
Chapter 3

Matrices and Linear
transformations

A linear transformation acting on a Euclidian vector can be represented as
a matrix. Many of the concepts we introduce in this chapter generalize to
linear operators acting on functions in infinite dimensional spaces, which is
fundamental for the study of partial di↵erential equations.

3.1 Matrix algebra

Linear transformation as a matrix

A function f : Rn ! Rn is a linear transformation, or linear map, if

(i) f(x+ z) = f(x) + f(z),

(ii) f(↵x) = ↵f(x),

for all x, z 2 Rn and ↵ 2 R. In the standard basis (e1, ..., en) we can express
the ith component of the vector y = f(x) 2 Rn as

y

i

= f

i

(x) = f

i

(
nX

j=1

x

j

e

j

) =
nX

j=1

x

j

f

i

(e
j

),

where f

i

: Rn ! R for all i = 1, ..., n. In component form, we write this as

y1 = a11x1 + ...+ a1nxn

...
y

n

= a

n1x1 + ...+ a

nn

x

n

(3.1)
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with a

ij

= f

i

(e
j

). That is y = Ax, where A is an n⇥ n matrix

A =

2

64
a11 · · · a1n
...

. . .
...

a

n1 · · · a

nn

3

75 . (3.2)

We denote the vector space of real valued m ⇥ n-matrices as Rm⇥n,
where we sometimes write A = (a

ij

), with i the row index and j is the
column index. The matrix A 2 Rm⇥n defines a linear map x 7! Ax, by the
basic operations of the matrix-vector product and component-wise scalar
multiplication.

A(x+ y) = Ax+ Ay, x, y 2 Rn

,

A(↵x) = ↵Ax, x 2 Rn

,↵ 2 R.

Matrix-vector product

For an m ⇥ n matrix A, and x an n-dimensional column vector, we define
the matrix-vector product b = Ax to be the m-dimensional column vector

b

i

=
nX

j=1

a

ij

x

j

, i = 1, ...,m. (3.3)

With a

j

the jth column of A, anm-vector, we can express the matrix-vector
product as a linear combination of the set of column vectors {a

j

}n
j=1

b = Ax =
nX

j=1

x

j

a

j

, (3.4)

or in matrix form
2

66664
b

3

77775
=

2

66664
a1 a2 · · · a

n

3

77775

2

6664

x1

x2
...
x

n

3

7775
= x1

2

66664
a1

3

77775
+ x2

2

66664
a2

3

77775
+ ...+ x

n

2

66664
a

n

3

77775
.

The vector space spanned by {a
j

}n
j=1 is the column space, or range, of

the matrix A, so that range(A) = span{a
j

}n
j=1. The null space, or kernel,

of an m ⇥ n matrix A is the set of vectors x 2 Rn such that Ax = 0, with
0 the zero vector in Rm, that is null(A) = {x 2 Rn : Ax = 0}.
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The dimension of the column space is the column rank of the matrix,
rank(A). We note that the column rank is equal to the row rank, corre-
sponding to the space spanned by the row vectors of A, and the maximal
rank of an m⇥ n matrix is min(m,n), which we refer to as full rank.

If the column vectors {a
j

}n
j=1 form a basis for Rn, then all vectors b 2 Rm

can be expressed as b = Ax, where x 2 Rn is the vector of coordinates of b
in the basis {a

j

}n
j=1. In particular, all x 2 Rn can be expressed as x = I

n

x,
where I

n

is the square n ⇥ n identity matrix in Rn, taking the standard
basis as column vectors,

I

n

=

2

66664
e1 e2 · · · e

n

3

77775
=

2

6664

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

3

7775
.

