
Introduction and
Administration



Information About the Course

◮ Oral information given and agreements made during lectures.

◮ Read at: https://www.kth.se/social/course/DD2448

◮ Read your KTH email: <username>@kth.se

If this fails, then email dog@kth.se.

Use DD2448 in the subject line.



What is cryptography?

Cryptography is concerned with the conceptualization, definition,

and construction of computing systems that address security

concerns.

– Oded Goldreich, Foundations of Cryptography, 1997



Applications of Cryptography

Historically.

◮ Military and diplomatic secret communication.

◮ Communication between banks, e.g., credit card transactions.

Modern Time.

◮ Protecting satellite TV from leaching.

◮ Secrecy and authenticity on the Internet, mobile phones, etc.

◮ Credit cards.



Applications of Cryptography

Today.

◮ Distributed file systems, authenticity of blocks in bit torrents,
anonymous remailers, Tor-network, etc.

◮ RFID tags, Internet banking, Försäkringskassan, Skatteverket,
“e-legitimation”.

Future.

◮ Secure distributed computing (multiparty computation):
election schemes, auctions, secure cloud computing, etc.

◮ Variations of signatures, cryptosystem, and other primitives
with special properties, e.g., group signatures, identity based
encryption, etc.



Goal

The goal of the course is to

◮ give an overview of modern cryptography

in order that students should

◮ know how to evaluate and, to some extent, create
cryptographic constructions, and

◮ to be able to read and to extract useful information from
research papers in cryptography.



Prerequisites

◮ DD1352 Algorithms, data structures and complexity, or
DD2354 Algorithms and complexity.

◮ Knowledge of mathematics and theory of algorithms
corresponding to the required courses of the D or
F-programmes at KTH.



Tentative Plan of Content (1/2)

◮ Administration, introduction, classical cryptography.

◮ Symmetric ciphers, substitution-permutation networks, linear
cryptanalysis, differential cryptanalysis.

◮ AES, Feistel networks, DES, modes of operations,
DES-variants.

◮ Entropy and perfect secrecy.

◮ Repetition of elementary number theory,

◮ Public-key cryptography, RSA, primality testing, textbook
RSA, semantic security.



Tentative Plan of Content (2/2)

◮ RSA in ROM, Rabin, discrete logarithms, Diffie-Hellman,
El Gamal.

◮ Security notions of hash functions, random oracles, iterated
constructions, SHA, universal hash functions.

◮ Message authentication codes, identification schemes,
signature schemes, PKI.

◮ Elliptic curve cryptography.

◮ Pseudorandom generators.

◮ Guest lecture.

◮ Make-up time and/or special topic.



Working Example

Throughout the course we will use electronic voting systems to
motivate the notions introduced and how to use them.



Course Requirements

Group project about authentication.
Students are divided into groups of three. If the number of
students is not divisible by three, then one or two groups will have
four members.

◮ Describe and provide a security analysis of a way to
authenticate a voter in an Internet voting system (in abstract
form).

Judged by quality of description and level of rigor in the
analysis. (20P)

◮ Study a real world example of the abstract description, i.e.,
study how the abstract description is turned into a
specification.

Judged by level of detail and relevance of topics. (20P)



Course Requirements

Group project about authentication (cont.).

◮ Implement an HTML/CSS/JavaScript client that uses the real
world authentication scheme.

Judged by how complete and robust it is. (20P)

◮ Identify security flaws at any level in the real world
authentication scheme, theoretical, in publicly available code
fragments, or in solutions of other groups.

Judged by the quality and number of observations. (20P)



Course Requirements

Group project about authentication (cont.).

◮ Code is provided for encryption in client (will be discussed in
class).

◮ Pluggable server will be provided for server side. Students
write plugin.

◮ Students are expected to form groups naturally, but we reserve
the right to reassign students if necessary to make them more
balanced in terms of skills in theory and in programming.



Course Requirements

Homework 1-2. Each homework is a set of problems giving
I -points and T -points (I ≥ 10 and I + T ≥ 100).

◮ Solved in groups of up to three students, which may differ for
each homework.

◮ Only informal discussions are allowed.

◮ Each student writes and submits his own solution.

Detailed rules and advice are found on the course homepage.

Only complete homeworks can be replaced following years.

(Less than previous years, but more than two such homeworks.)



Qualify for Oral Exam (Possibly)

There may be a multiple choice exam during one of the lectures
with a pass/fail grade to qualify for the oral exam.



Course Requirements

Oral Exam. Purpose is to give a fair grade.

Discussion starts from submitted solutions and the project to
ensure that the grading corresponds to the skills of the student,
but can move on to any subject covered in the course.

◮ For each problem or project I -points or T -points may be
added or removed from the original grading depending on the
understanding shown by the student.

◮ The updated number of points of a problem is never negative
and never more than the nominal maximum number of points
of the problem stated in the homework.

◮ A single O-point is awarded after passing the exam.



Deadlines

The deadlines in this course are given on the

homepage and are strict. Late solutions are
awarded zero points.

However, if practically possible, then we
negotiate the deadlines to not conflict

unnecessarily with other courses.



Grading

To earn a given grade the requirements of all lower grades must be
satisfied as well, with A = I + T + P + O.

Grade Requirements

E I ≥ 30, T ≥ 40, P ≥ 30, and O ≥ 1.
D A ≥ 120.
C A ≥ 140 and P ≥ 50.
B A ≥ 170.
A A ≥ 210 and P ≥ 60.



Kattis

Kattis is a judging server for programming competitions and for
grading programming assignments. We use it for all isolated
exercises where code is submitted as a solution.

We assume that your Kattis id is the same as your KTH user
name. If this is not the case, then email us your Kattis user name
and use the subject Krypto16 Kattis.



Latex

◮ Latex is the standard typesetting tool for mathematics.

◮ It is the fastest way to produce mathematical writing. You
must use it to typeset your solutions.

◮ The best way to learn it is to read:
http://tobi.oetiker.ch/lshort/lshort.pdf

http://tobi.oetiker.ch/lshort/lshort.pdf


Introduction to Ciphers



Cipher (Symmetric Cryptosystem)

E E−1cm

k k

m

c = Ek(m) m = E−1k (c)

Alice Bob



Cipher (Symmetric Cryptosystem)

Definition. A cipher (symmetric cryptosystem) is a tuple
(Gen,P,E,E−1), where

◮ Gen is a probabilistic key generation algorithm outputting
keys from a key space K,

◮ P is a set of plaintexts,

◮ E is a deterministic encryption algorithm, and

◮ E−1 is a deterministic decryption algorithm,

such that E−1
k (Ek(m)) = m for every message m ∈ P and k ∈ K.

The set C = {Ek(m) | m ∈ P ∧ k ∈ K} called the set of
ciphertexts.



Attacks

Throughout the course we consider various attacks on
cryptosystems. With small changes, these attacks make sense both
for symmetric and asymmetric cryptosystems.

◮ Ciphertext-only attack.

◮ Known-plaintext attack

◮ Chosen-plaintext attack

◮ Chosen-ciphertext attack



Ceasar Cipher (Shift Cipher)

Consider English, with alphabet A-Z , where denotes space,
thought of as integers 0-26, i.e., Z27

◮ Key. Random letter k ∈ Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Zn
27 gives ciphertext

c = (c1, . . . , cn), where ci = mi + k mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Zn
27 gives plaintext

m = (m1, . . . ,mn), where mi = ci − k mod 27.



Ceasar Cipher Example

Encoding.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
000102030405060708091011121314151617181920212223242526

Key: G = 6
Plaintext. B R I B E L U L A T O B U Y J A S

Plaintext. 011708010426112011002619142601202426090018

Ciphertext. 072314071005172617060525200507260305150624

Ciphertext. H X O H K F R R G F Z U F H D F P G Y



Statistical Attack Against Ceasar (1/3)

Decrypt with all possible keys and see
if some English shows up, or more
precisely...



Statistical Attack Against Ceasar (2/3)

Written English Letter Frequency Table F [·].

A 0.072 J 0.001 S 0.056
B 0.013 K 0.007 T 0.080
C 0.024 L 0.035 U 0.024
D 0.037 M 0.021 V 0.009
E 0.112 N 0.059 W 0.021
F 0.020 O 0.066 X 0.001
G 0.018 P 0.017 Y 0.017
H 0.054 Q 0.001 Z 0.001
I 0.061 R 0.053 0.120

Note that the same frequencies appear in a ciphertext of written
English, but in shifted order!



Statistical Attack Against Ceasar (3/3)

◮ Check that the plaintext of our ciphertext has similar
frequencies as written English.

◮ Find the key k that maximizes the inner product
T (E−1

k (C )) · F , where T (s) and F denotes the frequency
tables of the string s and English.

This usually gives the correct key k.



Affine Cipher

Affine Cipher.

◮ Key. Random pair k = (a, b), where a ∈ Z27 is relatively
prime to 27, and b ∈ Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Zn
27 gives ciphertext

c = (c1, . . . , cn), where ci = ami + b mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Zn
27 gives plaintext

m = (m1, . . . ,mn), where mi = (ci − b)a−1 mod 27.



Substitution Cipher

Ceasar cipher and affine cipher are examples of substitution ciphers.

Substitution Cipher.

◮ Key. Random permutation σ ∈ S of the symbols in the
alphabet, for some subset S of all permutations.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Zn
27 gives ciphertext

c = (c1, . . . , cn), where ci = σ(mi ).

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Zn
27 gives plaintext

m = (m1, . . . ,mn), where mi = σ−1(ci ).



Digrams and Trigrams

◮ A digram is an ordered pair of symbols.

◮ A trigram is an ordered triple of symbols.

◮ It is useful to compute frequency tables for the most frequent
digrams and trigrams, and not only the frequencies for
individual symbols.



Generic Attack Against Substitution Cipher

1. Compute symbol/digram/trigram frequency tables for the
candidate language and the ciphertext.

2. Try to match symbols/digrams/trigrams with similar
frequencies.

3. Try to recognize words to confirm your guesses (we would use
a dictionary (or Google!) here).

4. Backtrack/repeat until the plaintext can be guessed.

This is hard when several symbols have similar frequencies. A large
amount of ciphertext is needed. How can we ensure this?



Vigénère

Vigénère Cipher.

◮ Key. k = (k0, . . . , kl−1), where ki ∈ Z27 is random.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Zn
27 gives ciphertext

c = (c1, . . . , cn), where ci = mi + ki mod l mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Zn
27 gives plaintext

m = (m1, . . . ,mn), where mi = ci − ki mod l mod 27.

We could even make a variant of Vigénère based on the affine
cipher, but is Vigénère really any better than Ceasar?



Attack Vigénère (1/2)

Index of Coincidence.

