
Chapter 3

Matrices and Linear
transformations

A linear transformation acting on a Euclidian vector can be represented as
a matrix. Many of the concepts we introduce in this chapter generalize to
linear operators acting on functions in infinite dimensional spaces, which is
fundamental for the study of partial di↵erential equations.

3.1 Matrix algebra

Linear transformation as a matrix

A function f : Rn ! Rn is a linear transformation, or linear map, if

(i) f(x+ z) = f(x) + f(z),

(ii) f(↵x) = ↵f(x),

for all x, z 2 Rn and ↵ 2 R. In the standard basis (e1, ..., en) we can express
the ith component of the vector y = f(x) 2 Rn as

y

i

= f

i

(x) = f

i

(
nX

j=1

x

j

e

j

) =
nX

j=1

x

j

f

i

(e
j

),

where f

i

: Rn ! R for all i = 1, ..., n. In component form, we write this as

y1 = a11x1 + ...+ a1nxn

...
y

n

= a

n1x1 + ...+ a

nn

x

n

(3.1)
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with a

ij

= f

i

(e
j

). That is y = Ax, where A is an n⇥ n matrix

A =

2

64
a11 · · · a1n
...

. . .
...

a

n1 · · · a

nn

3

75 . (3.2)

The set of real valued m ⇥ n-matrices defines a vector space Rm⇥n,
by the basic operations of (i) component-wise matrix addition and (ii)
component-wise scalar multiplication. A matrix A 2 Rm⇥n also defines
a linear map x 7! Ax, by the basic operations of the matrix-vector product
and component-wise scalar multiplication.

A(x+ y) = Ax+ Ay, x, y 2 Rn

,

A(↵x) = ↵Ax, x 2 Rn

,↵ 2 R.

Matrix-vector product

In index notation we write a vector b = (b
i

), and a matrix A = (a
ij

), with i

the row index and j is the column index. For an m⇥ n matrix A, and x an
n-dimensional column vector, we define the matrix-vector product b = Ax

to be the m-dimensional column vector

b

i

=
nX

j=1

a

ij

x

j

, i = 1, ...,m. (3.3)

With a

j

the jth column of A, an m-vector, we can express the matrix-
vector product as a linear combination of the set of column vectors {a

j

}n
j=1

b = Ax =
nX

j=1

x

j

a

j

, (3.4)

or in matrix form
2

66664
b

3

77775
=

2

66664
a1 a2 · · · a

n

3

77775

2

6664

x1

x2
...
x

n

3

7775
= x1

2

66664
a1

3

77775
+ x2

2

66664
a2

3

77775
+ ...+ x

n

2

66664
a

n

3

77775
.

The vector space spanned by {a
j

}n
j=1 is the column space, or range, of

the matrix A, so that range(A) = span{a
j

}n
j=1. The null space, or kernel,
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of an m ⇥ n matrix A is the set of vectors x 2 Rn such that Ax = 0, with
0 the zero vector in Rm, that is null(A) = {x 2 Rn : Ax = 0}.

The dimension of the column space is the column rank of the matrix,
rank(A). We note that the column rank is equal to the row rank, corre-
sponding to the space spanned by the row vectors of A, and the maximal
rank of an m⇥ n matrix is min(m,n), which we refer to as full rank.

Matrix-matrix product

The matrix-matrix product B = AC is a matrix in Rl⇥n, defined for two
matrices A 2 Rl⇥m and C 2 Rm⇥n, as

b

ij

=
mX

k=1

a

ik

c

kj

, (3.5)

with B = (b
ij

), A = (a
ik

) and C = (c
kj

). Here we may sometimes omit
the summation sign and use the Einstein convention where repeated in-
dices imply summation over those same indices, so that we can express the
matrix-matrix product (3.5) as b

ij

= a

ik

c

kj

.
Similarly as for the matrix-vector product, we may interpret the columns

b

j

of the matrix-matrix product B as a linear combination of the columns
a

k

with coe�cients c
kj

b

j

= Ac

j

=
mX

k=1

c

kj

a

k

, (3.6)

or in matrix form
2

66664
b1 b2 · · · b

n

3

77775
=

2

66664
a1 a2 · · · a

m

3

77775

2

4
c1 c2 · · · c

n

3

5
.