Matrix-matrix product

The matrix-matrix product B = AC is a matrix in Rl⇥n, defined for two
matrices A 2 Rl⇥m and C 2 Rm⇥n, as

b

ij

=
mX

k=1

a

ik

c

kj

, (3.5)

with B = (b
ij

), A = (a
ik

) and C = (c
kj

). Here we may sometimes omit
the summation sign and use tensor notation, with the Einstein convention
where repeated indices imply summation over those same indices, so that
we can express the matrix-matrix product (3.5) as b

ij

= a

ik

c

kj

.
Similarly as for the matrix-vector product, we may interpret the columns

b

j

of the matrix-matrix product B as a linear combination of the columns
a

k

with coe�cients c
kj

b

j

= Ac

j

=
mX

k=1

c

kj

a

k

, (3.6)

or in matrix form
2

66664
b1 b2 · · · b

n

3

77775
=

2

66664
a1 a2 · · · a

m

3

77775

2

4
c1 c2 · · · c

n

3

5
.
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For two linear transformations f(x) and g(x) on Rn, with associated
square n⇥n-matrices A and C, the matrix-matrix product AC corresponds
to the composition f � g(x) = f(g(x)).

Matrix transpose and the inner and outer products

The transpose (or adjoint) of an m ⇥ n matrix A = (a
ij

) is defined as the
matrix A

T = (a
ji

), with the column and row indices reversed.
Using the matrix transpose, the inner product of two vectors v, w 2 Rn

can be expressed in terms of a matrix-matrix product vTw, as

(v, w) = v

T

w =
⇥
v1 · · · v

n

⇤

2

666664

w1

...

w

m

3

777775
= v1w1 + ...+ v

n

w

n

. (3.7)

Similarly, the outer product, or tensor product, of two vectors v, w 2 Rn,
denoted by v ⌦ w, is defined as the m ⇥ n matrix corresponding to the
matrix-matrix product vwT , that is

v ⌦ w = vw

T =

2

666664

v1

...

v

m

3

777775

⇥
w1 · · · w

n

⇤
=

2

666664

v1w1 · · · v1wn

...
...

v

m

v1 v

m

w

n

3

777775
.

In tensor notation we can express the inner and the outer products as
(v, w) = v

i

w

i

and v ⌦ w = v

i

w

j

.
The transpose has the property that (AB)T = B

T

A

T , and thus satisfies
the equation (Ax, y) = (x,AT

y), for any x 2 Rn

, y 2 Rm, which follows
from the definition of the inner product in Euclidian vector spaces, since

(Ax, y) = (Ax)Ty = x

T

A

T

y = (x,AT

y). (3.8)

A is said to be symmetric (or self-adjoint) if A = A

T , so that (Ax, y) =
(x,Ay). If in addition (Ax, x) > 0 for all non-zero x 2 Rm, we say that A
is a symmetric positive definite matrix. A matrix is said to be normal if
A

T

A = AA

T .
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Matrix norms

To measure the size of a matrix, we first introduce the Frobenius norm,
corresponding to the l2-norm of the matrix A interpreted as an mn-vector,
that is

kAk
F

=

 
mX

i=1

nX

j=1

|a
ij

|2
!1/2

. (3.9)

The Frobenius norm is the norm associated to the following inner prod-
uct over the space Rm⇥n,

(A,B) = tr(AT

B), (3.10)

with the trace of a square n⇥ n matrix C = (c
ij

) defined by

tr(C) =
nX

i=1

c

ii

. (3.11)

IIxII2=1	 IIAII2=1	

Figure 3.1: Illustration of the map x 7! Ax through the unit circles kxk2 = 1
(left) and kAk2 = 1 (right), for the matrix A in (3.13).

Matrix norms for A 2 Rm⇥n are also induced by the respective l
p

-norms
on Rm and Rn, in the form

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.12)

The last equality follows from the definition of a norm, and shows that
the induced matrix norm can be defined in terms of its map of unit vectors,
which we illustrate in Figure 3.1 and Figure 3.2 for the matrix

A =


1 2
0 2

�
. (3.13)
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Determinant

The determinant of a square matrix A is denoted det(A) or |A|. For a 2⇥2
matrix we have the explicit formula

det(A) =

����
a b

c d

���� = ad� bc. (3.14)

For example, for the matrix in (3.13) we have that det(A) = 1 ·2�2 ·0 = 2.
The formula for the determinant is extended to a 3⇥ 3 matrix by

det(A) =

������

a b c

d e f

g h i

������
= a

����
e f

h i

����� b

����
d f

g i

����+ c

����
d e

g h

����

= a(ei� fh)� b(di� fg) + c(dh� eg), (3.15)

and by recursion this formula can be generalized to any square matrix.
For a 2 ⇥ 2 matrix the absolute value of the determinant equals to the

area of the parallelogram that represents the image of the unit square under
the map x 7! Ax, and similarly for a 3⇥3 matrix the volume of the mapped
parallelepiped from the unit cube. More generally, the absolute value of the
determinant represents a scale factor of the linear transformation A.

