
Chapter 2

Vector spaces

In this chapter we introduce the notion of a vector space which is fundamen-
tal for the approximation methods that we will later develop, in particular
through the orthogonal projection onto a subspace representing the best
possible approximation in that subspace. We use the Euclidian space as an
illustrative example but the concept of a vector space is much more general
than that, forming the basis for the theory of function approximation and
partial di↵erential equations.

2.1 Vector spaces

Vector space

We denote the elements of R, the real numbers, as scalars, and a vector
space, or linear space, is then defined by a set V and two basic operations
on V : vector addition and scalar multiplication,

(i) x, y 2 V ) x+ y 2 V,

(ii) x 2 V,↵ 2 R ) ↵x 2 V.

A vector space defined over R is a real vector space. More generally we may
define vector spaces over the complex numbers C, or any algebraic field F.

The Euclidian space Rn

The Euclidian space Rn is a vector space consisting of the set of column
vectors x = (x1, ..., xn

)T , where (x1, ..., xn

) is a row vector with x

j

2 R, and
where vT denotes the transpose of the vector v. In Rn the basic operations
are defined by component-wise addition and multiplication, such that,
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12 CHAPTER 2. VECTOR SPACES

(i) x+ y = (x1 + y1, ..., xn

+ y

n

)T ,

(ii) ↵x = (↵x1, ...,↵xn

)T .

A geometrical interpretation of a vector space will prove to be useful. For
example, the vector space R2 can be interpreted as the vector arrows in the
Euclidian plane, defined by: (i) a direction with respect to a fixed point
(origo), and (ii) a length (magnitude).

x = (x1,x2) 

origo = (0,0) 

αx = (αx1,αx2) 

x 

y 

x+y 

Figure 2.1: Geometrical interpretation of a vector x = (x1, x2) in the Eu-
clidian plane R2 (left), scalar multiplication ↵x with ↵ = 0.5 (center), and
vector addition x+ y (right).

Vector subspace

A subspace of a vector space V is a subset S ⇢ V , such that S is a also
vector space. For example, the planes S1 = {x 2 R3 : x3 = 0} and
S2 = {x 2 R3 : ax1 + bx2 + cx3 + d = 0 : a, b, c, d 2 R} are subspaces
of R3.

Basis

The sum
P

n

i=1 ↵i

v

i

is referred to as a linear combination of the set of vectors
{v

i

}n
i=1 in V . All possible linear combinations defines a subspace S = {v 2

V : v =
P

n

i=1 ↵i

v

i

,↵

i

2 R}, and we say that the vector space S is spanned
by the set of vectors {v

i

}n
i=1, denoted by S = span{v

i

}n
i=1 = hv1, ..., vni.

The set {v
i

}n
i=1 is linearly independent, if

nX

i=1

↵

i

v

i

= 0 ) ↵

i

= 0, 8i = 1, ..., n. (2.1)
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Figure 2.2: Illustration of the Euclidian space R3 with the three coordinate
axes in the direction of the standard basis vectors e1, e2, e3, and two sub-
spaces S1 and S2, where S1 is the x1x2-plane and S2 a generic plane in R3,
with the indicated planes extending to infinity.

A linearly independent set {v
i

}n
i=1 is a basis for the vector space V , if all

v 2 V can be expressed as a linear combination of the vectors in the basis,

v =
nX

i=1

↵

i

v

i

, (2.2)

where ↵

i

are the coordinates of v with respect to the basis {v
i

}n
i=1. The

dimension of V , dim(V ), is the number of vectors in any basis for V .
The standard basis {e1, ..., en} = {(1, 0, ..., 0)T , ..., (0, ..., 0, 1)T} spans

Rn, such that all x 2 Rn can be expressed as x =
P

n

i=1 xi

e

i

. We refer to
the coordinates x

i

2 R in the standard basis as Cartesian coordinates, and
dimRn = n

Norm

To measure the size of vectors we introduce the norm k · k of a vector in
the vector space V , defined by the following conditions:
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(i) kxk � 0, 8x 2 V, and kxk = 0 , x = 0,

(ii) k↵xk = |↵|kxk, 8x 2 V,↵ 2 R,

(iii) kx+ yk  kxk+ kyk, 8x, y 2 V ,

where (iii) is the triangle inequality.
A normed vector space is a vector space on which a norm is defined. For

example, we define the l2-norm in Rn by

kxk2 = (
nX

i=1

x

2
i

)1/2 = (x2
1 + ...+ x

2
n

)1/2, (2.3)

which corresponds to the Euclidian length of the vector x.