◮ Each probability distribution p1, . . . , pn on n symbols may be
viewed as a point p = (p1, . . . , pn) on a n − 1 dimensional
hyperplane in Rn orthogonal to the vector 1

◮ Such a point p = (p1, . . . , pn) is at distance
√

F (p) from the
origin, where F (p) =

∑n
i=1 p

2
i .

◮ It is clear that p is closest to the origin, when p is the uniform
distribution, i.e., when F (p) is minimized.

◮ F (p) is invariant under permutation of the underlying symbols
−→ tool to check if a set of symbols is the result of some

substitution cipher.



Attack Vigénère (2/2)

1. For l = 1, 2, 3, . . ., we form











C0

C1
...

Cl−1











=











c0 cl c2l · · ·
c1 cl+1 c2l+1 · · ·
...

...
...

. . .

cl−1 c2l−1 c3l−1 · · ·











and compute fl =
1
l

∑l−1
i=0 F (Ci ).

2. The local maximum with smallest l is probably the right
length.

3. Then attack each Ci separately to recover ki , using the attack
against the Ceasar cipher.



Hill Cipher

Hill Cipher.

◮ Key. k = A, where A is an invertible l × l -matrix over Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Zn
27 gives ciphertext

c = (c1, . . . , cn), where (computed modulo 27):

(ci+0, . . . , ci+l−1) = (mi+0, . . . ,mi+l−1)A .

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Zn
27 gives plaintext

m = (m1, . . . ,mn), where (computed modulo 27):

(mi+0, . . . ,mi+l−1) = (ci+0, . . . , ci+l−1)A
−1 .

for i = 1, l + 1, 2l + 1, . . .

The Hill cipher is easy to break using a known plaintext attack.



Permutation Cipher (Transposition Cipher)

The permutation cipher is a special case of the Hill cipher.

Permutation Cipher.

◮ Key. Random permutation π ∈ S for some subset S of the
set of permutations of {0, 1, 2, . . . , l − 1}.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Zn
27 gives ciphertext

c = (c1, . . . , cn), where ci = m⌊i/l⌋+π(i mod l).

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Zn
27 gives plaintext

m = (m1, . . . ,mn), where mi = c⌊i/l⌋+π−1(i mod l).



Last Lecture: Simple Ciphers

◮ Caesar cipher and affine cipher: mi 7→ ami + b.

◮ Substitution cipher: mi 7→ σ(mi ).

◮ Vigénère cipher: mi 7→ mi + ki mod l .

◮ Hill cipher (linear map):

(m1, . . . ,ml) 7→ A(m1, . . . ,ml )

◮ Transposition cipher (permutation):

(m1, . . . ,ml ) 7→ (mπ(1), . . . ,mπ(l))



Substitution-Permutation
Networks



Good Block Cipher

◮ For every key a block-cipher with plaintext/ciphertext space
{0, 1}n gives a permutation of {0, 1}n .
What would be an good cipher?

◮ A good cipher is one where each key gives a randomly
chosen permutation of {0, 1}n .
Why is this not possible?

◮ The representation of a single typical function
{0, 1}n → {0, 1}n requires roughly n2n bits
(147 × 106·3 for n = 64)

◮ What should we look for instead?



Something Smaller

Idea. Compose smaller permutations into a large one. Mix the
components “thoroughly”.

Shannon (1948) calls this:

◮ Diffusion. “In the method of diffusion the statistical
structure of M which leads to its redundancy is dissipated into
long range statistics...”

◮ Confusion. “The method of confusion is to make the relation
between the simple statistics of E and the simple description
of K a very complex and involved one.”



Substitution-Permutation Networks (1/2)

◮ Block-size. We use a block-size of n = ℓ×m bits.

◮ Key Schedule. Round r uses its own round key Kr derived
from the key K using a key schedule.

◮ Each Round. In each round we invoke:

1. Round Key. xor with the round key.

2. Substitution. ℓ substitution boxes each acting on one m-bit
word (m-bit S-Boxes).

3. Permutation. A permutation πi acting on {1, . . . , n} to
reorder the n bits.



Substitution-Permutation Networks (2/2)

Ui−1

Ki

⊕

xor with
round key

Xi

Si ,1 Si ,2 Si ,3 Si ,4 substitute
words

Yi

πiπi permute
bits

Ui

Round i



A Simple Block Cipher (1/2)

◮ |P | = |C | = 16

◮ 4 rounds

◮ |K | = 32

◮ r th round key Kr consists of
the 4r th to the (4r + 16)th
bits of key K .

◮ 4-bit S-Boxes



A Simple Block Cipher (2/2)

S-Boxes the same (S 6= S−1)

◮ Y = S(X )

◮ Can be described using 4 boolean functions

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

16-bit permutation (π = π−1)
Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16



AES



Advanced Encryption Standard (AES)

◮ Chosen in worldwide public competition 1997-2000.
Probably no backdoors. Increased confidence!

◮ Winning proposal named “Rijndael”, by Rijmen and Daemen

◮ Family of 128-bit block ciphers:
Key bits 128 192 256

Rounds 10 12 14

◮ The first key-recovery attacks on full AES due to Bogdanov,
Khovratovich, and Rechberger, published 2011, is faster than
brute force by a factor of about 4.

◮ ... algebraics of AES make some people uneasy.



AES

◮ AddRoundKey: xor with round key.

◮ SubBytes: substitution of bytes.

◮ ShiftRows: permutation of bytes.

◮ MixColumns: linear map.



Similar to SPN

The 128 bit state is interpreted as a 4× 4 matrix of bytes.

Something like a mix between substitution, permutation, affine
version of Hill cipher. In each round!



SubBytes

SubBytes is field inversion in F28 plus affine map in F8
2.



ShiftRows

ShiftRows is a cyclic shift of bytes with offsets: 0, 1, 2, and 3.



MixColumns

MixColumns is an invertible linear map over F28 (with irreducibile
polynomial x8 + x4 + x3 + x + 1) with good diffusion.



Decryption

Uses the following transforms:

◮ AddRoundKey

◮ InvSubBytes

◮ InvShiftRows

◮ InvMixColumns



Feistel Networks



Feistel Networks

◮ Identical rounds are iterated, but with different round keys.

◮ The input to the ith round is divided in a left and right part,
denoted Li−1 and R i−1.

◮ f is a function for which it is somewhat hard to find
pre-images, but f is typically not invertible!

◮ One round is defined by:

Li = R i−1

R i = Li−1 ⊕ f (R i−1,K i )

where K i is the ith round key.



Feistel Round

Li−1left rightR i−1

K i

f

compute
leftR iLicopy right



Feistel Cipher



Inverse Feistel Round

Feistel Round.

Li = R i−1

R i = Li−1 ⊕ f (R i−1,K i )

Inverse Feistel Round.

Li−1 = R i ⊕ f (Li ,K i )

R i−1 = Li

Reverse direction and swap left and right!



DES



Quote

The news here is not that DES is insecure, that hardware

algorithm-crackers can be built, or that a 56-bit key length is too

short. ... The news is how long the government has been denying

that these machines were possible. As recently as 8 June 98,

Robert Litt, principal associate deputy attorney general at the

Department of Justice, denied that it was possible for the FBI to

crack DES. ... My comment was that the FBI is either

incompetent or lying, or both.

– Bruce Schneier, 1998



Data Encryption Standard (DES)

◮ Developed at IBM in 1975, or perhaps...

◮ at National Security Agency (NSA). Nobody knows for
certain.

◮ 16-round Feistel network.

◮ Key schedule derives permuted bits for each round key from a
56-bit key. Supposedly not 64-bit due to parity bits.

◮ Let us look a little at the Feistel-function f .



DES’s f -Function

R i−132 bits

E (R i−1)

E

48 bits

K i

48 bits

B1 B2 B3 B4 B5 B6 B7 B8 48 bits

c1 c2 c3 c4 c5 c6 c7 c8 32 bits

S1 S2 S3 S4 S5 S6 S7 S8

f (R i−1,K i )

P



Security of DES

◮ Brute Force. Try all 256 keys. Done in practice with special
chip by Electronic Frontier Foundation, 1998. Likely much
earlier by NSA and others.

◮ Differential Cryptanalysis. 247 chosen plaintexts, Biham and
Shamir, 1991. (approach: late 80’ies). Known earlier by IBM
and NSA. DES is surprisingly resistant!

◮ Linear Cryptanalysis. 243 known plaintexts, Matsui, 1993.
Probably not known by IBM and NSA!



Double DES

We have seen that the key space of DES is too small. One way to
increase it is to use DES twice, so called “double DES”.

2DESk1,k2(x) = DESk2(DESk1(x))

Is this more secure than DES?

This question is valid for any cipher.



Meet-In-the-Middle Attack

◮ Get hold of a plaintext-ciphertext pair (m, c)

◮ Compute X = {x | k1 ∈ KDES ∧ x = Ek1(m)}.

◮ For k2 ∈ KDES check if E−1
k2

(c) = Ek1(m) for some k1 using
the table X . If so, then (k1, k2) is a good candidate.

◮ Repeat with (m′, c ′), starting from the set of candidate keys
to identify correct key.



Triple DES

What about triple DES?

3DESk1,k2,k3(x) = DESk3(DESk2(DESk1(x)))

◮ Seemingly 112 bit “effective” key size.

◮ 3 times as slow as DES. DES is slow in software, and this is
even worse. One of the motivations of AES.

◮ Triple DES is still considered to be secure.



Modes of Operation



Modes of Operation

◮ Electronic codebook mode (ECB mode).

◮ Cipher feedback mode (CFB mode).

◮ Cipher block chaining mode (CBC mode).

◮ Output feedback mode (OFB mode).

◮ Counter mode (CTR mode).



ECB Mode

Electronic codebook mode

Encrypt each block independently:

ci = Ek(mi )

◮ Identical plaintext blocks give identical ciphertext blocks.

◮ How can we avoid this?



CFB Mode

Cipher feedback mode

xor plaintext block with previous ciphertext block after encryption:

c0 = initialization vector

ci = mi ⊕ Ek(ci−1)

◮ Sequential encryption and parallel decryption.

◮ Self-synchronizing.

◮ How do we pick the initialization vector?



CBC Mode

Cipher block chaining mode

xor plaintext block with previous ciphertext block before
encryption:

c0 = initialization vector

ci = Ek

(

ci−1 ⊕mi

)

◮ Sequential encryption and parallel decryption

◮ Self-synchronizing.



OFB Mode

Output feedback mode

Generate stream, xor plaintexts with stream (emulate “one-time
pad”):

s0 = initialization vector

si = Ek(si−1)

ci = si ⊕mi

◮ Sequential.

◮ Synchronous.

◮ Allows batch processing.

◮ Malleable!



CTR Mode

Counter mode

Generate stream, xor plaintexts with stream (emulate “one-time
pad”):

s0 = initialization vector

si = Ek(s0‖i)
ci = si ⊕mi

◮ Parallel.