(1,0)	

(0,1)	

(1,0)	

(0,1)	

(2,2)	 (3,2)	

Figure 3.2: The map x 7! Ax (right) of the unit square (left), for the matrix
A in (3.13), with the corresponding area given by | det(A)| = 2.

Matrix inverse

A square matrix A 2 Rm⇥m is invertible, or non-singular, if there exists an
inverse matrix A

�1 2 Rm⇥m such that A�1
A = AA

�1 = I, where I = I

m

is
the m ⇥m identity matrix, which also means that (A�1)�1 = A. Further,
for two matrices A and B we have the property that (AB)�1 = B

�1
A

�1.
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Theorem 4. For a square matrix A 2 Rm⇥m, the following is equivalent:

(i) A has an inverse A

�1,

(ii) det(A) 6= 0,

(iii) rank(A) = m,

(iv) range(A) = Rm

(v) null(A) = {0}.

The matrix inverse is unique. To see this, assume that there exist two
matrices B1 and B2 such that AB1 = AB2 = I; which by linearity gives
that A(B1 � B2) = 0, but since null(A) = {0} we have that B1 = B2.

3.2 Some linear transformations

A�ne transformations

An a�ne transformation, or a�ne map, is a linear transformation composed
with a translation, corresponding to a matrix multiplication followed by
vector addition. For example, counter-clockwise rotation of a vector by an
angle ✓ in R2, takes the form of multiplication by a Givens rotation matrix,

A =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (3.16)

whereas translation corresponds to addition by a position vector b, so that
the a�ne map takes the form x 7! Ax+ b.

We note that any triangle is related to each other through an a�ne
map; for example in the Euclidian plane R2, or to a surface (manifold) in
Euclidian space R3, see Figure 3.3.

Remark 1. We note that by using homogeneous coordinates, or projective
coordinates, we can express any a�ne transformation as a matrix multi-
plication, including translation. In R2 a vector x = (x1, x2)T in standard
Cartesian coordinates, is represented as x = (x1, x2, 1)T in homogeneous
coordinates, so that the rotation matrix takes the form

A =

2

4
cos(✓) � sin(✓) 0
sin(✓) cos(✓) 0
0 0 1

3

5
, (3.17)



28 CHAPTER 3. MATRICES AND LINEAR TRANSFORMATIONS

(1,0)	

(0,1)	
Ax+b	

R2	
x2	

x1	
(1,0,0)	

(0,1,0)	

Ax+b	

R3	

x2	

x1	

x3	

Figure 3.3: A�ne maps x 7! Ax + b of the reference triangle with corners
in (0, 0), (1, 0), (0, 1); in R2 (left); to a surface (manifold) in R3 (right).

and translation by a vector (t1, t2) is expressed by the matrix

A =

2

4
1 0 t1

0 1 t2

0 0 1

3

5
. (3.18)

Di↵erence and summation operators

Subdivide the interval [0, 1] into a structured grid with m intervals and
m+1 nodes x

i

, such that 0 = x0 < x1 < x2 < ... < x

m

= 1, with a constant
interval length h = x

i

� x

i�1, so that x
i

= x0 + ih.
For each x = x

i

we may approximate the integral of a function f(x)
with f(0) = 0, by a rectangular quadrature rule, so that

F (x
i

) =

Z
xi

0

f(s)ds ⇡
iX

k=1

f(x
k

)h = F

h

(x
i

), (3.19)

which defines a function F

h

(x
i

) for all nodes x

i

in the subdivision. This
linear transformation of the vector of sampled function values at the nodes
y = (f(x1), ..., f(xm

))T can be expressed in the following matrix equation,

L

h

y =

2

6664

h 0 · · · 0
h h · · · 0
...