Inner product

An inner product in a vector space V is a real valued function (·, ·) which
is bilinear and symmetric, that is,

(i) (↵x+ �y, z) = ↵(x, z) + �(y, z),

(ii) (x,↵y + �z) = ↵(x, y) + �(x, z),

(iii) (x, y) = (y, x),

for all x, y, z 2 V and ↵, � 2 R.
An inner product space is a vector space on which an inner product is

defined. An inner product induces an associated norm by kxk = (x, x)1/2,
and thus an inner product space is also a normed space. An inner product
and its associated norm satisfies the Cauchy-Schwarz inequality.

Theorem 1 (Cauchy-Schwarz inequality).

|(x, y)|  kxkkyk, 8x, y 2 V (2.4)

Proof. Let s 2 R so that

0  kx+ syk2 = (x+ sy, x+ sy) = kxk2 + 2s(x, y) + s

2kyk2,

and then choose s as the minimizer of the right hand side of the inequality,
that is, s = �(x, y)/kyk2, which proves the theorem.
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The Euclidian space Rn is an inner product space with the Euclidian
inner product, also referred to as scalar product or dot product, defined by

(x, y)2 = x · y = (x1y1 + ...+ x

n

y

n

), (2.5)

which induces the l2-norm kxk2 = (x, x)1/22 . In Rn we often drop the sub-
script for the Euclidian inner product and norm, with the understanding
that (x, y) = (x, y)2 and kxk = kxk2. We can also define general l

p

-norms
as

kxk
p

=

 
nX

i=1

|x
i

|p
!1/2

, (2.6)

for 1  p < 1. For example, the l1-norm is defined as kxk1 = |x1|+...+|x
n

|.
For p = 1, we define the l1-norm as

kxk1 = max
1pn

|x
i

|. (2.7)

IIxII1=1	 IIxII2=1	 IIxII∞=1	

Figure 2.3: Illustration of the l

p

-norms in Rn, through the unit circles
kxk

p

= 1, for p = 1, 2,1 (from left to right).

In fact, the Cauchy-Schwarz inequality is a special case of the Hölder
inequality for general l

p

-norms in Rn.

Theorem 2 (Hölder inequality). For 1/p+ 1/q = 1, we have that

|(x, y)|  kxk
p

kyk
q

, 8x, y 2 Rn (2.8)

In particular, we have that |(x, y)|  kxk1kyk1, 8x, y 2 Rn.

2.2 Orthogonal projections

Orthogonality

An inner product space V provides a means to generalize the concept of
measuring angles between vectors, where in particular two vectors x, y 2 V

are orthogonal if (x, y) = 0.



16 CHAPTER 2. VECTOR SPACES

If a vector x 2 V is orthogonal to all vectors s in a subspace S ⇢ V , so
that

(x, s) = 0, 8s 2 S,

then x is said to be orthogonal to S. For example, the vector (0, 0, 1)T 2 R3

is orthogonal to the subspace spanned in R3 by the vectors (1, 0, 0)T and
(0, 1, 0)T .

We denote by S

? the orthogonal complement of S in V , that is S

? =
{v 2 V : (v, s) = 0, 8s 2 S}. The only vector in V that is an element of
both S and S

? is the zero vector, and any vector v 2 V can be decomposed
into two orthogonal components as v = s1 + s2, with s1 2 S and s2 2 S

?.

Orthogonal projection

The orthogonal projection of a vector x 2 V in the direction of another
vector y 2 V , is the vector �y with � = (x, y)/kyk2 2 R, such that the
di↵erence between the two vectors is orthogonal to y, that is (x��y, y) = 0.

x 

y 

βy 

x-βy 

Figure 2.4: Illustration of �y, the projection of the x in the direction of y.

The orthogonal projection of a vector v 2 V onto the subspace S ⇢ V

is a vector v
s

2 S such that

(v � v

s

, s) = 0, 8s 2 S. (2.9)



2.2. ORTHOGONAL PROJECTIONS 17

The orthogonal projection is the best approximation in the subspace S ⇢ V ,
with respect to the norm induced by the inner product of V .