◮ Synchronous.

◮ Allows batch processing.

◮ Malleable!



Linear Cryptanalysis of the
SPN



Basic Idea – Linearize

Find an expression of the following form with a high probability of
occurrence.

Pi1 ⊕ · · · ⊕ Pip ⊕ Cj1 ⊕ · · · ⊕ Cjc = Kℓ1,s1 ⊕ · · · ⊕ Kℓk ,sk

Each random plaintext/ciphertext pair gives an estimate of

Kℓ1,s1 ⊕ · · · ⊕ Kℓk ,sk

Collect many pairs and make a better estimate based on the
majority vote.



How do we come up with the desired expression?

How do we compute the required number of
samples?



Bias

Definition. The bias ǫ(X ) of a binary random
variable X is defined by

ǫ(X ) = Pr [X = 0]− 1

2
.

≈ 1/ǫ2(X ) samples are required to estimate X

(Matsui)



Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

Y = S(X ) .

We consider the bias of linear combinations of the form

a · X ⊕ b · Y =

(

⊕

i

aiXi

)

⊕
(

⊕

i

biYi

)

.

Example: X2 ⊕ X3 = Y1 ⊕ Y3 ⊕ Y4

The expression holds in 12 out of the 16
cases. Hence, it has a bias of
(12 − 8)/16 = 4/16 = 1/4.



Linear Approximation of S-Box (2/3)

◮ Let NL(a, b) be the number of zero-outcomes of a · X ⊕ b · Y .

◮ The bias is then

ǫ(a · X ⊕ b · Y ) =
NL(a, b)− 8

16
,

since there are four bits in X , and Y is determined by X .



Linear Approximation Table (3/3)

NL(a, b)− 8



This gives linear approximation for one round.

How do we come up with linear approximation for more rounds?



Piling-Up Lemma

Lemma. Let X1, . . . ,Xt be independent binary random variables
and let ǫi = ǫ(Xi). Then

ǫ

(

⊕

i

Xi

)

= 2t−1
∏

i

ǫi .

Proof. Case t = 2:

Pr [X1 ⊕ X2 = 0] = Pr [(X1 = 0 ∧ X1 = 0) ∨ (X1 = 1 ∧ X1 = 1)]

= (
1

2
+ ǫ1)(

1

2
+ ǫ2) + (

1

2
− ǫ1)(

1

2
− ǫ2)

=
1

2
+ 2ǫ1ǫ2 .

By induction Pr [X1 ⊕ · · · ⊕ Xt = 0] = 1
2 + 2t−1

∏

i ǫi



Linear Trail

Four linear approximations with |ǫi | = 1/4

S12 : X1 ⊕ X3 ⊕ X4 = Y2

S22 : X2 = Y2 ⊕ Y4

S32 : X2 = Y2 ⊕ Y4

S34 : X2 = Y2 ⊕ Y4

Combine them to get:

U4,6⊕U4,8⊕U4,14⊕U4,16⊕P5⊕P7⊕P8 =
⊕

Ki ,j

with bias |ǫ| = 24−1(14)
4 = 2−5



Attack Idea

◮ Our expression (with bias 2−5) links plaintext bits to input
bits to the 4th round

◮ Partially undo the last round by guessing the last key. Only 2
S-Boxes are involved, i.e., 28 = 256 guesses

◮ For a correct guess, the equation holds with bias 2−5. For a
wrong guess, it holds with bias zero (i.e., probability close to
1/2).

Required pairs 210 ≈ 1000
Attack complexity 218 ≪ 232 operations



Linear Cryptanalysis Summary

1. Find linear approximation of S-Boxes.

2. Compute bias of each approximation.

3. Find linear trails.

4. Compute bias of linear trails.

5. Compute data and time complexity.

6. Estimate key bits from many plaintext-ciphertexts pairs.

Linear cryptanalysis is a known plaintext attack.



Ideal Block Cipher



Negligible Functions

Definition. A function ǫ(n) is negligible if for every constant
c > 0, there exists a constant n0, such that

ǫ(n) <
1

nc

for all n ≥ n0.

Motivation. Events happening with negligible probability can not
be exploited by polynomial time algorithms! (they “never” happen)



Pseudo-Random Function

“Definition”. A function is pseudo-random if no efficient
adversary can distinguish between the function and a random
function.

Definition. A family of functions F : {0, 1}k × {0, 1}n → {0, 1}n
is pseudo-random if for all polynomial time oracle adversaries A

∣

∣

∣

∣

Pr
K

[

AFK (·) = 1
]

− Pr
R:{0,1}n→{0,1}n

[

AR(·) = 1
]

∣

∣

∣

∣

is negligible.



Pseudo-Random Permutation

“Definition”. A permutation and its inverse is pseudo-random if
no efficient adversary can distinguish between the permutation and
its inverse, and a random permutation and its inverse.

Definition. A family of permutations
P : {0, 1}k × {0, 1}n → {0, 1}n are pseudo-random if for all
polynomial time oracle adversaries A

∣

∣

∣

∣

Pr
K

[

APK (·),P−1
K

(·) = 1
]

− Pr
Π∈S2n

[

AΠ(·),Π−1(·) = 1
]

∣

∣

∣

∣

is negligible, where S2n is the set of permutations of {0, 1}n .



Idealized Four-Round Feistel Network

Definition. Feistel round (H for “Horst Feistel”).

HFK
(L,R) = (R , L⊕ F (R ,K ))

Theorem. (Luby and Rackoff) If F is a pseudo-random family of
functions, then

HFk1
,Fk2

,Fk3
,Fk4

(x) = HFk4
(HFk3

(HFk2
(HFk1

(x))))

(and its inverse) is a pseudo-random family of permutations.

Why do we need four rounds?



Perfect Secrecy



Perfect Secrecy (1/3)

When is a cipher perfectly secure?

How should we formalize this?



Perfect Secrecy (2/3)

Definition. A cryptosystem has perfect secrecy if guessing the
plaintext is as hard to do given the ciphertext as it is without it.

Definition. A cryptosystem has perfect secrecy if

Pr [M = m |C = c ] = Pr [M = m]

for every m ∈ M and c ∈ C, where M and C are random variables
taking values overM and C.



Perfect Secrecy (3/3)

Game Based Definition. ExpbA, where A is a strategy:

1. k←R K
2. (m0,m1)← A

3. c = Ek(mb)

4. d ← A(c), with d ∈ {0, 1}
5. Output d .

Definition. A cryptosystem has perfect secrecy if for every
computationally unbounded strategy A,

Pr
[

Exp0A = 1
]

= Pr
[

Exp1A = 1
]

.



One-Time Pad

One-Time Pad (OTP).

◮ Key. Random tuple k = (b0, . . . , bn−1) ∈ Zn
2.

◮ Encrypt. Plaintext m = (m0, . . . ,mn−1) ∈ Zn
2 gives

ciphertext c = (c0, . . . , cn−1), where ci = mi ⊕ bi .

◮ Decrypt. Ciphertext c = (c0, . . . , cn−1) ∈ Zn
2 gives plaintext

m = (m0, . . . ,mn−1), where mi = ci ⊕ bi .



Bayes’ Theorem

Theorem. If A and B are events and Pr[B ] > 0, then

Pr [A |B ] =
Pr [A] Pr [B |A ]

Pr [B ]

Terminology:

Pr [A] – prior probability of A
Pr [B ] – prior probability of B
Pr [A |B ] – posterior probability of A given B

Pr [B |A ] – posterior probability of B given A



One-Time Pad Has Perfect Secrecy

◮ Probabilistic Argument. Bayes implies that:

Pr [M = m |C = c ] =
Pr [M = m] Pr [C = c |M = m ]

Pr [C = c]

= Pr [M = m]
2−n

2−n

= Pr [M = m] .

◮ Simulation Argument. The ciphertext is uniformly and
independently distributed from the plaintext. We can
simulate it on our own!



Bad News

Theorem. “For every cipher with perfect secrecy, the key requires
at least as much space to represent as the plaintext.”

Dangerous in practice to rely on no reuse of, e.g., file
containing randomness!



Information Theory



Information Theory

◮ Information theory is a mathematical theory of
communication.

◮ Typical questions studied are how to compress, transmit, and
store information.

◮ Information theory is also useful to argue about some
cryptographic schemes and protocols.



Classical Information Theory

◮ Memoryless Source Over Finite Alphabet. A source
produces symbols from an alphabet Σ = {a1, . . . , an}. Each
generated symbol is independently distributed.

◮ Binary Channel. A binary channel can (only) send bits.

◮ Coder/Decoder. Our goal is to come up with a scheme to:

1. convert a symbol a from the alphabet Σ into a sequence
(b1, . . . , bl) of bits,

2. send the bits over the channel, and
3. decode the sequence into a again at the receiving end.



Classical Information Theory

Enc Channel Decm m

Alice Bob



Optimization Goal

We want to minimize the expected number of bits/symbol we
send over the binary channel, i.e., if X is a random variable over Σ
and l(x) is the length of the codeword of x then we wish to
minimize

E [l(X )] =
∑

x∈Σ
PX (x) l(x) .



Examples:

◮ X takes values in Σ = {a, b, c , d} with uniform distribution.
How would you encode this?

◮ X takes values in Σ = {a, b, c}, with PX (a) = 1
2 , PX (b) = 1

4 ,
and PX (c) = 1

4 . How would you encode this?

It seems we need l(x) = log |Σ|. This gives the Hartley measure.
hmmm... It seems we need l(x) = log 1

PX (x)
bits to encode x .



Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in X . Then
the entropy of X is

H(X ) = −
∑

x∈X
PX (x) log PX (x) .

Examples and intuition are nice, but what we need is a theorem
that states that this is exactly the right expected length of an
optimal code.



Jensen’s Inequality

Definition. A function f : X → (a, b) is concave if

λ · f (x) + (1− λ)f (y) ≤ f (λ · x + (1− λ)y) ,

for every x , y ∈ (a, b) and 0 ≤ λ ≤ 1.

Theorem. Suppose f is continuous and strictly concave on (a, b),
and X is a discrete random variable. Then

E [f (X )] ≤ f (E [X ]) ,

with equality iff X is constant.

Proof idea. Consider two points + induction over number of
points.



Kraft’s Inequality

Theorem. There exists a prefix-free code E with codeword lengths
lx , for x ∈ Σ if and only if

∑

x∈Σ
2−lx ≤ 1 .

Proof Sketch. ⇒ Given a prefix-free code, we consider the
corresponding binary tree with codewords at the leaves. We may
“fold” it by replacing two sibling leaves E(x) and E(y) by (xy)
with length lx − 1. Repeat.

⇐ Given lengths lx1 ≤ lx2 ≤ . . . ≤ lxn we start with the complete
binary tree of depth lxn and prune it.