. . .
...

h h · · · h

3

7775

2

6664

f(x1)
f(x2)

...
f(x

m

)

3

7775
=

2

6664

f(x1)h
f(x1)h+ f(x2)h

...P
m

k=1 f(xk

)h

3

7775
, (3.20)
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where the matrix L

h

is a summation operator, with its inverse given by

L

h

= h

2

6664

1 0 · · · 0
1 1 · · · 0
...

. . .
...

1 1 · · · 1

3

7775
, L

�1
h

= h

�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775
. (3.21)

The inverse matrix L

�1
h

corresponds to a di↵erence operator over the
same subdivision. To see this, multiply the matrix L

�1
h

to y = f(x
i

),

L

�1
h

y = h

�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775

2

6664

f(x1)
f(x2)

...
f(x

m

)

3

7775
=

2

6664

f(x1)/h
(f(x2)� f(x1))/h

...
(f(x

m

)� f(x
m�1))/h

3

7775
.

(3.22)

f(x)	

x1	 x2	 x3	 x4	x0=0	 xm=1	 x	 x	

f(x)	

x1	 x2	 x3	 x4	 xm=1	x0=0	

Figure 3.4: Rectangular rule quadrature (left) and finite di↵erence approx-
imation (right) on a subdivision of [0, 1] with interval length h.

As the interval length h ! 0, the summation and di↵erence operators
converge to integral and di↵erential operators, such that for each x 2 (0, 1),

L

h

y !
Z

x

0

f(s)ds, L

�1
h

y ! f

0(x). (3.23)

Further, we have that composition of the two operators for h ! 0,

y = L

h

L

�1
h

y ! f(x) =

Z
x

a

f

0(s)ds, (3.24)
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corresponds to the Fundamental theorem of Calculus.
The matrix L

�1
h

in (3.21) corresponds to a backward di↵erence operator
D

�
h

, and similarly we can define a forward di↵erence operator D+
h

, by

D

�
h

= h

�1

2

666664

1 0 0 · · · 0
�1 1 0 · · · 0
...

. . .
...

0 · · · �1 1 0
0 · · · 0 �1 1

3

777775
, D

+
h

= h

�1

2

666664

�1 1 0 · · · 0
0 �1 1 · · · 0
...

. . .
...

0 · · · 0 �1 1
0 · · · 0 0 �1

3

777775
.

The matrix-matrix product D+
h

D

�
h

takes the form,

D

+
h

D

�
h

= h

�2

2

666664

�1 1 0 · · · 0
1 �2 1 · · · 0
...

. . .
...

0 · · · 1 �2 1
0 · · · 0 1 �2

3

777775
, (3.25)

which corresponds to an approximation of a second order di↵erential oper-
ator. The matrix A = �D

+
h

D

�
h

is diagonally dominant, that is

|a
ii

| �
X

j 6=i

|a
ij

|, (3.26)

and symmetric positive definite, since

x

T

Ax = ...+ x

i

(�x

i�1 + 2x
i

� x

i+1) + ...+ x

n

(�x

n�1 + 2x
n

)

= ...� x

i

x

i�1 + 2x2
i

� x

i

x

i+1 � x

i+1xi

+ ...� x

n�1xn

+ 2x2
n

= ...+ (x
i

� x

i�1)
2 + (x

i+1 � x

i

)2 + ...+ x

2
n

> 0,

for any non-zero vector x.
Since the second order di↵erence matrix A = �(D+

h

D

�
h

) is SPD, we
know that there exists a unique invers A�1. For example, for a 5⇥5 matrix
we have that

A = 1/h2

2

66664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3

77775
, A

�1 = h

2
/6

2

66664

5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

3

77775
,

where we note that while A is a sparse matrix with only few non-zero
elements, the inverse A

�1 is a full matrix without zero elements.
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The finite di↵erence method

For a vector y = u(x
i

), the ith row of the matrix D

+
h

D

�
h

corresponds to a
finite di↵erence stencil, with u(x

i

) function values sampled at the nodes x
i

of the subdivision (grid) of the interval I = (0, 1),

[(D+
h

D

�
h

)y]
i

=
u(x

i+1)� 2u(x
i

) + u(x
i�1)

h

2

=

u(x
i+1)� u(x

i

)

h

� u(x
i

)� u(x
i�1)

h

h

.