Theorem 3 (Best approximation property).

kv � v

s

k  kv � sk, 8s 2 S (2.10)

Proof. For any vector s 2 S we have that

kv�v

s

k2 = (v�v

s

, v�v

s

) = (v�v

s

, v�s)+(v�v

s

, s�v

s

) = (v�v

s

, v�s),

since (v � v

s

, s� v

s

) = 0, by (2.9) and the fact that s� v

s

2 S. The result
then follows from Cauchy-Schwarz inequality and division of both sides by
the factor kv � v

s

k,

(v � v

s

, v � s)  kv � v

s

kkv � sk ) kv � v

s

k  kv � sk.

v 

vs 

S 

s 

V 

v-vs 

vs-s 

v-s 

Figure 2.5: The projection v

s

is the best approximation in S ⇢ V .
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Orthonormal basis

We refer to a set of non-zero vectors {v
i

}n
i=1 in the inner product space

V as an orthogonal set, if all vectors v

i

are pairwise orthogonal, that is if
(v

i

, v

j

) = 0 for all i 6= j. If {v
i

}n
i=1 is an orthogonal set in the subspace

S ⇢ V and dim(S) = n, then {v
i

}n
i=1 is a basis for S, that is all v

s

2 S can
be expressed as

v

s

= ↵1v1 + ...+ ↵

n

v

n

=
nX

i=1

↵

i

v

i

, (2.11)

with the coordinate ↵

i

= (v
s

, v

i

)/kv
i

k2 being the projection of v
s

in the
direction of the basis vector v

i

.
If Q = {q

i

}n
i=1 is an orthogonal set, and kq

i

k = 1 for all i, we say that
Q is an orthonormal set. Let Q be an orthonormal basis for S, then

v

s

= (v
s

, q1)q1 + ...+ (v
s

, q

n

)q
n

=
nX

i=1

(v
s

, q

i

)q
i

, 8v
s

2 S, (2.12)

where the coordinate (v
s

, q

i

) is the projection of the vector v
s

onto the basis
vector q

i

. An arbitrary vector v 2 V can be written

v = r +
nX

i=1

(v, q
i

)q
i

, (2.13)

where r = v�
P

n

i=1(v, qi)qi. With v

s

=
P

n

i=1(v, qi)qi, the vector r = v� v

s

is orthogonal to Q, and thus orthogonal to S. By (2.9), the vector r 2 V

satisfies the orthogonality condition

(r, s) = 0, 8s 2 S, (2.14)

and from (2.10) we know that r is the vector that corresponds to the minimal
projection error of the vector v onto S.

Excercises

Problem 1. Prove that the planes S1 and S2 are subspaces of R3, where
S1 = {x 2 R3 : x3 = 0} and S2 = {x 2 R3 : ax1 + bx2 + cx3 + d = 0 :
a, b, c, d 2 R}.

Problem 2. Prove that the standard basis in Rn is linearly independent.

Problem 3. Prove that the Euclidian l2-norm k · k2 is a norm.
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Problem 4. Prove that the Euclidian scalar product (·, ·)2 is an inner prod-
uct.

Problem 5. Prove that |(x, y)|  kxk1kyk1, 8x, y 2 Rn.

Problem 6. Prove that the vector (0, 0, 1)T 2 R3 is orthogonal to the sub-
space spanned in R3 by the vectors (1, 0, 0)T and (0, 1, 0)T .

Problem 7. Let {w
i

}n
i=1 be a basis for the subspace S ⇢ V , so that all

s 2 S can be expressed as s =
P

n

i=1 ↵i

w

i

.

(a) Prove that (2.9) is equivalent to finding the vector v

s

2 S that satisfies
n equations of the form

(v � v

s

, w

i

) = 0, i = 1, ..., n.

(b) Since v

s

2 S, we have that v
s

=
P

n

j=1 �j

w

j

. Prove that (2.9) is equiva-
lent to finding the set of coordinates �

i

that satisfies

nX

j=1

�

j

(w
j

, w

i

) = (v, w
i

), i = 1, ..., n.

(c) Let {q
i

}n
i=1 be an orthonormal basis for the subspace S ⇢ V , so that we

can express v

s

=
P

n

j=1 �j

q

j

. Prove that (2.9) is equivalent to choosing
the coordinates as �

j

= (v, q
j

).