Binary Source Coding Theorem (1/2)

Theorem. Let E be an optimal code and let l(x) be the length of
the codeword of x . Then

H(X ) ≤ E [l(X )] < H(X ) + 1 .

Proof of Upper Bound.
Define lx = ⌈− log PX (x)⌉. Then we have

∑

x∈Σ
2−lx ≤

∑

x∈Σ
2log PX (x) =

∑

x∈Σ
PX (x) = 1

Kraft’s inequality implies that there is a code with codeword
lengths lx . Then note that
∑

x∈Σ PX (x) ⌈− log PX (x)⌉ < H(X ) + 1.



Binary Source Coding Theorem (2/2)

Proof of Lower Bound.

E [l(X )] =
∑

x

PX (x) lx

= −
∑

x

PX (x) log 2−lx

≥ −
∑

x

PX (x) log PX (x)

= H(X )



Huffman’s Code (1/2)

Input: {(a1, p1), . . . , (an, pn)}.
Output: 0/1-labeled rooted tree.
Huffman({(a1, p1), . . . , (an, pn)})
(1) S ← {(a1, p1, a1), . . . , (an, pn, an)}
(2) while |S | ≥ 2
(3) Find (bi , pi , ti), (bj , pj , tj) ∈ S with mini-

mal pi and pj .
(4) S ← S \ {(bi , pi , ti ), (bj , pj , tj )}
(5) S ← S ∪ {

(

bi‖bj , pi + pj ,Node(ti , tj )
)

}
(6) return S



Huffman’s Code (2/2)

Theorem. Huffman’s code is optimal.

Proof idea.
There exists an optimal code where the two least likely symbols are
neighbors.



Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in X . Then
the entropy of X is

H(X ) = −
∑

x∈X
PX (x) log PX (x) .

Examples and intuition are nice, but what we need is a theorem
that states that this is exactly the right expected length of an
optimal code.



Conditional Entropy

Definition. Let (X ,Y ) be a random variable taking values in
X × Y. We define conditional entropy

H(X |y) = −
∑

x

PX |Y (x |y ) log PX |Y (x |y ) and

H(X |Y ) =
∑

y

PY (y)H(X |y)

Note that H(X |y) is simply the ordinary entropy function of a
random variable with probability function PX |Y ( · |y ).



Properties of Entropy

Let X be a random variable taking values in X .

Upper Bound. H(X ) = E [− log PX (X )] ≤ log |X |.

Chain Rule and Conditioning.

H(X ,Y ) = −
∑

x ,y

PX ,Y (x , y) log PX ,Y (x , y)

= −
∑

x ,y

PX ,Y (x , y)
(

log PY (y) + log PX |Y (x |y )
)

= −
∑

y

PY (y) log PY (y)−
∑

x ,y

PX ,Y (x , y) log PX |Y (x |y )

= H(Y ) + H(X |Y ) ≤ H(Y ) + H(X )



Elementary Number
Theory



Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d ′

divides d .

◮ The GCD is the positive GCD.

◮ We denote the GCD of m and n by gcd(m, n).



Properties

◮ gcd(m, n) = gcd(n,m)

◮ gcd(m, n) = gcd(m ± n, n)

◮ gcd(m, n) = gcd(m mod n, n)

◮ gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.

◮ gcd(m, n) = gcd(m/2, n) if m is even and n is odd.



Euclidean Algorithm

Euclidean(m, n)
(1) while n 6= 0
(2) t ← n

(3) n← m mod n

(4) m← t

(5) return m



Steins Algorithm (Binary GCD Algorithm)

Stein(m, n)
(1) if m = 0 or n = 0 then return 0
(2) s ← 0
(3) while m and n are even
(4) m← m/2, n← n/2, s ← s + 1
(5) while n is even
(6) n← n/2
(7) while m 6= 0
(8) while m is even
(9) m← m/2
(10) if m < n

(11) Swap(m, n)
(12) m← m − n

(13) m← m/2
(14) return 2sn



Bezout’s Lemma

Lemma. There exists integers a and b such that

gcd(m, n) = am + bn .

Proof. Let d > gcd(m, n) be the smallest positive integer on the
form d = am + bn. Write m = cd + r with 0 < r < d . Then

d > r = m − cd = m − c(am + bn) = (1− ca)m + (−cb)n ,

a contradiction! Thus, r = 0 and d | m. Similarly, d | n.



Extended Euclidean Algorithm (Recursive Version)

ExtendedEuclidean(m, n)
(1) if m mod n = 0
(2) return (0, 1)
(3) else
(4) (x , y)← ExtendedEuclidean(n,m mod n)
(5) return (y , x − y⌊m/n⌋)

If (x , y)← ExtendedEuclidean(m, n) then
gcd(m, n) = xm + yn.



Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab = 1 mod n.

Excercise: Why is this so?



Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n1, . . . , nk be positive pairwise
coprime integers and let a1, . . . , ak be integers. Then the equation
system

x = a1 mod n1

x = a2 mod n2

x = a3 mod n3
...

x = ak mod nk

has a unique solution in {0, . . . ,∏i ni − 1}.



Constructive Proof of CRT

1. Set N = n1n2 · . . . · nk .
2. Find ri and si such that rini + si

N
ni

= 1 (Bezout).

3. Note that

si
N

ni
= 1− rini =

{

1 (mod ni )
0 (mod nj) if j 6= i

4. The solution to the equation system becomes:

x =
k
∑

i=1

(

si
N

ni

)

· ai



The Multiplicative Group

The set Z∗
n = {0 ≤ a < n : gcd(a, n) = 1} forms a group, since:

◮ Closure. It is closed under multiplication modulo n.

◮ Associativity. For x , y , z ∈ Z∗
n:

(xy)z = x(yz) mod n .

◮ Identity. For every x ∈ Z∗
n:

1 · x = x · 1 = x .

◮ Inverse. For every a ∈ Z∗
n exists b ∈ Z∗

n such that:

ab = 1 mod n .



Lagrange’s Theorem

Theorem. If H is a subgroup of a finite group G ,
then |H| divides |G |.

Proof.

1. Define aH = {ah : h ∈ H}. This gives an equivalence relation
x ≈ y ⇔ x = yh ∧ h ∈ H on G .

2. The map φa,b : aH → bH, defined by φa,b(x) = ba−1x is a
bijection, so |aH| = |bH| for a, b ∈ G .



Euler’s Phi-Function (Totient Function)

Definition. Euler’s Phi-function φ(n) counts the number of
integers 0 < a < n relatively prime to n.

◮ Clearly: φ(p) = p − 1 when p is prime.

◮ Similarly: φ(pk) = pk − pk−1 when p is prime and k > 1.

◮ In general: φ
(

∏

i p
ki
i

)

=
∏

i

(

pki − pk−1
i

)

.

Excercise: How does this follow from CRT?



Fermat’s and Euler’s Theorems

Theorem. (Fermat) If b ∈ Z∗
p and p is prime, then

bp−1 = 1 mod p.

Theorem. (Euler) If b ∈ Z∗
n, then bφ(n) = 1 mod n.

Proof. Note that |Z∗
n| = φ(n). b generates a subgroup 〈b〉 of Z∗

n,
so |〈b〉| divides φ(n) and bφ(n) = 1 mod n.



Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form gx for some integer x .

Theorem. If p is prime, then Z∗
p is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group Z∗
p, with prime p,

except the trivial case Z∗
2?

Keep in mind the difference between:

◮ Zp with prime order as an additive group,

◮ Z∗
p with non-prime order as a multiplicative group.

◮ group Gp of prime order.



Public-Key Cryptography



Cipher (Symmetric Cryptosystem)

E E−1cm

k k

m

c = Ek(m) m = E−1k (c)

Alice Bob



Public-Key Cryptosystem

E Dcm

pk sk

m

c = Epk(m) m = Dsk(c)

Alice Bob



History of Public-Key Cryptography

Public-key cryptography was discovered:

◮ By Ellis, Cocks, and Williamson at the Government
Communications Headquarters (GCHQ) in the UK in the early
1970s (not public until 1997).

◮ Independently by Merkle in 1974 (Merkle’s puzzles).

◮ Independently in its discrete-logarithm based form by Diffie
and Hellman in 1977, and instantiated in 1978 (key-exchange).

◮ Independently in its factoring-based form by Rivest, Shamir
and Adleman in 1977.



Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen,E,D)
where,

◮ Gen is a probabilistic key generation algorithm that
outputs key pairs (pk, sk),

◮ E is a (possibly probabilistic) encryption algorithm that
given a public key pk and a message m in the plaintext space
Mpk outputs a ciphertext c , and

◮ D is a decryption algorithm that given a secret key sk and a
ciphertext c outputs a plaintext m,

such that Dsk(Epk(m)) = m for every (pk, sk) and m ∈ Mpk.



RSA



The RSA Cryptosystem (1/2)

Key Generation.

◮ Choose n/2-bit primes p and q randomly and define N = pq.

◮ Choose e in Z∗
φ(N) and compute d = e−1 mod φ(N).

◮ Output the key pair ((N, e), (p, q, d)), where (N, e) is the
public key and (p, q, d) is the secret key.



The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext m ∈ Z∗
N by computing

c = me mod N .

Decryption. Decrypt a ciphertext c by computing

m = cd mod N .



Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N

= m mod N



Implementing RSA

◮ Modular arithmetic.

◮ Greatest common divisor.

◮ Primality test.



Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using “school book”
implementations.

Operation Running time

Addition O(n)
Subtraction O(n)
Multiplication O(n2)
Modular reduction O(n2)
Greatest common divisor O(n2)

Optimal algorithms for multiplication and modular reduction are
much faster.

What about modular exponentiation?



Modular Arithmetic (2/3)

Square-and-Multiply.

SquareAndMultiply(x , e,N)

1 z ← 1
2 i =index of most significant one
3 while i ≥ 0

do
4 z ← z · z mod N

5 if ei = 1
then z ← z · x mod N

6 i ← i − 1
7 return z



Modular Arithmetic (3/3)

Although the basic is the same, the most efficient algorithms for
exponentiation is faster.

Computing gx1 , . . . , gxk can be done much faster!

Computing
∏

i∈[k] g
xi
i can be done much faster!

How about side channel attacks?



Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .

To generate a random prime, we repeatedly pick a random integer
m and check if it is prime. It should be prime with probability close
to 1/ lnm in a sufficently large interval.



Legendre Symbol (1/2)

Definition. Given an odd integer b ≥ 3, an integer a is called a
quadratic residue modulo b if there exists an integer x such that
a = x2 mod b.

Definition. The Legendre Symbol of an integer a modulo an
odd prime p is defined by

(

a

p

)

=







0 if a = 0
1 if a is a quadratic residue modulo p

−1 if a is a quadratic non-residue modulo p

.



Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗
p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.