Similarly, the di↵erence operatorsD�
h

andD

+
h

correspond to finite di↵erence
stencils over the subdivision, and we have that for x 2 I,

(D+
h

D

�
h

)y ! u

00(x), (D�
h

)y ! u

0(x), (D+
h

)y ! u

0(x) (3.27)

as the grid size h ! 0.

-1	 2	 -1	

-1	

-1	

-1	-1	 4	

Figure 3.5: Example of finite di↵erence stencils corresponding to the di↵er-
ence operator �(D+

h

D

�
h

) over structured grids in R (left) and R2 (right).

The finite di↵erence method for solving di↵erential equations is based
approximation of di↵erential operators by such di↵erence stencils over a
grid. We can thus, for example, approximate the di↵erential equation

�u

00(x) + u(x) = f(x), (3.28)

by the matrix equation

�(D+
h

D

�
h

)y + (D�
h

)y = b, (3.29)

with b

i

= f(x
i

). The finite di↵erence method extends to multiple dimen-
sions, where the di↵erence stencils are constructed over structured Cartesian
grids.
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3.3 Orthogonal projectors

Orthogonal matrix

A square matrix Q 2 Rm⇥m is ortogonal, or unitary, if QT = Q

�1. With q

j

the columns of Q we thus have that QT

Q = I, or in matrix form,

2

6664

q1

q2
...
q

m

3

7775

2

66664
q1 q2 · · · q

m

3

77775
=

2

6664

1
1

. . .
1

3

7775
,

so that the columns q
j

form an orthonormal basis for Rm.
Multiplication by an orthogonal matrix preserves the angle between two

vectors x, y 2 Rm, since

(Qx,Qy) = (Qx)TQy = x

T

Q

T

Qy = x

T

y = (x, y), (3.30)

and thus also the length of a vector,

kQxk = (Qx,Qx)1/2 = (x, x)1/2 = kxk. (3.31)

As a linear transformation an orthogonal matrix acts as a rotation or
reflection, depending on the sign of the determinant which is always either
1 or �1.

Orthogonal projector

A projection matrix, or projector, is a square matrix P such that

P

2 = PP = P. (3.32)

It follows that
Pv = v, (3.33)

for all vectors v 2 range(P ), since v is of the form v = Px for some x, and
thus Pv = P

2
x = Px = v. For v /2 range(P ) we have that P (Pv � v) =

P

2
v � Pv = 0, so that the projection error Pv � v 2 null(P ).
The matrix I � P is also a projector, the complementary projector to

P , since (I � P )2 = I � 2P + P

2 = I � P . The range and null space of
the two projectors are related as range(I � P ) = null(P ) and range(P ) =
null(I � P ), so that P and I � P separates Rm into two subspaces S1
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and S2, since the only v 2 range(P ) \ range(I � P ) is the zero vector;
v = v � Pv = (I � P )v = {0}.

If the two subspaces S1 and S2 are orthogonal, we say that P is an
orthogonal projector. This is equivalent to the condition P = P

T , since the
inner product between two vectors in S1 and S2 then vanish,

(Px, (I � P )y) = (Px)T (I � P )y = x

T

P

T (I � P )y = x

T (P � P

2)y = 0.

If P is an orthogonal projector, so is I � P , since (I � P )(I � P ) =
I � 2P + P

2 = I � P . For example, the orthogonal projection P

y

x of one
vector x in the direction of another vector y, its orthogonal complement
P

?y

x, and P

r

y

x, its reflection in y, correspond to the projectors

P

y

=
yy

T

kyk2 , P

?y = I � yy

T

kyk2 , P

r

y

= I � 2
yy

T

kyk2 . (3.34)

Figure 3.6: The projector P

y

x of one vector x in the direction of another
vector y, its orthogonal complement P?y

x, and the reflector P r

y

x.

