems from other suppliers. Coin Receiver. Drop Bottle. Coin Return.

An ACCUMULATOR counts up the amount of paid coins.
- Signal COIN_PRESENT indicates that there are coins and the ”amount” is indicated by the signals GT_1_EURO, EQ_1_EURO, LT_1_EURO.
- With the signals DEC_ACC and CLR_ACC the systemcontrol unit can reduce the amount by 10 cents, or reset the ACCUMULATOR.

William Sandqvist william@kth.se
With a pulse on RETURN_10_CENT the coin return unit will eject 10 cent, and signal CHANGER_READY when this is done and the unit is ready for the next command.
Drop Bottle

With a pulse on DROP the drop bottle unit will eject a bottle, and signals DROP_READY when this is done and the unit is ready for the next command.

William Sandqvist william@kth.se
• Signal properties
 o DROP_READY is active for a clockperiod after the bottle is ejected
 o CHANGER_READY is active for a clockperiod after a 10 Cent coin is ejected

 ▪ Because of the mechanical properties the following signals are active and inactive for several clock periods:
 • COIN_PRESENT (active for several clockperiods after the coin is inserted)
 • DROP_READY (active for several clockperiods at bottle ejection)
 • CHANGER_READY (inactive for several clockperiods at coin ejection)
• Construction of a state machine for the controller of a vending machine

• Assumptions
 - Moore-Machine
 - State register implemented with D-flip-flops
Function diagram for vending machine

- **Myntinkast**: 10 Cent, 50 Cent, 1 Euro
- **Myntutkast**: 10 Cent
- **Flaskpris**: 1 Euro
We draw a state diagram from the functional diagram:

State diagram

(a) COIN_PRESENT

(b) COIN_PRESENT

(c) LT_1_EURO

(d) EQ_1_EURO

(e) DROP_READY

(f) GT_1_EURO

(g) DROP

DROP_READY

CHANGER_READY

RETURN_10_CENT

DEC_ACC

CLR_ACC
Block schematic

Input signals

COIN_PRESENT
LT_I_EURO
EQ_I_EURO
GT_I_EURO
DROP_READY
CHANGER_READY

State register

Next State Decoder

Output signals

DROP
RETURN_I0_CENT
CLR_ACC
DEC_ACC

William Sandqvist william@kth.se
State encoding

Idea: Let the states that are close together in the state diagram have codes with unit distance.

(a) next to (b)
(b) next to (c)
(d) next to (e)
(e) next to (f)
(f) next to (g)

7 states 3 state variables A, B, C are needed

The number of inputs is large, 6, total there may be nine variables in Karnaugh maps ???

William Sandqvist william@kth.se
State variables ABC, eg. in state (c) is A = 0, B = 1 and C = 1.

(Ø = don’t care)
Coded state table?

From the state diagram, you can set up the following coded state table.

How do we avoid the complexity of nine variables?

William Sandqvist william@kth.se
Variable-Entered Mapping (VEM)

Variable-Entered Mapping can be helpful when you need Karnaugh diagrams with many variables. You write functional expressions in the Karnaugh map.

\[A^+ B^+ C^+ = f(ABC, CP, DR, CR, GT, LT, EQ) \]

<table>
<thead>
<tr>
<th>(AB)</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(CP \rightarrow 000 (a))</td>
<td>(\Phi; \Phi)</td>
<td>(DR \rightarrow 110 (d))</td>
<td>(CR \rightarrow 100 (f))</td>
</tr>
<tr>
<td>1</td>
<td>(CP \rightarrow 001 (b))</td>
<td>(GT \rightarrow 100 (f))</td>
<td>(EQ \rightarrow 110 (d))</td>
<td>(CR \rightarrow 101 (g))</td>
</tr>
</tbody>
</table>

William Sandqvist william@kth.se
Next state - D_A

$$A^+B^+C^+ = f(ABC, CP, DR, CR, GT, LT, EQ)$$

<table>
<thead>
<tr>
<th>AB</th>
<th>A^+D_A</th>
<th>C</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$CP \to 000$ (a)</td>
<td>0</td>
<td>$\Phi \cdot \Phi$</td>
<td>$\overline{DR} \to 110$ (d)</td>
<td>$\overline{CR} \to 100$ (f)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$CP \to 001$ (b)</td>
<td>1</td>
<td>$GT \to 100$ (f)</td>
<td>$DR \to 111$ (e)</td>
<td>$CR \to 101$ (g)</td>
<td></td>
</tr>
</tbody>
</table>

| 0 | $CP \to 001$ (b) | 0 | $EQ \to 110$ (d) | $LT \to 000$ (a) |
| 1 | $CP \to 011$ (c) | 1 | $EQ + GT$ | 000 (a) | 011 (c) |