◮ If a is a non-residue, then a(p−1)/2 6= 1 mod p, but
(

a(p−1)/2
)2

= 1 mod p, so a(p−1)/2 = −1 mod p.



Jacobi Symbol

Definition. The Jacobi Symbol of an integer a modulo an odd
integer b =

∏

i p
ei
i , with pi prime, is defined by

(a

b

)

=
∏

i

(

a

pi

)ei

.

Note that we can have
(

a
b

)

= 1 even when a is a non-residue
modulo b.



Properties of the Jacobi Symbol

Basic Properties.

(a

b

)

=

(

a mod b

b

)

(ac

b

)

=
(a

b

)(c

b

)

.

Law of Quadratic Reciprocity. If a and b are odd integers, then

(a

b

)

= (−1)
(a−1)(b−1)

4

(

b

a

)

.

Supplementary Laws. If b is an odd integer, then

(−1
b

)

= (−1) b−1
2 and

(

2

b

)

= (−1) b2−1
8 .



Computing the Jacobi Symbol (1/2)

The following assumes that a ≥ 0 and that b ≥ 3 is odd.

Jacobi(a, b)
(1) if a < 2
(2) return a

(3) s ← 1
(4) while a is even

(5) s ← s · (−1) 1
8
(b2−1)

(6) a← a/2
(7) if a < b

(8) Swap(a,b)

(9) s ← s · (−1) 1
4
(a−1)(b−1)

(10) return s · Jacobi(a mod b, b)



Solovay-Strassen Primality Test (1/2)

The following assumes that n ≥ 3.

SolovayStrassen(n, r)
(1) for i = 1 to r

(2) Choose 0 < a < n randomly.
(3) if

(

a
n

)

= 0 or
(

a
n

)

6= a(n−1)/2 mod n

(4) return composite

(5) return probably prime



Solovay-Strassen Primality Test (2/2)

Analysis.

◮ If n is prime, then 0 6=
(

a
n

)

= a(n−1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.

◮ If
(

a
n

)

= 0, then
(

a
p

)

= 0 for some prime factor p of n. Thus,

p | a and n is composite, so we never wrongly return from
within the loop.

◮ At most half of all elements a in Z∗
n have the property that

(a

n

)

= a(n−1)/2 mod n .



More On Primality Tests

◮ The Miller-Rabin test is faster.

◮ Testing many primes can be done faster than testing each
separately

◮ Those are probabilistic primality tests, but there is a
deterministic test, so Primes are in P!



Security of RSA



Factoring

The obvious way to break RSA is to factor the public modulus N
and recover the prime factors p and q.

◮ The number field sieve factors N in time

O
(

e(1.92+o(1))((lnN)1/3+(ln lnN)2/3)
)

.

◮ The elliptic curve method factors N in time

O
(

e(1+o(1))
√
2 ln p ln ln p

)

.

Note that the latter only depends on the size of p!



Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

◮ Small Message. If m is small, then me < N. Thus, no
reduction takes place, and m can be computed in Z by
taking the eth root.

◮ Identical Plaintexts. If a message m is encrypted under
moduli N1, N2, N3, and N4 as c1, c2, c3, and c3, then CRT
implies a c ∈ Z∗

N1N2N3N4
such that c = ci mod Ni and

c = me mod N1N2N3N4 with m < Ni .



Additional Caveats

◮ Identical Moduli. If a message m is encrypted as c1 and c2
using distinct encryption exponents e1 and e2 with
gcd(e1, e2) = 1, and a modulus N, then we can find a, b such
that ae1 + be2 = 1 and m = ca1c

b
2 mod N.

◮ Reiter-Franklin Attack. If e is small then encryptions of m
and f (m) for a polynomial f ∈ ZN [x ] allows efficient
computation of m.

◮ Wiener’s Attack. If 3d < N1/4 and q < p < 2q, then N can
be factored in polynomial time with good probability.



Factoring From Order of Multiplicative Group

Given N and φ(N), we can find p and q by solving

N = pq

φ(N) = (p − 1)(q − 1)



Factoring From Encryption & Decryption Exponents (1/3)

◮ If N = pq with p and q prime, then the CRT implies that

x2 = 1 mod N

has four distinct solutions in Z∗
N , and two of these are

non-trivial, i.e., distinct from ±1.

◮ If x is a non-trivial root, then

(x − 1)(x + 1) = tN

but N ∤ (x − 1), (x + 1), so

gcd(x − 1,N) > 1 and gcd(x + 1,N) > 1 .



Factoring From Encryption & Decryption Exponents (2/3)

◮ The encryption & decryption exponents satisfy

ed = 1 mod φ(N) ,

so if we have ed − 1 = 2s r with r odd, then

(p − 1) = 2sp rp which divides 2s r and

(q − 1) = 2sq rq which divides 2s r .

◮ If v ∈ Z∗
N is random, then w = v r is random in the subgroup

of elements with order 2i for some 0 ≤ i ≤ max{sp , sq}.



Factoring From Encryption & Decryption Exponents (3/3)

Suppose sp ≥ sq. Then for some 0 < i < sp,

w2i = ±1 mod q

and
w2i mod p

is uniformly distributed in {1,−1}.

Conclusion.
w2i (mod N) is a non-trivial root of 1 with probability 1/2, which
allows us to factor N.



Semantic Security



Semantic Security (1/3)

◮ RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.

◮ Intuitively, we want to leak no informationknowledge of the
encrypted plaintext.

◮ In other words, no function of the plaintext can efficiently be
guessed notably better from its ciphertext than without it.

Idea! Define only lack of knowledge and not what knowledge
actually is.



Semantic Security (2/3)

Expb
CS,A (Semantic Security Experiment).

1. Generate Public Key. (pk, sk)← Gen(1n).

2. Adversarial Choice of Messages. (m0,m1, s)← A(pk).

3. Guess Message. Return the first bit of A(Epk(mb), s).

Definition. A cryptosystem CS = (Gen,E,D) is said to be
semantically secure if for every polynomial time algorithm A

|Pr[Exp0CS,A = 1]− Pr[Exp1CS,A = 1]|

is negligible.



Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that CS = (Gen,E,D) is a semantically secure
cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with
t(n) polynomial, is encrypted by repeated independent
encryption of each component using the same public key is also
semantically secure.

Semantic security is useful!



ROM-RSA



The RSA Assumption

Definition. The RSA assumption states that if:

1. N = pq factors into two randomly chosen primes p and q of
the same bit-size,

2. e is in Z∗
φ(N),

3. m is randomly chosen in Z∗
N ,

then for every polynomial time algorithm A

Pr[A(N, e,me mod N) = m]

is negligible.



Semantically Secure ROM-RSA (1/2)

Suppose that f : {0, 1}n → {0, 1}n is a randomly chosen function
(a random oracle).

◮ Key Generation. Choose a random RSA key pair
((N, e), (p, q, d)), with log2 N = n.

◮ Encryption. Encrypt a plaintext m ∈ {0, 1}n by choosing
r ∈ Z∗

N randomly and computing

(u, v) = (r e mod N, f (r)⊕m) .

◮ Decryption. Decrypt a ciphertext (u, v) by

m = v ⊕ f (ud mod N) .



Semantically Secure RSA in the ROM (2/2)

◮ We increase the ciphertext size by a factor of two.

◮ Our analysis is in the random oracle model, which is
unsound!

Solutions.

◮ Using a “optimal” padding the first problem can be reduced.
See standard OAEP+.

◮ Using a scheme with much lower rate, the second problem can
be removed.



Rabin



Rabin’s Cryptosystem (1/3)

Key Generation.

◮ Choose n-bit primes p and q such that p, q = 3 mod 4
randomly and define N = pq.

◮ Output the key pair (N, (p, q)), where N is the public key and
(p, q) is the secret key.



Rabin’s Cryptosystem (2/3)

Encryption. Encrypt a plaintext m by computing

c = m2 mod N .

Decryption. Decrypt a ciphertext c by computing

m =
√
c mod N .

There are four roots, so which one should be used?



Rabin’s Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

(

±y (p+1)/4
)2

= y (p+1)/2 mod p

= y (p−1)/2y mod p

=

(

y

p

)

y

= y mod p

In Rabin’s cryptosystem:

◮ Find roots for yp = y mod p and yq = y mod q.

◮ Combine roots to get the four roots modulo N. Choose the
“right” root and output the plaintext.



Security of Rabin’s Cryptosystem

Theorem. Breaking Rabin’s cryptosystem is equivalent to
factoring.

Idea.

1. Choose random element r .

2. Hand r2 mod N to adversary.

3. Consider outputs r ′ from the adversary such that
(r ′)2 = r2 mod N. Then r ′ 6= ±r mod N, with probability
1/2, in which case gcd(r ′ − r ,N) gives a factor of N.



A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic
residue modulo N, then for every polynomial time algorithm A

Pr[A(N, r2 mod N) = lsb(r)]

is negligible.

◮ Encryption. Encrypt a plaintext m ∈ {0, 1} by choosing a
random quadratic residue r modulo N and computing

(u, v) = (r2 mod N, lsb(r)⊕m) .

◮ Decryption. Decrypt a ciphertext (u, v) by

m = v ⊕ lsb(
√
u) where

√
u is a quadratic residue .



Diffie-Hellman



Diffie-Hellman Key Exchange (1/3)

Diffie and Hellman asked themselves:

How can two parties efficiently agree on a secret key using only
public communication?



Diffie-Hellman Key Exchange (2/3)

Construction.
Let G be a cyclic group of order q with generator g .

1. ◮ Alice picks a ∈ Zq randomly, computes ya = g a and hands ya
to Bob.

◮ Bob picks b ∈ Zq randomly, computes yb = gb and hands yb
to Alice.

2. ◮ Alice computes k = ya
b .

◮ Bob computes k = yb
a .

3. The joint secret key is k .



Diffie-Hellman Key Exchange (3/3)

Problems.

◮ Susceptible to man-in-the-middle attack without
authentication.

◮ How do we map a random element k ∈ G to a random
symmetric key in {0, 1}n?



The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order q with generator g .

◮ The key generation algorithm chooses a random element
x ∈ Zq as the private key and defines the public key as

y = gx .

◮ The encryption algorithm takes a message m ∈ G and the
public key y , chooses r ∈ Zq, and outputs the pair

(u, v) = Ey (m, r) = (g r , y rm) .

◮ The decryption algorithm takes a ciphertext (u, v) and the
secret key and outputs

m = Dx(u, v) = vu−x .



The El Gamal Cryptosystem (2/2)

◮ El Gamal is essentially Diffie-Hellman + OTP.

◮ Homomorphic property (with public key y)

Ey (m0, r0)Ey (m1, r1) = Ey (m0m1, r0 + r1) .

This property is very important in the construction of
cryptographic protocols!



