
Greedy algorithms

Input Algorithm Goal
?

Given a problem, how do we design an algorithm that 
solves the problem? There are several strategies:

1. Try to modify an existing algorithm.
2. Construct an algorithm belonging to a special 
suitable class of algorithms with a given design 
pattern.
3. Develop an entirely new algorithm.

If we use strategy 1 we can, for instance, use one of 
these algorithms:

Graph algorithms
Flow algorithms
Linear Programming (Simplex method)
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We will describe three classes of algorithms that 
can be used in case 2: 
 
Greedy algorithms 
 
Divide & Conquer algorithms 
 
Dynamic Programming algorithms

But first, an example of how we can modify an 
existing algorithm. Remember DFS:

The algorithm can be used both for directed and 
undirected graphs.

Set R = ∅ 
For all v ∈ V 
 Set vis(v) = 0 
End for 
DFS(s)             

DFS(u): 
 
Set vis(u) = 1 
Add u to R 
For each v such that v is adjacent to u 
 If vis(v) = 0 
  DFS(v) 
 End if 
End for             
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DIRECTED CYCLE 
Input: A directed graph G 
Goal: Does G contain a directed cycle?

Modified DFS:

DFS_Mod(u): 
 
Set vis(u) = 0,5 
For each v such that v is adjacent to u 
 If vis(v) = 0,5 
         Return "Yes" 
 Else if vis(v) = 0 
  DFS_Mod(v) 
 End if 
End for      
Set vis(u) = 1       

We can prove  that this algorithm stops and returns 
Yes or No correctly.

 
For all v ∈ V 
 Set vis(v) = 0 
End for 
While there is v such that vis(v) = 0 
 DFS_Mod(v)    
Return "No "        
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We now describe greedy algorithms:

Let us say that I is an instance of a problem P. Let us 
assume that a solution to the problem can be represented 
as a sequence of choices C[1], C[2], ..., C[k]. So we want to 
find a good set of choices. 

Let us also assume that when the first choice is made, the 
remaining choices form a new instance I' of the same 
problem. 

A greedy algorithm is an algorithm that makes the first 
choice C[1] following some very simple strategy and then 
use this method recursively on I'. With simple we usually 
mean that we make a choice that seems good at this 
moment without looking ahead into the consequences of the 
choice.

A special case is when we have an optimization problem 
where we have some functional F depending on the choices 
C[1], ... and we want to maximize F. A greedy choice is 
then to choose C[1] so that the local increase in F is 
maximal.

Greedy algorithms should always have polynomial time 
complexity. Often they have linear time complexity.



                    

Ex:  
We have the numbers 10, 5 and 1.  We are given the integer N. We want to write N as a 
sum of  of the numbers  10, 5, 1. (We can use a number more than one time.) That is, 
we want to find numbers a,b,c such that N = a 10 + b 5 + c. Furthermore, we want to 
use as few terms as possible. That is, a + b + c should be as small as possible.                    

The solution is obvious: As long as N is greater than 9 we subtract 10 to get a new 
number N and repeat. When N is smaller than 10 we subtract 5 if possible. Then 
we subtract 1 until we reach 0. So, for instance,  N = 37 gives a = 3, b = 1, c = 2. 
Obviously, we can not do better than this.  This is a greedy algorithm.                    

A greedy algorithm can fail for two reasons: 

1. It can fail to give us an optimal solution 

Ex:  We take the same problem as before, but instead of 10, 5, 1 we use the 
numbers 6, 5, 1.  If we have N = 10,  the greedy algorithm gives us 10 = 6 + 1 + 1 
+ 1+ 1.  But the best solution is 10 = 5 + 5. 



 

Ex:  The same problem but with the numbers 6, 5, 2. If we take N = 7, the greedy 
algorithm subtracts 6 from 7 and leaves us with 1. Then the algorithm fails to 
reach the sum 7. The correct solution is 7= 5 + 2. 

But when do greedy algorithms work? We study some examples. 

Ex: 
We want to drive along a road. We represent the road as a coordinate 
axis. We start at x = 0 and want to go to a city x[n]. Along the road 
there are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for 
A kilometers. We can fill the tank in the cities but nowhere else. We want 
to reach x[n] and tank as few times as possible. How do we do that? 

2. It can fail to give us a solution 

We might think that we should use some complicated strategy but 
that is not so. In fact, a greedy algorithm works: 



 

 

We will look at some more examples: 

If we are at x[i] and have enough gas left to reach x[i+1] we do not fill gas. Otherwise, 
we get a full tank at x[i]. If it is at all possible to get to x[n], this algorithm will take us 
there and fill gas as few times as possible. 

The time-complexity is O(n). 