For two linear transformations f(x) and g(x) on Rn, with associated
square n⇥n-matrices A and C, the matrix-matrix product AC corresponds
to the composition f � g(x) = f(g(x)).

Matrix transpose and the inner and outer products

The transpose (or adjoint) of an m ⇥ n matrix A = (a
ij

) is defined as the
matrix A

T = (a
ji

), with the column and row indices reversed.
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Using the matrix transpose, the inner product of two vectors v, w 2 Rn

can be expressed in terms of a matrix-matrix product vTw, as

(v, w) = v

T

w =
⇥
v1 · · · v

n

⇤

2

666664

w1

...

w

m

3

777775
= v1w1 + ...+ v

n

w

n

. (3.7)

Similarly, the outer product, or tensor product, of two vectors v, w 2 Rn,
denoted by v ⌦ w, is defined as the m ⇥ n matrix corresponding to the
matrix-matrix product vwT , that is

v ⌦ w = vw

T =

2

666664

v1

...

v

m

3

777775

⇥
w1 · · · w
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⇤
=

2

666664

v1w1 · · · v1wn
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...

v

m

v1 v

m

w

n

3

777775
.

In tensor notation we can express the inner and the outer products as
(v, w) = v

i

w

i

and v ⌦ w = v

i

w

j

.
The transpose has the property that (AB)T = B

T

A

T , and thus satisfies
the equation (Ax, y) = (x,AT

y), for any x 2 Rn

, y 2 Rm, which follows
from the definition of the inner product in Euclidian vector spaces, since

(Ax, y) = (Ax)Ty = x

T

A

T

y = (x,AT

y). (3.8)

A is said to be symmetric (or self-adjoint) if A = A

T , so that (Ax, y) =
(x,Ay). If in addition (Ax, x) > 0 for all non-zero x 2 Rm, we say that A
is a symmetric positive definite matrix. A matrix is said to be normal if
A

T

A = AA

T .

Matrix norms

To measure the size of a matrix, we first introduce the Frobenius norm,
corresponding to the l2-norm of the matrix A interpreted as an mn-vector,
that is

kAk
F

=

 
mX

i=1

nX

j=1

|a
ij

|2
!1/2

. (3.9)

The Frobenius norm is the norm associated to the following inner prod-
uct over the space Rm⇥n,

(A,B) = tr(AT

B), (3.10)
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with the trace of a square n⇥ n matrix C = (c
ij

) defined by

tr(C) =
nX

i=1

c

ii

. (3.11)

IIxII2=1	 IIAII2=1	

Figure 3.1: Illustration of the map x 7! Ax through the unit circles kxk2 = 1
(left) and kAk2 = 1 (right), for the matrix A in (3.13).

Matrix norms for A 2 Rm⇥n are also induced by the respective l
p

-norms
on Rm and Rn, in the form

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.12)

The last equality follows from the definition of a norm, and shows that
the induced matrix norm can be defined in terms of its map of unit vectors,
which we illustrate in Figure 3.1 and Figure 3.2 for the matrix

A =


1 2
0 2

�
. (3.13)

Determinant

The determinant of a square matrix A is denoted det(A) or |A|. For a 2⇥2
matrix we have the explicit formula

det(A) =

����
a b

c d

���� = ad� bc. (3.14)

For example, for the matrix in (3.13) we have that det(A) = 1 ·2�2 ·0 = 2.
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The formula for the determinant is extended to a 3⇥ 3 matrix by

det(A) =

������

a b c

d e f

g h i

������
= a

����
e f

h i

����� b

����
d f

g i

����+ c

����
d e

g h

����

= a(ei� fh)� b(di� fg) + c(dh� eg), (3.15)

and by recursion this formula can be generalized to any square matrix.
For a 2 ⇥ 2 matrix the absolute value of the determinant equals to the

area of the parallelogram that represents the image of the unit square under
the map x 7! Ax, and similarly for a 3⇥3 matrix the volume of the mapped
parallelepiped from the unit cube. More generally, the absolute value of the
determinant represents a scale factor of the linear transformation A.

