
Greedy algorithms

Input Algorithm Goal
?

Given a problem, how do we design an algorithm that
solves the problem? There are several strategies:

1. Try to modify an existing algorithm.
2. Construct an algorithm belonging to a special
suitable class of algorithms with a given design
pattern.
3. Develop an entirely new algorithm.

If we use strategy 1 we can, for instance, use one of
these algorithms:

Graph algorithms
Flow algorithms
Linear Programming (Simplex method)

Lecture 2

We will describe three classes of algorithms that
can be used in case 2:

Greedy algorithms

Divide & Conquer algorithms

Dynamic Programming algorithms

But first, an example of how we can modify an
existing algorithm. Remember DFS:

The algorithm can be used both for directed and
undirected graphs.

Set R = ∅
For all v ∈ V
 Set vis(v) = 0
End for
DFS(s)

DFS(u):

Set vis(u) = 1
Add u to R
For each v such that v is adjacent to u
 If vis(v) = 0
 DFS(v)
 End if
End for

Page 2

DIRECTED CYCLE
Input: A directed graph G
Goal: Does G contain a directed cycle?

Modified DFS:

DFS_Mod(u):

Set vis(u) = 0,5
For each v such that v is adjacent to u
 If vis(v) = 0,5
 Return "Yes"
 Else if vis(v) = 0
 DFS_Mod(v)
 End if
End for
Set vis(u) = 1

We can prove that this algorithm stops and returns
Yes or No correctly.

For all v ∈ V
 Set vis(v) = 0
End for
While there is v such that vis(v) = 0
 DFS_Mod(v)
Return "No "

Page 3

We now describe greedy algorithms:

Let us say that I is an instance of a problem P. Let us
assume that a solution to the problem can be represented
as a sequence of choices C[1], C[2], ..., C[k]. So we want to
find a good set of choices.

Let us also assume that when the first choice is made, the
remaining choices form a new instance I' of the same
problem.

A greedy algorithm is an algorithm that makes the first
choice C[1] following some very simple strategy and then
use this method recursively on I'. With simple we usually
mean that we make a choice that seems good at this
moment without looking ahead into the consequences of the
choice.

A special case is when we have an optimization problem
where we have some functional F depending on the choices
C[1], ... and we want to maximize F. A greedy choice is
then to choose C[1] so that the local increase in F is
maximal.

Greedy algorithms should always have polynomial time
complexity. Often they have linear time complexity.

Ex:
We have the numbers 10, 5 and 1. We are given the integer N. We want to write N as a
sum of of the numbers 10, 5, 1. (We can use a number more than one time.) That is,
we want to find numbers a,b,c such that N = a 10 + b 5 + c. Furthermore, we want to
use as few terms as possible. That is, a + b + c should be as small as possible.

The solution is obvious: As long as N is greater than 9 we subtract 10 to get a new
number N and repeat. When N is smaller than 10 we subtract 5 if possible. Then
we subtract 1 until we reach 0. So, for instance, N = 37 gives a = 3, b = 1, c = 2.
Obviously, we can not do better than this. This is a greedy algorithm.

A greedy algorithm can fail for two reasons:

1. It can fail to give us an optimal solution

Ex: We take the same problem as before, but instead of 10, 5, 1 we use the
numbers 6, 5, 1. If we have N = 10, the greedy algorithm gives us 10 = 6 + 1 + 1
+ 1+ 1. But the best solution is 10 = 5 + 5.

Ex: The same problem but with the numbers 6, 5, 2. If we take N = 7, the greedy
algorithm subtracts 6 from 7 and leaves us with 1. Then the algorithm fails to
reach the sum 7. The correct solution is 7= 5 + 2.

But when do greedy algorithms work? We study some examples.

Ex:
We want to drive along a road. We represent the road as a coordinate
axis. We start at x = 0 and want to go to a city x[n]. Along the road
there are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for
A kilometers. We can fill the tank in the cities but nowhere else. We want
to reach x[n] and tank as few times as possible. How do we do that?

2. It can fail to give us a solution

We might think that we should use some complicated strategy but
that is not so. In fact, a greedy algorithm works:

We will look at some more examples:

If we are at x[i] and have enough gas left to reach x[i+1] we do not fill gas. Otherwise,
we get a full tank at x[i]. If it is at all possible to get to x[n], this algorithm will take us
there and fill gas as few times as possible.

The time-complexity is O(n).