Gram-Schmidt orthogonalization

For a square matrix A 2 Rm⇥m we denote the successive vector spaces
spanned by its column vectors a

j

as

ha1i ✓ ha1, a2i ✓ ha1, a2, a3i ✓ ... ✓ ha1, ..., ami. (3.35)

Assuming that A has full rank, we now ask if we for each such vector space
can construct an orthonormal basis q

j

such that hq1, ..., qji = ha1, ..., aji, for
all j  m.

Given a

j

, we can successively construct vectors v

j

that are orthogonal
to the spaces hq1, ..., qj�1i, since by (2.13) we have that

v

j

= a

j

�
j�1X

i=1

(a
j

, q

i

)q
i

, (3.36)

for all j = 1, ...,m, where each vector is then normalized to get q
j

= v

j

/kv
j

k.
This is the classical Gram-Schmidt iteration.
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With Q̂

j�1 the m ⇥ j � 1 matrix consiting of the orthogonal column
vectors q

i

, we can rewrite (3.36) in terms of an orthogonal projector P
j

,

v

j

= a

j

�
j�1X

i=1

(a
j

, q

i

)q
i

= a

j

�
j�1X

i=1

q

i

q

T

i

a

j

= (I � Q̂

j�1Q̂
T

j�1)aj = P

j

a

j

,

with Q̂

j�1Q̂
T

j�1 an orthogonal projector onto range(Q̂
j�1), the column space

of Q̂
j�1, and P

j

= I � Q̂

j�1Q̂
T

j�1 an orthogonal projector onto the space

orthogonal to range(Q̂
j�1), with P1 = I. Thus the Gram-Schmidt iteration

can be expressed in terms of the projector P

j

as q

j

= P

j

a

j

/kP
j

a

j

k, for
j = 1, ...,m.

Alternatively, P
j

can be constructed by successive multiplication of pro-
jectors P?qi = I � q

i

q

T

i

, orthogonal to each individual vector q
i

, such that

P

j

= P

?qj�1 · · ·P?q2
P

?q1
. (3.37)

The modified Gram-Schmidt iteration corresponds to instead using this for-
mula to construct P

j

, which leads to a more robust algorithm that the
classical Gram-Schmidt iteration.

Algorithm 1: Modified Gram-Schmidt iteration

for i = 1 to m do
v

i

= a

i

end
for i = 1 to m do

r

ii

= kv
i

k
q

i

= v

i

/r

ii

for j = 1 to i+ 1 do
r

ij

= q

T

i

v

j

v

j

= v

j

� r

ij

q

i

end
end
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3.4 QR factorization

By introducing the notation r

ij

= (a
j

, q

i

) and r

ii

= ka
j

�
P

j�1
i=1 (aj, qi)qik,

we can rewrite the Gram-Schmidt iteration (3.36) as

a1 = r11q1

a2 = r12q1 + r22q2 (3.38)
...

a

m

= r1mq1 + ...+ r2mqm

which corresponds to the QR factorization A = QR, with Q an orthogonal
matrix and R an upper triangular matrix, that is

2

66664
a1 a2 · · · a

m

3

77775
=

2

66664
q1 q2 · · · q

m

3

77775

2

6664

r11 r12 · · · r1m

r22

. . .
...

r

mm

3

7775
.

Existence and uniqueness of the QR factorization of a non-singular matrix
A follows by construction from Algorithm 1.

The modified Gram-Schmidt iteration of Algorithm 1 corresponds to
successive multiplication of upper triangular matrices R

k

on the right of
the matrix A, such that the resulting matrix Q is an orthogonal matrix,

AR1R2 · · ·Rm

= Q, (3.39)

and with the notation R

�1 = R1R2 · · ·Rm

, the matrix R = (R�1)�1 is also
an upper triangular matrix.

3.5 Exercises

Problem 8. Prove the equivalence of the definitions of the induced matrix
norm, defined by

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.40)