Discrete Logarithm (1/2)

Definition. Let G be a cyclic group of order q and let g be a
generator G . The discrete logarithm of y ∈ G in the basis g
(written logg y) is defined as the unique x ∈ {0, 1, . . . , q − 1} such
that

y = gx .

Compare with a “normal” logarithm! (ln y = x iff y = ex )



Discrete Logarithm (2/2)

Example. 7 is a generator of Z12 additively, since gcd(7, 12) = 1.

What is log7 3? (9 · 7 = 63 = 3 mod 12, so log7 3 = 9)

Example. 7 is a generator of Z∗
13.

What is log7 9? (74 = 9 mod 13, so log7 9 = 4)



Discrete Logarithm Assumption

Let Gqn be a cyclic group of prime order qn such that ⌊log2 qn⌋ = n

for n = 2, 3, 4, . . ., and denote the family {Gqn}n∈N by G .

Definition. The Discrete Logarithm (DL) Assumption in G

states that if generators gn and yn of G qn are randomly chosen,
then for every polynomial time algorithm A

Pr
[

A(gn, yn) = loggn
yn
]

is negligible.

We usually remove the indices from our notation!



Diffie-Hellman Assumption

Definition. Let g be a generator of G . The Diffie-Hellman
(DH) Assumption in G states that if a, b ∈ Zq are randomly
chosen, then for every polynomial time algorithm A

Pr
[

A(ga, gb) = gab
]

is negligible.



Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G . The Decision
Diffie-Hellman (DDH) Assumption in G states that if
a, b, c ∈ Zq are randomly chosen, then for every polynomial time
algorithm A

∣

∣

∣
Pr
[

A(ga, gb , gab) = 1
]

− Pr
[

A(ga, gb, g c ) = 1
]∣

∣

∣

is negligible.



Relating DL Assumptions

◮ Computing discrete logarithms is at least as hard as
computing a Diffie-Hellman element gab from ga and gb.

◮ Computing a Diffie-Hellman element gab from ga and gb is at
least as hard as distinguishing a Diffie-Hellman triple
(ga, gb , gab) from a random triple (ga, gb , g c ).

◮ In most groups where the DL assumption is conjectured, DH
and DDH assumptions are conjectured as well.

◮ There exists special elliptic curves where DDH problem is
easy, but DH assumption is conjectured!



Security of El Gamal

◮ Finding the secret key is equivalent to DL problem.

◮ Finding the plaintext from the ciphertext and the public key
and is equivalent to DH problem.

◮ The semantic security of El Gamal is equivalent to DDH
problem.



Brute Force and Shank’s

Let G be a cyclic group of order q and g a generator. We wish to
compute logg y .

◮ Brute Force. O(q)

◮ Shanks. Time and Space O
(√

q
)

.

1. Set z = gm (think of m as m =
√
q).

2. Compute z i for 0 ≤ i ≤ q/m.

3. Find 0 ≤ j ≤ m and 0 ≤ i ≤ q/m such that yg j = z i and
output x = mi − j .



Birthday Paradox

Lemma. Let q0, . . . , qk be randomly chosen in a set S . Then

1. the probability that qi = qj for some i 6= j is approximately

1− e−
k2

2s , where s = |S |, and
2. with k ≈

√

−2s ln(1− δ) we have a collision-probability of δ.

Proof.

(

s − 1

s

)(

s − 2

s

)

· . . . ·
(

s − k

s

)

≈
k
∏

i=1

e−
i
s ≈ e−

k2

2s .



Pollard-ρ (1/2)

Partition G into S1, S2, and S3 “randomly”.

◮ Generate “random” sequence α0, α1, α2 . . .

α0 = g

αi =







αi−1g if αi−1 ∈ S1
α2
i−1 if αi−1 ∈ S2

αi−1y if αi−1 ∈ S3

◮ Each αi = gai ybi , where ai , bi ∈ Zq are known!

◮ If αi = αj and (ai , bi ) 6= (aj , bj) then y = g (ai−aj)(bj−bi )
−1
.



Pollard-ρ (2/2)

◮ If αi = αj , then αi+1 = αj+1.

◮ The sequence (a0, b0), (a1, b1), . . . is “essentially random”.

◮ The Birthday bound implies that the (heuristic) expected
running time is O(

√
q).

◮ We use “double runners” to reduce memory.



Index Calculus

◮ Let B = {p1, . . . , pB} be a set of small prime integers.

◮ Compute ai = logg pi for all pi ∈ B.

1. Choose sj ∈ Zq randomly and attempt to factor g sj =
∏

i p
ej,i
i

as an integer.
2. If g sj factored in B and ej = (ej,1, . . . , ej,B ) is linearly

independent of e1, . . . , ej−1, then j ← j + 1.
3. If j < B, then go to (1)

◮ Repeat:

1. Choose s ∈ Zq randomly.
2. Attempt to factor yg s =

∏

i p
ei
i as an integer.

3. If a factorization is found, then output (
∑

i aiei − s) mod q.

Excercise: Why doesn’t this work for any cyclic group?



Example Groups

◮ Zn additively? Bad for crypto!

◮ Large prime order subgroup of Z∗
p with p prime. In particular

p = 2q + 1 with q prime.

◮ Large prime order subgroup of GF∗
pk
.

◮ “Carefully chosen” elliptic curve group.



Elliptic Curves



Groups

◮ We have argued that discrete logarithm problems are hard in
large subgroups of Z∗

p and F∗
q.

◮ Based on discrete logarithm problems (DL, DH, DDH) we can
construct public key cryptosystems, key exchange protocols,
and signature schemes.

◮ An elliptic curve is another candidate of a group where
discrete logarithm problems are hard.



Motivation For Studying Elliptic Curves

◮ What if it turns out that solving discrete logarithms in Z∗
p is

easy? Elliptic curves give an alternative.

◮ The best known DL-algorithms in an elliptic curve group with
prime order q are generic algorithms, i.e., they have running
time O(

√
q)

◮ Arguably we can use shorter keys. This is very important in
some practical applications.



Definition

Definition. A plane cubic curve E (on Weierstrass form) over a
field F is given by a polynomial

y2 = x3 + ax + b

with a, b ∈ F. The set of points (x , y) that satisfy this equation
over F is written E (F).

Every plane cubic curve over a field of characteristic 6= 2, 3 can be
written on the above form without changing any properties we care
about.



Alternative Notation

We also write

g(x , y) = x3 + ax + b − y2 or

y2 = f (x)

where f (x) = x3 + ax + b.



Singular Points

Definition. A point (u, v) ∈ E (E), with E an extension field of F,
is singular if

∂g(x , y)

∂x
(u, v) =

∂g(x , y)

∂y
(u, v) = 0 .

Definition. A plane cubic curve is smooth if E (F) contains no
singular points1.

1F is the algebraic closure of F.



What Does This Mean?

Note that

∂g(x , y)

∂x
(x , y) = f ′(x) = 3x2 + a and

∂g(x , y)

∂y
(x , y) = −2y .

Thus, any singular point (u, v) ∈ E (F) must have:

◮ v = 0,

◮ f (u) = 0, and f ′(u) = 0.

Then f (x) = (x − u)h(x) and f ′(x) = h(x) + (x − u)h′(x), so
(u, v) is singular if v = 0 and u is a double-root of f .



Discriminant

In general a “discriminant” can be used to check if a polynomial
has a double root.

Definition. The discriminant ∆(E ) of a plane curve
y2 = x3 + ax + b is given by −4a3 − 27b2.

Lemma. The polynomial f (x) does not have a double root iff
∆(E ) 6= 0, in which case the curve is called smooth.



Line Defined By Two Points On Curve

Let l(x) be a line that intersects the curve in (u1, v1) and (u2, v2).
Then

l(x) = k(x − u1) + v1

where

k =

{

v2−v1
u2−u1

if (u1, v1) 6= (u2, v2)
3u21+a

2v1
otherwise

We are cheating a little here in that we assume that we don’t have
u1 = u2 and v1 6= v2 or v1 = v2 = 0. In both such cases we get a
line parallel with x = 0 that we deal with in a special way.



Finding the Third Point

◮ The intersection points between l(x) and the curve are given
by the zeros of

t(x) = g(l(x), x) = f (x) − l(x)2

which is a cubic polynomial with known roots u1 and u2.

◮ To find the third intersection point (u3, v3) we note that

t(x) = (x−u1)(x −u2)(x −u3) = x3− (u1+u2+u3)x
2+ r(x)

where r(x) is linear. Thus, we can find u3 from t’s
coefficients!



From Intersection Points To Group Law

◮ Given any two points A and B the on the curve that defines a
line, we can find a third intersection point C with the curve
(even if A = B).

◮ The only exception is if our line l(x) is parallel with the y -axis.

◮ To “fix” this exception we add a point at infinity O, roughly
at (0,∞) (the projective plane). Intuition: the sides of a long
straight road seem to intersect infinitely far away.



From Intersection Points To Group Law

◮ We define the sum of A and B by (x ,−y), where (x , y) is the
third intersection point of the line defined by A and B with
the curve.

◮ We define the inverse of (x , y) by (x ,−y).

◮ The main technical difficulty in proving that this gives a group
is to prove the associative law. This can be done with
Bezout’s theorem (not the one covered in class), or by
(tedious) elementary algebraic manipulation.



Elliptic Curves

◮ There are many elliptic curves with special properties.

◮ There are many ways to represent the same curve and to
implement curves as well as representing and implementing
the underlying field.

◮ More requirements than smoothness must be satisfied for a
curve to be suitable for cryptographic use.

◮ Fortunately, there are standardized curves.

(I would need a very strong reason not to use these curves
and I would be extremely careful, consulting researchers
specializing in elliptic curve cryptography.)



Universal Hash Functions



Universal Hash Function

Definition. An ensemble f = {fα} of hash functions fα : X → Y

is (strongly) 2-universal if for every x , x ′ ∈ X and y , y ′ ∈ Y with
x 6= x ′ and a random α

Pr[fα(x) = y ∧ fα(x
′) = y ′] =

1

|Y |2 .

I.e., for any x ′ 6= x , the outputs fα(x) and fα(x
′) are uniformly and

independently distributed.

In particular x and x ′ are both mapped to the same value with
probability 1/|Y |.



Example

Example. The function f : Zp → Zp for prime p defined by

f (z) = az + b mod p

is strongly 2-universal.

Proof. Let x , x ′, y , y ′ ∈ Zp with x 6= x ′. Then

(

x 1
x ′ 1

)(

z1
z2

)

=

(

y

y ′

)

has a unique solution. Random (a, b) satisfies this solution with
probability 1

p2
.



Universal Hash Function

Universal hash functions are not one-way or collision resistant!



Hash Functions



Hash Function

A hash function maps arbitrarily long bit strings into bit strings of
fixed length.

The output of a hash function should be “unpredictable”.