(1,0)	

(0,1)	

(1,0)	

(0,1)	

(2,2)	 (3,2)	

Figure 3.2: The map x 7! Ax (right) of the unit square (left), for the matrix
A in (3.13), with the corresponding area given by | det(A)| = 2.

Matrix inverse

If the column vectors {a
j

}n
j=1 of a square n⇥ n matrix form a basis for Rn,

then all vectors b 2 Rn can be expressed as b = Ax, where x 2 Rn is the
vector of coordinates of b in the basis {a

j

}n
j=1. In particular, all x 2 Rn can

be expressed as x = Ix, where I is the square n⇥ n identity matrix in Rn,
taking the standard basis as column vectors,

I =

2

66664
e1 e2 · · · e

n

3

77775
=

2

6664

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

3

7775
.
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A square matrix A 2 Rn⇥n is invertible, or non-singular, if there exists
an inverse matrix A

�1 2 Rn⇥n such that A

�1
A = AA

�1 = I, which also
means that (A�1)�1 = A. Further, for two matrices A and B we have the
property that (AB)�1 = B

�1
A

�1.

Theorem 4. For a square matrix A 2 Rn⇥n, the following is equivalent:

(i) A has an inverse A

�1,

(ii) det(A) 6= 0,

(iii) rank(A) = n,

(iv) range(A) = Rn

(v) null(A) = {0}.

The matrix inverse is unique. To see this, assume that there exist two
matrices B1 and B2 such that AB1 = AB2 = I; which by linearity gives
that A(B1 � B2) = 0, but since null(A) = {0} we have that B1 = B2.

3.2 Some linear transformations

A�ne transformations

An a�ne transformation, or a�ne map, is a linear transformation composed
with a translation, corresponding to a matrix multiplication followed by
vector addition. For example, counter-clockwise rotation of a vector by an
angle ✓ in R2, takes the form of multiplication by a Givens rotation matrix,

A =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (3.16)

whereas translation corresponds to addition by a position vector b, so that
the a�ne map takes the form x 7! Ax+ b.

We note that any triangle is related to each other through an a�ne
map; for example in the Euclidian plane R2, or to a surface (manifold) in
Euclidian space R3, see Figure 3.3.

Remark 1. We note that by using homogeneous coordinates, or projective
coordinates, we can express any a�ne transformation as a matrix multi-
plication, including translation. In R2 a vector x = (x1, x2)T in standard
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(1,0)	

(0,1)	
Ax+b	

R2	
x2	

x1	
(1,0,0)	

(0,1,0)	

Ax+b	

R3	

x2	

x1	

x3	

Figure 3.3: A�ne maps x 7! Ax + b of the reference triangle with corners
in (0, 0), (1, 0), (0, 1); in R2 (left); to a surface (manifold) in R3 (right).

Cartesian coordinates, is represented as x = (x1, x2, 1)T in homogeneous
coordinates, so that the rotation matrix takes the form

A =

2

4
cos(✓) � sin(✓) 0
sin(✓) cos(✓) 0
0 0 1

3

5
, (3.17)

and translation by a vector (t1, t2) is expressed by the matrix

A =

2

4
1 0 t1

0 1 t2

0 0 1

3

5
. (3.18)

Di↵erence and summation matrices

Subdivide the interval [0, 1] into a structured grid with m intervals and
m+1 nodes x

i

, such that 0 = x0 < x1 < x2 < ... < x

m

= 1, with a constant
interval length h = x

i

� x

i�1, so that x
i

= x0 + ih.
For each x = x

i

we may approximate the integral of a function f(x)
with f(0) = 0, by a rectangular quadrature rule, so that

F (x
i

) =

Z
xi

0

f(s)ds ⇡
iX

k=1

f(x
k

)h = F

h

(x
i

), (3.19)

which defines a function F

h

(x
i

) for all nodes x

i

in the subdivision. This
linear transformation of the vector of sampled function values at the nodes
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y = (f(x1), ..., f(xm

))T can be expressed in the following matrix equation,

L

h

y =

2

6664

h 0 · · · 0
h h · · · 0
...

