Exam SF1677 January 2017

Total marks 35: The relationship between the marks and grades are
A:31
B : 27
C: 23
D : 19
E : 15
FX : 14.

A G^{+}on the first homework assignment corresponds to full mark (5 marks) on question 1 and a G^{+}on the second homework assignment corresponds to full mark (5 marks) on question 2.

All your answers should be proved unless otherwise stated.
Question 1: Define what it means for a set to be uncountable. Then prove that there exists uncountable sets, for instance by providing an example and proving that your example is uncountable.

Question 2: Let

$$
f_{n}(x)=\frac{\sin (x)}{1+n x^{2}} \quad \text { on }[-\pi, \pi] .
$$

1. Will $f_{n}(x)$ converge in $C^{0}([-\pi, \pi])$?
2. Will the derivative $f_{n}^{\prime}(x)$ converge in $C^{0}([-\pi, \pi])$?

Question 3: Let a_{j} be a bounded sequence of real numbers and define

$$
\limsup _{j \rightarrow \infty} a_{j}=\lim _{j \rightarrow \infty}\left(\sup _{k>j} a_{k}\right)
$$

Prove, by using the definition of convergence, that $\lim \sup _{j \rightarrow \infty} a_{j}$ exists. Make sure to specify where you use the least upper bound property for the real numbers.

Question 4: Let $g_{n}(x)$ be a sequence of Riemann integrable functions on $[0,1]$ and $\left|g_{n}(x)\right| \leq 1$ for all n and $x \in[0,1]$. Define the function

$$
G_{n}(x)=\int_{0}^{x} g_{n}(t) d t \quad \text { for } x \in[0,1]
$$

Prove that there is a subsequence $G_{n_{k}}(x) \rightrightarrows G(x)$, as $k \rightarrow \infty$, for some function $G(x)$ (here \rightrightarrows means converges uniformly). You may use any theorem from the course as long as you state it correctly and show that the assumptions are satisfied.
(5 marks)
Question 5: Let $F: C^{0}([0,1]) \mapsto C^{0}([0,1])$ be defined by

$$
F(f)=\cos (x)+\int_{0}^{1} \sin \left(\frac{y+e^{y}+x}{10}\right) f(y) d y
$$

Prove that F has a fixed point: that is, there exist an $f \in C^{0}([0,1])$ such that $F(f)=f$. You may use any theorem from the course without providing proof; except fixed point theorems, these you have to prove.
(5 marks)

Question 6: In elementary calculus one uses the formula

$$
\iint_{M_{1}(0,0)} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{2 \pi} f(r \cos (\phi), r \sin (\phi)) r d \phi d r
$$

where $M_{1}(0,0)=\left\{(x, y) ; \sqrt{x^{2}+y^{2}}<1\right\}$.
Prove this formula for bounded and continuous functions f defined on \mathbb{R}^{2}. You may use any theorem form the course without proof, as long as you state it correctly and show that the assumptions are satisfied.

Question 7: Does it exist a bounded non-decreasing function $f:[0,1] \mapsto[0,1]$ such that $f(x)$ is discontinuous at every $x \in[0,1] \cap \mathbb{Q}$? Decide whether your example of such a function (if they indeed exist) is Riemann integrable or not. If you use a theorem from the course you should sketch the proof.