Wish List

◮ Finding a pre-image of an output should be hard.

◮ Finding two inputs giving the same output should be hard.

◮ The output of the function should be “random”.

etc



Ensembles of Functions (1/3)

◮ Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function.

◮ We can derive an ensemble {fn}n∈N, with

fn : {0, 1}n → {0, 1}∗

by setting fn(x) = f (x).

◮ Note that we may recover f from the ensemble by
f (x) = f|x |(x).

◮ When convenient we give definitions for a function, but it can
be turned into a definition for an ensemble.



Ensembles of Functions (2/3)

◮ Consider F = {fn}n∈N, where fn is itself an ensemble
{fn,αn}αn∈{0,1}n , with

fn,αn : {0, 1}l(n) → {0, 1}l
′(n)

for some polynomials l(n) and l ′(n).

◮ Here n is the security parameter and α is a “key” that is
chosen randomly.

◮ We may also view F as an ensemble {fα}, where
fα = {fn,αn}n∈N and α = {αn}n∈N.



Ensembles of Functions (3/3)

These conventions allow us to talk about what in everyday
language is a “function” f in several convenient ways.

Now you can forget that and

assume that everything works!



One-Wayness

Definition. A function f : {0, 1}∗ → {0, 1}∗ is said to be
one-way2 if for every polynomial time algorithm A and a random x

Pr[A(f (x)) = x ′ ∧ f (x ′) = f (x)] < ǫ(n)

for a negligible function ǫ.

Normally f is computable in polynomial time in its input size.

2“Enkelriktad” p̊a svenska inte “enväg”.



Second Pre-Image Resistance

Definition. A function h : {0, 1}∗ → {0, 1}∗ is said to be second
pre-image resistant if for every polynomial time algorithm A and
a random x

Pr[A(x) = x ′ ∧ x ′ 6= x ∧ f (x ′) = f (x)] < ǫ(n)

for a negligible function ǫ.

Note that A is given not only the output of f , but also the input
x , but it must find a second pre-image.



Collision Resistance

Definition. Let f = {fα}α be an ensemble of functions. The
“function” f is said to be collision resistant if for every
polynomial time algorithm A and randomly chosen α

Pr[A(α) = (x , x ′) ∧ x 6= x ′ ∧ fα(x
′) = fα(x)] < ǫ(n)

for a negligible function ǫ.

An algorithm that gets a small “advice string” for each security
parameter can easily hardcode a collision for a fixed function f ,
which explains the random index α.



Relations for Compressing Hash Functions

◮ If a function is not pre-image resistant, then it is not
collision-resistant.

1. Pick random x .
2. Request second pre-image x ′ 6= x with f (x ′) = f (x).
3. Output x ′ and x .

◮ If a function is not one-way, then it is not second pre-image
resistant.

1. Given random x , compute y = f (x).
2. Request pre-image x ′ of y .
3. Repeat until x ′ 6= x , and output x ′.



Random Oracles



Random Oracle As Hash Function

A random oracle is simply a randomly chosen function with
appropriate domain and range.

A random oracle is the perfect hash function. Every input is
mapped independently and uniformly in the range.

Let us consider how a random oracle behaves with respect to our
notions of security of hash functions.



Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H : X → Y be a randomly chosen function and let
x ∈ X be randomly chosen. Then for every algorithm A making q

oracle queries

Pr[AH(·)(H(x)) = x ′ ∧ H(x) = H(x ′)] ≤ 1−
(

1− 1

|Y |

)q

.

Proof. Each query x ′ satisfies H(x ′) 6= H(x) independently with
probability 1− 1

|Y | .



Second Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows” if it
has found a second pre-image, i.e., it queries the random oracle on
the input and its output.

Theorem. Let H : X → Y be a randomly chosen function and let
x ∈ X be randomly chosen. Then for every such algorithm A

making q oracle queries

Pr[AH(·)(x) = x ′ ∧ x 6= x ′ ∧H(x) = H(x ′)] ≤ 1−
(

1− 1

|Y |

)q−1

.

Proof. Same as pre-image case, except we must waste one query
on the input value to get the target in Y .



Collision Resistance of Random Oracles

We assume with little loss that an adversary always “knows” if it
has found a collision, i.e., it queries the random oracle on its
outputs.

Theorem. Let H : X → Y be a randomly chosen function. Then
for every such algorithm A making q oracle queries

Pr[AH(·) = (x , x ′) ∧ x 6= x ′ ∧ H(x) = H(x ′)] ≤ 1−
q−1
∏

i=1

(

1− i

|Y |

)

≤ q(q − 1)

2|Y | .

Proof. 1− i−1
|Y | bounds the probability that the ith query does not

give a collision for any of the i − 1 previous queries, conditioned on
no previous collision.



Iterated Hash Functions



Merkle-Damg̊ard (1/3)

Suppose that we are given a collision resistant hash function

f : {0, 1}n+t → {0, 1}n .

How can we construct a collision resistant hash function

h : {0, 1}∗ → {0, 1}n

mapping any length inputs?



Merkle-Damg̊ard (2/3)

Construction.

1. Let x = (x1, . . . , xk) with |xi | = t and 0 < |xk | ≤ t.

2. Let xk+1 be the total number of bits in x .

3. Pad xk with zeros until it has length t.

4. y0 = 0n, yi = f (yi−1, xi ) for i = 1, . . . , k + 1.

5. Output yk+1

Here the total number of bits is bounded by 2t − 1, but this can be
relaxed.



Merkle-Damg̊ard (3/3)

Suppose A finds collisions in Merkle-Damg̊ard.

◮ If the number of bits differ in a collision, then we can derive a
collision from the last invocation of f .

◮ If not, then we move backwards until we get a collision. Since
both inputs have the same length, we are guaranteed to find a
collision.



Standardized Hash
Functions



Standardized Hash Functions

Despite that theory says it is impossible, in practice people simply
live with fixed hash functions and use them as if they are randomly
chosen functions.



SHA

◮ Secure Hash Algorithm (SHA-0,1, and the SHA-2 family) are
hash functions standardized by NIST to be used in, e.g.,
signature schemes and random number generation.

◮ SHA-0 was weak and withdrawn by NIST. SHA-1 was
withdrawn 2010. SHA-2 family is based on similar ideas but
seems safe so far...

◮ All are iterated hash functions, starting from a basic
compression function.



SHA-3

◮ NIST ran an open competition for the next hash function,
named SHA-3. Several groups of famous researchers
submitted proposals.

◮ Call for SHA-3 explicitly asked for “different” hash functions.

◮ It might be a good idea to read about SHA-1 for comparison.

◮ The competition ended October 2, 2012, and the hash
function Keccak was selected as the winner.

◮ This was constructed by Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van Assche,



MACs



Message Authentication Code

◮ Message Authentication Codes (MACs) are used to ensure
integrity and authenticity of messages.

◮ Scenario:

1. Alice and Bob share a common key k.

2. Alice computes an authentication tag α = MACk(m) and
sends (m, α) to Bob.

3. Bob receives (m′, α′) from Alice, but before accepting m′ as
coming from Alice, Bob checks that MACk(m

′) = α′.



Security of a MAC

Definition. A message authentication code MAC is secure if for a
random key k and every polynomial time algorithm A,

Pr[AMACk(·) = (m, α) ∧MACk(m) = α ∧ ∀i : m 6= mi ]

is negligible, where mi is the ith query to the oracle MACk(·).



Random Oracle As MAC

◮ Suppose that H : {0, 1}∗ → {0, 1}n is a random oracle.

◮ Then we can construct a MAC as MACk(m) = H(k,m).

Could we plug in an iterated hash function in place of the random
oracle?



HMAC

◮ Let H : {0, 1}∗ → {0, 1}n be a “cryptographic hashfunction”,
e.g., SHA-256.

◮ HMACk1,k2(x) = H
(

k2‖H(k1‖x)
)

◮ This is provably secure under the assumption that

◮ H(k1‖·) is unknown-key collision resistant, and

◮ H(k2‖·) is a secure MAC.



CBC-MAC

Let E be a secure block-cipher, and x = (x1, . . . , xt) an input. The
MAC-key is simply the block-cipher key.

1. y0 = 000 . . . 0

2. For i = 1, . . . , t, yi = Ek(yi−1 ⊕ xi )

3. Return yt .

Is this secure?



Universal Hashfunction As MAC

Theorem. A t-universal hashfunction fα for a randomly chosen
secret α is an unconditionally secure MAC, provided that the
number queries is smaller than t.



Signature Schemes



Digital Signature

◮ A digital signature is the public-key equivalent of a MAC; the
receiver verifies the integrity and authenticity of a message.

◮ Does a digital signature replace a real handwritten one?



Textbook RSA Signature (1/2)

◮ Generate RSA keys ((N, e), (p, q, d)).

◮ To sign a message m ∈ ZN , compute σ = md mod N.

◮ To verify a signature σ of a message m, verify that
σe = m mod N.



Textbook RSA Signature (2/2)

◮ Are Textbook RSA Signatures any good?

◮ If σ is a signature of m, then σ2 mod N is a signature of
m2 mod N.

◮ If σ1 and σ2 are signatures of m1 and m2, then σ1σ2 mod N is
a signature of m1m2 mod N

◮ We can also pick a signature σ and compute the message it is
a signature of by m = σe mod N.

We must be more careful!



Signature Scheme

◮ Gen generates a key pair (pk, sk).

◮ Sig takes a secret key sk and a message m and computes a
signature σ.

◮ Vf takes a public key pk, a message m, and a candidate
signature σ, verifies the candidate signature, and outputs a
single-bit verdict.



Existential Unforgeability

Definition. A signature scheme (Gen,Sig,Vf) is secure against
existential forgeries if for every polynomial time algorithm and a
random key pair (pk, sk)← Gen(1n),

Pr
[

ASigsk(·)(pk) = (m, σ) ∧ Vfpk(m, σ) = 1 ∧ ∀i : m 6= mi

]

is negligible where mi is the ith query to Sigsk(·).



Provably Secure Signature Schemes

Provably secure signature schemes exists if one-way functions exist
(in plain model without ROM), but the construction is more
involved and typically less efficient.

Provably secure signature schemes are rarely used in practice!

Standards used in practice: RSA Full Domain Hash, DSA,
EC-DSA. The latter two may be viewed as variants of Schnorr
signatures.



Based on Trapdoor
One-Way Permutations



Trapdoor One-Way Permutations (Less Formal)

Let f = {fα} be an ensemble of permutations (bijections).

◮ Gen generates a random key pair α = (pk, sk). generates
a pair (fα, f

−1
α ).

◮ Eval takes pk and x as input and efficiently evaluates fα(x).

◮ Invert takes sk and y as input and efficiently evaluates the
inverse f −1

α (y).

One-way if Evalpk(·) is one-way for a random pk. fα is one-way
when chosen randomly.