. . .
...

h h · · · h

3

7775

2

6664

f(x1)
f(x2)

...
f(x

m

)

3

7775
=

2

6664

f(x1)h
f(x1)h+ f(x2)h

...P
m

k=1 f(xk

)h

3

7775
, (3.20)

where L

h

is a summation matrix, with its inverse given by

L

h

= h

2

6664

1 0 · · · 0
1 1 · · · 0
...

. . .
...

1 1 · · · 1

3

7775
, L

�1
h

= h

�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775
. (3.21)

The inverse matrix L

�1
h

corresponds to a di↵erence matrix over the same
subdivision. To see this, multiply the matrix L

�1
h

to y = f(x
i

),

L

�1
h

y = h

�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775

2

6664

f(x1)
f(x2)

...
f(x

m

)

3

7775
=

2

6664

f(x1)/h
(f(x2)� f(x1))/h

...
(f(x

m

)� f(x
m�1))/h

3

7775
.

(3.22)

f(x)	

x1	 x2	 x3	 x4	x0=0	 xm=1	 x	 x	

f(x)	

x1	 x2	 x3	 x4	 xm=1	x0=0	

Figure 3.4: Rectangular rule quadrature (left) and finite di↵erence approx-
imation (right) on a subdivision of [0, 1] with interval length h.

As the interval length h ! 0, the summation and di↵erence matrices
converge to integral and di↵erential operators, such that for each x 2 (0, 1),

L

h

y !
Z

x

0

f(s)ds, L

�1
h

y ! f

0(x). (3.23)
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Further, we have for the product of the two matrices that

y = L

h

L

�1
h

y ! f(x) =

Z
x

a

f

0(s)ds, (3.24)

as h ! 0, which corresponds to the Fundamental theorem of Calculus.

Di↵erence operators

The matrix L

�1
h

in (3.21) corresponds to a backward di↵erence operator
D

�
h

, and similarly we can define a forward di↵erence operator D+
h

, by

D

�
h

= h

�1

2

666664

1 0 0 · · · 0
�1 1 0 · · · 0
...

. . .
...

0 · · · �1 1 0
0 · · · 0 �1 1

3

777775
, D

+
h

= h

�1

2

666664

�1 1 0 · · · 0
0 �1 1 · · · 0
...

. . .
...

0 · · · 0 �1 1
0 · · · 0 0 �1

3

777775
.

The matrix-matrix product D+
h

D

�
h

takes the form,

D

+
h

D

�
h

= h

�2

2

666664

�1 1 0 · · · 0
1 �2 1 · · · 0
...

. . .
...

0 · · · 1 �2 1
0 · · · 0 1 �2

3

777775
, (3.25)

which corresponds to an approximation of a second order di↵erential oper-
ator. The matrix A = �D

+
h

D

�
h

is diagonally dominant, that is

|a
ii

| �
X

j 6=i

|a
ij

|, (3.26)

and symmetric positive definite, since

x

T

Ax = ...+ x

i

(�x

i�1 + 2x
i

� x

i+1) + ...+ x

n

(�x

n�1 + 2x
n

)

= ...� x

i

x

i�1 + 2x2
i

� x

i

x

i+1 � x

i+1xi

+ ...� x

n�1xn

+ 2x2
n

= ...+ (x
i

� x

i�1)
2 + (x

i+1 � x

i

)2 + ...+ x

2
n

> 0,

for any non-zero vector x.
Since the second order di↵erence matrix A = �(D+

h

D

�
h

) is symmetric
positive definite, there exists a unique invers A�1. For example, in the case
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of a 5⇥ 5 matrix we have that

A = 1/h2

2

66664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3

77775
, A

�1 = h

2
/6

2

66664

5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

3

77775
,

where we note that while the second order di↵erence operator A is a sparse
matrix with only few non-zero elements, the inverse A

�1 is a full matrix
without zero elements, corresponding to a weighted integral (summation)
operator.