$A^+ = D_A = \overline{A} \cdot B \cdot EQ + \overline{A} \cdot B \cdot GT + A \cdot \overline{C}$

$EQ : EQ_1 _EURO$

$GT : GT_1 _EURO$
Next state - D_B

$$A^+B^+C^+ = f(AB, CP, DR, CR, GT, LT, EQ)$$

<table>
<thead>
<tr>
<th>AB</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\overline{CP} \to 000$ (a)</td>
<td>$\Phi : \Phi$</td>
<td>$\overline{DR} \to 110$ (d)</td>
<td>$\overline{CR} \to 100$ (f)</td>
</tr>
<tr>
<td>1</td>
<td>$\overline{CP} \to 001$ (b)</td>
<td>$GT \to 100$ (f)</td>
<td>$E_Q \to 110$ (d)</td>
<td>$\overline{LT} \to 000$ (a)</td>
</tr>
</tbody>
</table>

$B^+ D_B$

<table>
<thead>
<tr>
<th>C</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>\overline{CP}</td>
<td>EQ</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$EQ : EQ_1_EURO$

$CP : COIN_PRESENT$

$$B^+ = D_B = \overline{A} \cdot B \cdot EQ + B \cdot \overline{C} + \overline{B} \cdot C \cdot \overline{CP} + A \cdot \overline{B} \cdot C$$

Easy to miss!
Next state - D_C

$A^+B^+C^+ = f(ABC, CP, DR, CR, GT, LT, EQ)$

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>$A^+B^+C^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>00 01 11 10</td>
</tr>
<tr>
<td>0</td>
<td>CP → 000 (a)</td>
<td>CP → 001 (b)</td>
</tr>
<tr>
<td>1</td>
<td>CP → 001 (b)</td>
<td>CP → 011 (c)</td>
</tr>
<tr>
<td></td>
<td>Φ</td>
<td>Φ</td>
</tr>
<tr>
<td>d</td>
<td>DR → 110 (d)</td>
<td>DR → 111 (e)</td>
</tr>
<tr>
<td>f</td>
<td>CR → 100 (f)</td>
<td>CR → 101 (g)</td>
</tr>
</tbody>
</table>

$C^+ = D_C = \overline{A} \cdot \overline{C} \cdot CP + B \cdot \overline{C} \cdot DR + A \cdot \overline{B} \cdot CR + \overline{B} \cdot C$

CP: COIN_PRESENT
DR: DROP_READY
CR: CHANGER_READY
The output signals are "pulses" which are generated when passing through the states d, f, e, g.

\[
\begin{align*}
\text{DROP} &= \overline{ABC} \\
\text{CLR} _ \text{ACC} &= ABC \\
\text{RETURN} _10 _\text{CENT} &= \overline{ABC} \\
\text{DEC} _ \text{ACC} &= ABC
\end{align*}
\]
Implementation of the vending machine

”students must master the the design of simple combinational and sequential digital systems”

You do that now!

When they call from CocaCola, it's just for you all ”Digital Designers” to adopt the mission ...
What will happen in state Φ?

A$^+$ = $\overline{A} \cdot B \cdot EQ + \overline{A} \cdot B \cdot GT + A \cdot \overline{C}$ \Rightarrow A$^+$ (010)$_{ABC}$ = 1 \cdot 1 \cdot EQ + 1 \cdot 1 \cdot GT + 0 \cdot 1 = EQ + GT

B$^+$ = $\overline{A} \cdot B \cdot EQ + B \cdot \overline{C} + \overline{B} \cdot C \cdot CP + A \cdot \overline{B} \cdot C$ \Rightarrow B$^+$ (010)$_{ABC}$ = 1 \cdot 1 \cdot EQ + 1 \cdot 1 + ... = 1

C$^+$ = $\overline{A} \cdot \overline{C} \cdot CP + B \cdot \overline{C} \cdot DR + A \cdot \overline{B} \cdot CR + \overline{B} \cdot C$

\Rightarrow C$^+$ (010)$_{ABC}$ = 1 \cdot 1 \cdot CP + 1 \cdot 1 \cdot DR + 0 \cdot 0 \cdot CR + 0 \cdot 0 = CP + DR

A$^+$B$^+$C$^+$ = 1111 \Rightarrow Φ, d, c, e
What will happen in state Φ?

$$A^+ B^+ C^+ = \neg 1 = 010, 110, 011, 111 \rightarrow \Phi, d, c, e$$

In Φ-state we are stuck, or we go to (c) and then on. Or we go to (d) and offers soft drinks, or we go to (e) and resets any previous payment.

Obviously, we need to purchase a reset circuit that ensures that the machine always starts in (a) 000! Otherwise we will have legitimate complaints from the customers!