RSA is a trap-door permutation over Z∗
N .



Full Domain Hash Signature In ROM

Let f = {fα} be a trapdoor permutation (family) and let
H : {0, 1}∗ → {0, 1}n be a random oracle.

◮ Gen samples a pair (fα, f
−1
α ).

◮ Sig takes f −1
α and a message m as input and outputs

f −1
α

(

H(m)
)

.

◮ Vf takes fα, a message m, and a candidate signature σ as
input, and outputs 1 if fα(σ) = H(m) and 0 otherwise.



Based on Proofs of
Knowledge



Proof of Knowledge of Exponent

In an identification scheme one party convinces another that it
holds some special token.

◮ Let Gq be a group of prime order q with generator g .

◮ Let x ∈ Zq and define y = gx .

◮ Can we prove knowledge of x without disclosing anything
about x?



Schnorr’s Protocol (1/3)

1. The prover chooses r ∈ Zq randomly and hands α = g r to the
verifier.

2. The verifier chooses c ∈ Zq randomly and hands it to the
prover.

3. The prover computes d = cx + r mod q and hands d to the
verifier.

4. The verifier accepts if y cα = gd .

Suppose that a machine convinces us in the protocol with
probability δ. Does it mean that it knows x such that y = gx?



Schnorr’s Protocol (2/3)

1. Run the machine to get α.

2. Complete the interaction twice using the same α, once for a
challenge c and once for a challenge c ′, where c , c ′ ∈ Zq are
chosen randomly.

3. Repeat from (1) until the resulting interactions (α, c , d) and
(α, c ′, d ′) are accepting and c 6= c ′.

4. Note that:

y c−c′ =
y c

y c
′
=

y cα

y c
′α

=
gd

gd ′
= gd−d ′

which gives the logarithm x = (d − d ′)(c − c ′)−1 mod q such
that y = gx .



Schnorr’s Protocol (3/3)

◮ Anybody can sample c , d ∈ Zq randomly and compute
α = gd/y c .

◮ The resulting tuple (α, c , d) has exactly the same distribution
as the transcript of an interaction!

Such protocols are called (honest verifier) zero-knowledge proofs
of knowledge.



Schnorr’s Signature Scheme In ROM

Let H : {0, 1}∗ → Zq be a random oracle.

◮ Gen chooses x ∈ Zq randomly, computes y = gx and outputs
(pk, sk) = (y , x).

◮ Sig does the following on input x and m:

1. it chooses r ∈ Zq randomly and computes α = g r ,

2. it computes c = H(y , α,m),

3. it computes d = cx + r mod q and outputs (α, d).

◮ Vf takes the public key y , a message m, and a candidate
signature (α, d), and accepts iff yH(y ,α,m)α = gd .



PKIs



Problem

◮ We have constructed public-key cryptosystems and signature
schemes.

◮ Only the holder of the secret key can decrypt ciphertexts and
sign messages.

◮ How do we know who holds the secret key corresponding to a
public key?



Signing Public Keys of Others

◮ Suppose that Alice computes a signature
σA,B = SigskA(pkB ,Bob) of Bob’s public key pkB and his
identity and hands it to Bob.

◮ Suppose that Eve holds Alice’s public key pkA.

◮ Then anybody can hand (pkB , σA,B) directly to Eve, and
Eve will be convinced that pkB is Bob’s key (assuming she
trusts Alice).



Certificate

◮ A certificate is a signature of a public key along with some
information on how the key may be used, e.g., it may allow
the holder to issue certificates.

◮ A certificate is valid for a given setting if the signature is valid
and the usage information in the certificate matches that of
the setting.

◮ Some parties must be trusted to issue certificates. These
parties are called Certificate Authorities (CA).



Certificate Chains

A CA may be “distributed” using in certificate chains.

◮ Suppose that Bob holds valid certificates

σ0,1, σ1,2, . . . , σn−1,n

where σi−1,i is a certificate of pkPi
by Pi−1.

◮ Who does Bob trust?



Pseudo-random
Generators



Randomness

◮ Everything we have done so far requires randomness!

◮ Can we “generate” random strings?



Physical Randomness and Deterministic Algorithms

◮ We could flip actual coins. This would be extremely
impractical and slow (and booring unless you are Rain man).

◮ We could generate “physical” randomness using hardware,
e.g., measuring radioactive decay

◮ Slow or expensive.
◮ Hard to verify and trust.
◮ Biased output.

◮ We could use a deterministic algorithm that outputs a
“random looking string”, but would that be secure?



Pseudo-Random Generator

A pseudo-random generator requires a short random string and
deterministically expands this to a longer “random looking”
string.

This looks promising:

◮ Fast and cheap?

◮ Practical since it can be implemented in software or hardware?

◮ What is “random looking”?



Pseudo-Random Generator

Definition. An efficient algorithm PRG is a pseudo-random
generator (PRG) if there exists a polynomial p(n) > n such that
for every polynomial time adversary A, if a seed s ∈ {0, 1}n and a
random string u ∈ {0, 1}p(n) are chosen randomly, then

|Pr[A
(

PRG(s)
)

= 1]− Pr[A(u) = 1]|

is negligible.

Informally, A can not distinguish PRG(s) from a truly random
string in {0, 1}p(n) .



Increasing Extension (1/2)

Before we consider how to construct a PRG we consider what the
definition gives us:

◮ Suppose that there exists a PRG that extends its output by a
single bit.

◮ This would not be very useful to us, e.g., to generate a
random prime we need many random bits.

◮ Can we use the given PRG to construct another PRG which
extends its output more?



Increasing Extension (2/2)

Construction. Let PRG be a pseudo-random generator. We let
PRGt be the algorithm that takes s−1 ∈ {0, 1}n as input,
computes s0, s2, . . . , st−1 and b0, . . . , bt−1 as

(si , bi ) = PRG(si−1)

and outputs (b0, . . . , bt−1).

Theorem. Let p(n) be a polynomial and PRG a pseudo-random
generator. Then PRGp(n) is a pseudo-random generator that on

input s ∈ {0, 1}n outputs a string in {0, 1}p(n).

We can go on “forever”!



Random String From Random Oracle

Theorem. If F : {0, 1}n → {0, 1}m is a random function, then
(F (0),F (1),F (2), . . . ,F (t − 1)) is a tm-bit string.

Can we do this using a pseudo-random function?

Can we replace the random function by SHA-2?



Pseudo-Random Function

Recall the definition of a pseudo-random function.

Definition. A family of functions F : {0, 1}k × {0, 1}n → {0, 1}n
is pseudo-random if for all polynomial time oracle adversaries A

∣

∣

∣

∣

Pr
K

[

AFK (·) = 1
]

− Pr
R:{0,1}n→{0,1}n

[

AR(·) = 1
]

∣

∣

∣

∣

is negligible.



Pseudo-Random Generator From Pseudo-Random Function

Theorem. Let {FK}K∈{0,1}k be a pseudo-random function for a
random choice of K . Then the PRG defined by:

PRG(s) = (Fs(0),Fs(1),Fs (2), . . . ,Fs(t))

is a pseudo-random generator.



Pseudo-Random Function From Pseudo-Random Generator

Construction. Let PRG : {0, 1}k → {0, 1}2k be a pseudo-random
generator, and define a family of functions F = {FK}K∈{0,1}k as
follows.

Let x[i ] = (x0, . . . , xi ).

On key K and input x , FK computes its output as follows:

1. Computes (r00 , r
0
1 ) = PRG(K ).

2. Computes
(r ix[i−1]‖0, r

i
x[i−1]‖1) = PRG(r i−1

x[i−1]
)

for i = 1, . . . , n − 1.

3. Outputs rx[n−1]
.



One-Way Permutation

Definition. A family F = {fn} of permutations
fn : {0, 1}n → {0, 1}n is said to be one-way if for a random
x ∈ {0, 1}n and every polynomial time algorithm A

Pr[A(fn(x)) = x ] < ǫ(n)

for a negligible function ǫ(n).

(Note that for permutations we may request the unique preimage.)



Hardcore Bit

Definition. Let F = {fn} be a family of permutations
fn : {0, 1}n → {0, 1}n and B = {bn} a family of “bits”
bn : {0, 1}n → {0, 1}. Then B is a hardcore bit of F if for random
x ∈ {0, 1}n and every polynomial time algorithm A

|Pr[A(fn(x)) = bn(x)] − 1/2| < ǫ(n)

for a negligible function ǫ(n).

Theorem. For every one-way permutation, there is a (possibly
different) one-way permutation with a hardcore bit.



PRG from One-Way Permutation

Construction. Let F be a one-way permutation and define PRG
by PRGn(s) = fn(s)‖bn(s) for x ∈ {0, 1}n .

Theorem. PRG : {0, 1}n → {0, 1}n+1 is a pseudo-random
generator.



PRG From Any One-Way Function

Theorem. There is a construction PRGf that is a PRG if f is a
one-way function (possibly non-permutation).

The construction is very involved and is completely impractical.



What Is Used In Practice?

Various standards contain some of the following elements.

◮ Fast hardware generator + “algorithmic strengthening”.

◮ /dev/random
◮ Entropy gathering deamon with estimate of amount of entropy.
◮ FreeBSD: Executes the PRG Yarrow (or Futura)

pseudo-random algorithm.
◮ SunOS and Un*xes use similar approaches.
◮ Windows has similar devices.

◮ Stream cipher, e.g. block-cipher in CFB or CTR mode.

◮ Hashfunction with secret prefix and counter (essentially our
PRF→PRG construction).



Infamous Mistakes

◮ (1995) The original Netscape SSL code used time of the day
and process IDs to seed its pseudorandom giving way too
little entropy in the seed.

◮ (2008) Debian’s OpenSSL commented out a critical part of
the code that reduced the entropy of keys drastically!

◮ (2012) RSA public keys with common factors.



Important Conclusions

◮ Security bugs are not found by testing!

◮ With an insecure pseudo-random generator anything on top of
it will be insecure.

◮ Any critical code must be reviewed after every modification,
e.g, keep hashes of critical code.


	Introduction and Administration
	Introduction to Ciphers
	Substitution-Permutation Networks
	AES
	Feistel Networks
	DES
	Modes of Operation
	Linear Cryptanalysis of the SPN
	Ideal Block Cipher
	Perfect Secrecy
	Information Theory
	Elementary Number Theory
	Public-Key Cryptography
	RSA
	Security of RSA
	Semantic Security
	ROM-RSA
	Rabin
	Diffie-Hellman
	Elliptic Curves
	Universal Hash Functions
	Hash Functions
	Random Oracles
	Iterated Hash Functions
	Standardized Hash Functions
	MACs
	Signature Schemes
	Based on Trapdoor One-Way Permutations
	Based on Proofs of Knowledge
	PKIs
	Pseudo-random Generators