The finite di↵erence method

For a vector y = u(x
i

), the ith row of the matrix D

+
h

D

�
h

corresponds to a
finite di↵erence stencil, with u(x

i

) function values sampled at the nodes x
i

of the structured grid representing the subdivision of the interval I = (0, 1),

[(D+
h

D

�
h

)y]
i

=
u(x

i+1)� 2u(x
i

) + u(x
i�1)

h

2

=

u(x
i+1)� u(x

i

)

h

� u(x
i

)� u(x
i�1)

h

h

.

Similarly, the di↵erence operatorsD�
h

andD

+
h

correspond to finite di↵erence
stencils over the grid, and we have that for x 2 I,

(D+
h

D

�
h

)y ! u

00(x), (D�
h

)y ! u

0(x), (D+
h

)y ! u

0(x), (3.27)

as the grid size h ! 0.
The finite di↵erence method for solving di↵erential equations is based

on approximation of di↵erential operators by such di↵erence stencils over a
grid. We can thus, for example, approximate the di↵erential equation

�u

00(x) + u(x) = f(x), (3.28)

by the matrix equation

�(D+
h

D

�
h

)y + (D�
h

)y = b, (3.29)

with b

i

= f(x
i

). The finite di↵erence method extends to multiple dimen-
sions, where the di↵erence stencils are defined over structured Cartesian
grids in R2 or R3.
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-1	 2	 -1	

-1	

-1	

-1	-1	 4	

Figure 3.5: Example of finite di↵erence stencils corresponding to the di↵er-
ence operator �(D+

h

D

�
h

) over structured grids in R (left) and R2 (right).

Convolution

3.3 Orthogonal projectors

Orthogonal matrix

A square matrix Q 2 Rn⇥n is ortogonal, or unitary, if QT = Q

�1. With q

j

the columns of Q we thus have that QT

Q = I, or in matrix form,

2

6664

q1

q2
...
q

n

3

7775

2

66664
q1 q2 · · · q

n

3

77775
=

2

6664

1
1

. . .
1

3

7775
,

so that the columns q
j

form an orthonormal basis for Rn.
Multiplication by an orthogonal matrix preserves the angle between two

vectors x, y 2 Rn, since

(Qx,Qy) = (Qx)TQy = x

T

Q

T

Qy = x

T

y = (x, y), (3.30)

and thus also the length of a vector,

kQxk = (Qx,Qx)1/2 = (x, x)1/2 = kxk. (3.31)

As a linear transformation an orthogonal matrix acts as a rotation or
reflection, depending on the sign of the determinant which is always either
1 or �1.
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Orthogonal projector

A projection matrix, or projector, is a square matrix P such that

P

2 = PP = P. (3.32)

It follows that
Pv = v, (3.33)

for all vectors v 2 range(P ), since v is of the form v = Px for some x, and
thus Pv = P

2
x = Px = v. For v /2 range(P ) we have that P (Pv � v) =

P

2
v � Pv = 0, so that the projection error Pv � v 2 null(P ).
The matrix I � P is also a projector, the complementary projector to

P , since (I � P )2 = I � 2P + P

2 = I � P . The range and null space of
the two projectors are related as range(I � P ) = null(P ) and range(P ) =
null(I � P ), so that P and I � P separates Rn into two subspaces S1

and S2, since the only v 2 range(P ) \ range(I � P ) is the zero vector;
v = v � Pv = (I � P )v = {0}.

If the two subspaces S1 and S2 are orthogonal, we say that P is an
orthogonal projector. This is equivalent to the condition P = P

T , since the
inner product between two vectors in S1 and S2 then vanish,

(Px, (I � P )y) = (Px)T (I � P )y = x

T

P

T (I � P )y = x

T (P � P

2)y = 0.

