Exam SF1677 January 2017

Total marks 35: The relationship between the marks and grades are

$$A:31$$
 $B:27$ $C:23$ $D:19$ $E:15$ $FX:14$.

A G^+ on the first homework assignment corresponds to full mark (5 marks) on question 1 and a G^+ on the second homework assignment corresponds to full mark (5 marks) on question 2.

All your answers should be proved unless otherwise stated.

Question 1: Define what it means for a set to be uncountable. Then prove that there exists uncountable sets, for instance by providing an example and proving that your example is uncountable.

(5 marks)

Question 2: Let

$$f_n(x) = \frac{\sin(x)}{1 + nx^2}$$
 on $[-\pi, \pi]$.

- 1. Will $f_n(x)$ converge in $C^0([-\pi,\pi])$?
- 2. Will the derivative $f'_n(x)$ converge in $C^0([-\pi,\pi])$?

(5 marks)

Question 3: Let a_j be a bounded sequence of real numbers and define

$$\limsup_{j \to \infty} a_j = \lim_{j \to \infty} \left(\sup_{k > j} a_k \right).$$

Prove, by using the definition of convergence, that $\limsup_{j\to\infty} a_j$ exists. Make sure to specify where you use the least upper bound property for the real numbers.

(5 marks)

Question 4: Let $g_n(x)$ be a sequence of Riemann integrable functions on [0,1] and $|g_n(x)| \le 1$ for all n and $x \in [0,1]$. Define the function

$$G_n(x) = \int_0^x g_n(t)dt \quad \text{ for } x \in [0,1].$$

Prove that there is a subsequence $G_{n_k}(x) \rightrightarrows G(x)$, as $k \to \infty$, for some function G(x) (here \rightrightarrows means converges uniformly). You may use any theorem from the course as long as you state it correctly and show that the assumptions are satisfied.

(5 marks)

Question 5: Let $F: C^0([0,1]) \mapsto C^0([0,1])$ be defined by

$$F(f) = \cos(x) + \int_0^1 \sin\left(\frac{y + e^y + x}{10}\right) f(y) dy.$$

Prove that F has a fixed point: that is, there exist an $f \in C^0([0, 1])$ such that F(f) = f. You may use any theorem from the course without providing proof; except fixed point theorems, these you have to prove.

(5 marks)

continues on next page...

Question 6: In elementary calculus one uses the formula

$$\int \int_{M_1(0,0)} f(x,y) dx dy = \int_0^1 \int_0^{2\pi} f(r\cos(\phi), r\sin(\phi)) r d\phi dr,$$

where $M_1(0,0) = \{(x,y); \sqrt{x^2 + y^2} < 1\}.$

Prove this formula for bounded and continuous functions f defined on \mathbb{R}^2 . You may use any theorem form the course without proof, as long as you state it correctly and show that the assumptions are satisfied.

(5 marks)

Question 7: Does it exist a bounded non-decreasing function $f : [0,1] \mapsto [0,1]$ such that f(x) is discontinuous at every $x \in [0,1] \cap \mathbb{Q}$? Decide whether your example of such a function (if they indeed exist) is Riemann integrable or not. If you use a theorem from the course you should sketch the proof.

(5 marks)

Good Luck!