Set L = ∅
Set i = 0
Set T = A
While TRUE do
 While x[i+1]- x[i] =< T and i < n do
 Set T = T - (x[i+1] - x[i])
 Set i = i + 1
 End while
 If i = n then
 Halt
 If x[i+1] - x[i] < A then
 Return "Impossible"
 Set T = A
 Put i at the end of L
End while

A usual way show that a greedy algorithm is correct is to show that
the first choice C[1] cannot be wrong (and inductively no other
choices either). Let us assume that S* is a solution other than our
and S* does not contain C[1]. We might then try to rearrange S*
very little and obtain a new solution S' which does contain C[1]. If
this can be done, the greedy algorithm is correct. ,

The time-complexity is O(n).

The Minimal Spanning Tree Problem

If G is a connected graph,then a spanning tree is a tree that contains all
nodes in G.

Obs: If | V | = n and T G is a tree then

T is spanning <=> | E | = n - 1

Let us take a weighted graph.

A minimal spanning tree (MST) is a spanning tree such that

MST

The MST problem:

Input: W weighted connected graph G
Goal: A MST in G

There are two famous greedy algorithms for solving this problem:
Kruskal's algorithm and Prim's algorithm.

Kruskal's algorithm

Sort the edges such that w(e₁) ≤ w(e₂) ≤ ...
Set A = ∅
For each eᵢ in the sorted order
 If A∪{eᵢ} does not contain any cycle
 Set A = A∪{eᵢ}
 End if
End for
Return A

A first form

How do we decide the complexity? How do you know if
a set of edges contains a cycle or not? We have to
describe the algorithm more in details.

Data structures for identifying cycles:

We represent disjoint sets of nodes with a balanced tree. One of the
nodes is the root of the tree. This node will be the "name" of the set. In
practice, the tree is implemented by pointers. Each node has a pointer
pointing to its father.

We have the following operations:

MakeSet(v) creates the set {v}
This is just a tree with one mode.
 Complexity: O(1)

FindSet(v) finds the set containing v
It start with v and finds a path (maximum length log | V |) to the name
of the set.
 Complexity : O(log |V|)

Make Union(u,v) makes the union of the sets containing u and v
Here we must merge two trees. Basically, the shorter tree is added to
the root, giving a new branch.
 Complexity : O(log 1V1)

MakeSet(v) =
 p(x) = x
 rank(x) = 0

FindSet(x) =
 while x = p(x)
 x = p(x)
 Return x

MakeUnion(x,y) =
 rx = FindSet(x)
 ry = FindSet(y)
 if rx = ry
 Return
 if rank(rx) > rank(ry)
 p(ry) = rx
 else
 p(rx) = ry
 if rank(rx) = rank(ry)
 rank(ry) = rank(ry) + 1

An implementation could look like this:

Another similar algorithm is Prim's algorithm

It can be showed that the complexity is O(|E| log |V|)

Here we use a heap. A heap is essentially a balanced binary tree
with numbers in at each node. Each node has a number no greater
than those of its children's. The root will contain the smallest number
in the heap. The heap can be adjusted effectively if one of the
numbers change.

Kruskal: Let (u,v) be an edge chosen at any stage in
Kruskal. Let S be all nodes that can be reached from u
be paths using edges already chosen. Then u ∈ S and
v ∈ S. We can see that (u,v) must be an edge of
minimal weight cross the cut. The theorem says that
this edge must be in all MST:s. Then the choice of (u,v)
can not be wrong.
Prim: Let S be the nodes chosen at a certain stage.
Let (u,v) be the edge chosen in the next step.Then the
theorem says that this edge must be in all MST:s. Then
the choice of (u,v) can not be wrong.

The proof can be modified to cover the case when
edges are allowed to have equal weights.

Proof of correctness: For simplicity we assume that all edges
have different weights. We use the following lemma: Assume
that all edges have different weight. A cut S in G is a
partitioning V = S ∪ (V-S).
 
Theorem.
Let S, V-S be a cut (none of S or V-S is empty). Let e =
(u,v) be an edge from S till V-S and such that e:s weight is
minimal. Then e must be in every MST in G.

Proof: Let T be a MST that does not contain (u,v). There is a
path from u to v in T. The path contains some edge (x, y)
going from S to V-S. Since (u,v) has least weight of all
such edges we see that T + {(u, v)}-{x, y)} is a MST with
lower weight, which is impossible.