If P is an orthogonal projector, so is I�P . For example, the orthogonal
projection P

y

x of one vector x in the direction of another vector y, its
orthogonal complement P

?y

x, and P

r

y

x, its reflection in y, correspond to
the projectors

P

y

=
yy

T

kyk2 , P

?y = I � yy

T

kyk2 , P

r

y

= I � 2
yy

T

kyk2 . (3.34)

Gram-Schmidt orthogonalization

For a square matrix A 2 Rn⇥n we denote the successive vector spaces
spanned by its column vectors a

j

as

ha1i ✓ ha1, a2i ✓ ha1, a2, a3i ✓ ... ✓ ha1, ..., ami. (3.35)

Assuming that A has full rank, we now ask if we for each such vector space
can construct an orthonormal basis q

j

such that hq1, ..., qji = ha1, ..., aji, for
all j  n.
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x 

y 

Pyx 

P⊥yx 

Pr
yx 

Figure 3.6: The projector P

y

x of one vector x in the direction of another
vector y, its orthogonal complement P?y

x, and the reflector P r

y

x.

Given a

j

, we can successively construct vectors v

j

that are orthogonal
to the spaces hq1, ..., qj�1i, since by (2.13) we have that

v

j

= a

j

�
j�1X

i=1

(a
j

, q

i

)q
i

, (3.36)

for all j = 1, ..., n, where each vector is then normalized to get q
j

= v

j

/kv
j

k.
This is the classical Gram-Schmidt iteration.

With Q̂

j�1 the n ⇥ j � 1 matrix consiting of the orthogonal column
vectors q

i

, we can rewrite (3.36) in terms of an orthogonal projector P
j

,

v

j

= a

j

�
j�1X

i=1

(a
j

, q

i

)q
i

= a

j

�
j�1X

i=1

q

i

q

T

i

a

j

= (I � Q̂

j�1Q̂
T

j�1)aj = P

j

a

j

,

with Q̂

j�1Q̂
T

j�1 an orthogonal projector onto range(Q̂
j�1), the column space

of Q̂
j�1, and P

j

= I � Q̂

j�1Q̂
T

j�1 an orthogonal projector onto the space

orthogonal to range(Q̂
j�1), with P1 = I. Thus the Gram-Schmidt iteration

can be expressed in terms of the projector P

j

as q

j

= P

j

a

j

/kP
j

a

j

k, for
j = 1, ..., n.

Alternatively, P
j

can be constructed by successive multiplication of pro-
jectors P?qi = I � q

i

q

T

i

, orthogonal to each individual vector q
i

, such that

P

j

= P

?qj�1 · · ·P?q2
P

?q1
. (3.37)
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The modified Gram-Schmidt iteration corresponds to instead using this for-
mula to construct P

j

, which leads to a more robust algorithm that the
classical Gram-Schmidt iteration.

Algorithm 1: Modified Gram-Schmidt iteration

for i = 1 to n do
v

i

= a

i

end
for i = 1 to n do

r

ii

= kv
i

k
q

i

= v

i

/r

ii

for j = 1 to i+ 1 do
r

ij

= q

T

i

v

j

v

j

= v

j

� r

ij

q

i

end
end

3.4 QR factorization

By introducing the notation r

ij

= (a
j

, q

i

) and r

ii

= ka
j

�
P

j�1
i=1 (aj, qi)qik,

we can rewrite the Gram-Schmidt iteration (3.36) as

a1 = r11q1

a2 = r12q1 + r22q2 (3.38)
...

a

n

= r1nq1 + ...+ r2nqn

which corresponds to the QR factorization A = QR, with Q an orthogonal
matrix and R an upper triangular matrix, that is

2

66664
a1 a2 · · · a

n

3

77775
=

2

66664
q1 q2 · · · q

n

3

77775

2

6664

r11 r12 · · · r1n

r22

. . .
...

r

nn

3

7775
.

Existence and uniqueness of the QR factorization of a non-singular matrix
A follows by construction from Algorithm 1.
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The modified Gram-Schmidt iteration of Algorithm 1 corresponds to
successive multiplication of upper triangular matrices R

k

on the right of
the matrix A, such that the resulting matrix Q is an orthogonal matrix,

AR1R2 · · ·Rn

= Q, (3.39)

and with the notation R

�1 = R1R2 · · ·Rn

, the matrix R = (R�1)�1 is also
an upper triangular matrix.

3.5 Exercises

Problem 8. Prove the equivalence of the definitions of the induced matrix
norm, defined by

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.40)