Set L = ∅ 
Set i = 0 
Set T = A 
While TRUE do 
 While x[i+1]- x[i] =<   T and i  <  n  do 
                 Set T = T - (x[i+1] - x[i]) 
                 Set i = i + 1 
 End while 
        If i = n then 
                 Halt 
        If x[i+1] - x[i] <  A then 
                 Return "Impossible" 
        Set T = A 
 Put i at the end of L 
End while 

A usual way show that a greedy algorithm is correct is to show that 
the first choice C[1] cannot be wrong (and inductively no other 
choices either). Let us assume that S* is a solution other than our 
and S* does not contain C[1]. We might then try to rearrange S* 
very little and obtain a new solution S' which does contain C[1]. If 
this can be done, the greedy algorithm is correct. ,



 

The time-complexity is O(n). 



                                    



           



The Minimal Spanning Tree Problem          

If G is a connected graph,then a spanning tree is a tree that contains all 
nodes in G.          

Obs:  If | V | = n and  T   G is a tree then 
 
T is spanning   <=>    | E | = n - 1          

Let us take a weighted graph.

A minimal spanning tree  (MST) is a spanning tree such that          

MST



           

The MST problem: 
 
Input: W weighted connected graph G 
Goal: A MST in G          

There are two famous greedy algorithms for solving this problem:
Kruskal's algorithm and Prim's algorithm.

Kruskal's algorithm                

Sort the edges such that w(e₁) ≤ w( e₂) ≤ ... 
Set A = ∅ 
For each eᵢ in the sorted order 
 If A∪{eᵢ} does not contain any cycle 
  Set A = A∪{eᵢ} 
 End if 
End for 
Return A                

A first form              

How do we decide the complexity? How do you know if 
a set of edges contains a cycle or not? We have to 
describe the algorithm more in details.              



Data structures for identifying cycles: 
 
We represent disjoint sets of nodes with a balanced tree. One of the 
nodes is the root of the tree. This node will be the "name" of the set. In 
practice, the tree is implemented by pointers. Each node has a pointer 
pointing to its father.  
 
We have the following operations: 
 
MakeSet(v) creates the set {v} 
This is just a tree with one mode. 
                Complexity: O( 1 ) 
 
FindSet(v) finds the set containing v 
It start with v and finds a path (maximum length  log | V | ) to the name 
of the set. 
               Complexity : O( log |V| ) 
 
Make Union(u,v) makes the union of the sets containing u and v 
Here we must merge two trees. Basically, the shorter tree is added to 
the root, giving a new branch. 
              Complexity : O( log 1V1 )              



MakeSet(v) =
 p(x) = x
 rank(x) = 0

FindSet(x) =
 while x = p(x)
  x = p(x)
 Return x

MakeUnion(x,y) =
 rx = FindSet(x)
 ry = FindSet(y)
 if rx = ry
 Return
 if rank(rx) > rank(ry)
  p(ry) = rx
 else
  p(rx) = ry
  if rank(rx) = rank(ry)
   rank(ry) = rank(ry) + 1

An implementation could look like this:



           



                      
Another similar algorithm is Prim's algorithm   

It can be showed that the complexity is O( |E| log |V|)   

Here we use a heap. A heap is essentially a balanced binary tree 
with numbers in at each node. Each node has a number no greater 
than those of its children's. The root will contain the smallest number 
in the heap. The heap can be adjusted effectively if one of the 
numbers change. 



Kruskal: Let (u,v) be an edge chosen at any stage in 
Kruskal. Let S be all nodes that can be reached from u 
be paths using edges already chosen. Then u ∈ S and 
v ∈ S. We can see that (u,v) must be an edge of 
minimal weight cross the cut. The theorem says that 
this edge must be in all MST:s. Then the choice of (u,v) 
can not be wrong.
Prim: Let S be the nodes chosen at a certain stage. 
Let (u,v) be the edge chosen in the next step.Then the 
theorem says that this edge must be in all MST:s. Then 
the choice of (u,v) can not be wrong.

The proof can be modified to cover the case when 
edges are allowed to have equal weights.

Proof of correctness: For simplicity we assume that all edges 
have different weights. We use the following lemma: Assume 
that all edges have different weight. A cut S in G is a 
partitioning  V = S ∪ (V-S).
 
Theorem.
Let S, V-S be a cut (none of S or V-S is empty). Let e = 
(u,v) be an edge from S till V-S and such that e:s weight is 
minimal. Then e must be in every MST in G.

Proof: Let T be a MST that does not contain (u,v). There is a 
path from u to v in T. The path contains some edge (x, y) 
going from S to V-S. Since  (u,v)  has least weight of all 
such edges we see that T + {(u, v)}-{x, y)} is a MST with 
lower weight, which is impossible. 


