
Chapter 6

Eigenvalues and eigenvectors

We review the basic properties of eigenvalues and eigenvectors of a matrix,
and we present an algorithm for computational approximation in the case
of real symmetric matrices.

6.1 Eigenvalues and eigenvectors

Complex vector spaces

In this section we change the focus from real vector spaces to complex vector
spaces. We let z 2 C denote a complex scalar, with z̄ the complex conjugate
of z.

The complex vector space Cn is defined by the basic operations of com-
ponentwise addition and scalar multiplication of complex numbers, and with
the transpose of a vector x 2 Cn replaced by the adjoint x⇤, corresponding
to the transpose with the imaginary parts negated. Similarly, the adjoint
of a complex m ⇥ n matrix A = (a

ij

) is the n ⇥ m matrix A⇤ = (ā
ji

). If
A = A⇤ the matrix A is Hermitian, and if AA⇤ = A⇤A it is normal.

The inner product of x, y 2 Cn is defined by

(x, y) = x⇤y =
nX

i=i

x̄
i

y
i

, (6.1)

with the associated norm for x 2 Cn,

kxk = (x, x)1/2. (6.2)
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Matrix spectrum and eigenspaces

We now consider a square matrix A 2 Cn⇥n acting on a complex vector
space Cn. An eigenvector of A is a nonzero vector x 2 Cn, such that

Ax = �x, (6.3)

with � 2 C the corresponding eigenvalue. The subspace of Cn spanned by
the eigenvectors corresponding to �, together with the zero vector, is an
eigenspace E

�

, and the set of all eigenvalues of a matrix A is the spectrum
of A, denoted by ⇤(A).

The eigenspace E
�

is an invariant subspace under A, so that AE
�

✓ E
�

,
and dim(E

�

) is the number of linearly independent eigenvectors correspond-
ing to the eigenvalue �, known as the geometric multiplicity of �.

We have that the eigenspace E
�

= null(�I � A), since (�I � A)x = 0,
and thus for a nonempty eigenspace E

�

, �I�A is a singular matrix, so that

det(�I � A) = 0. (6.4)

Characteristic polynomial

The characteristic polynomial of the matrix A 2 Cn⇥n, is the degree n
polynomial

p
A

(z) = det(zI � A), (6.5)

with z 2 C. For � an eigenvalue of A, we thus have that

p
A

(�) = 0, (6.6)

and by the fundamental theorem of algebra we can express p
A

(�) as

p
A

(�) = (z � �1)(z � �2) · · · (z � �
n

), (6.7)

where each �
j

is an eigenvalue of A, not necessary unique. The multiplicity
of each eigenvalue � as a root to the equation p

A

(�) = 0 is the algebraic
multiplicity of �, where an eigenvalue is said to be simple if its algebraic
multiplicity is 1. The algebraic multiplicity of an eigenvalue � is at least as
great as its geometric multiplicity.

Eigenvalue decompositions

A defective matrix is a matrix which has one or more defective eigenval-
ues, where a defective eigenvalue is an eigenvalue for which its algebraic
multiplicity exceeds its geometric multiplicity.
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Theorem 5 (Eigenvalue decomposition). Each nondefective matrix A 2
Cn⇥n has an eigenvalue decomposition

A = X⇤X�1, (6.8)

where X 2 Cn⇥n is a nonsingular matrix with the eigenvectors of A as
column vectors, and where ⇤ 2 Cn⇥n is diagonal matrix with the eigenvalues
of A on the diagonal.

We also say that a nondefective matrix is diagonalizable. Given that the
factorization (6.8) exits, we have that

AX = X⇤, (6.9)

which expresses (6.3) as
Ax

j

= �
j

x
j

, (6.10)

with �
j

the jth diagonal entry of ⇤, and x
j

the jth column of X.
For some matrices eigenvectors can be chosen to be pairwise orthogonal,

so that a matrix A is unitary diagonalizable, that is

A = Q⇤Q⇤, (6.11)

with Q 2 Cn⇥n an orthogonal matrix with orthonormal eigenvectors of A
as column vectors, and ⇤ 2 Cn⇥n a diagonal matrix with the eigenvalues of
A on the diagonal.

Theorem 6. A matrix is unitary diagonalizable if and only if it is normal.

Hermitian matrices have real eigenvalues, and thus in the particular
case of a real symmetric matrix, no complex vector spaces are needed to
characterize the matrix spectrum and eigenspaces.

Theorem 7. An Hermitian matrix is unitary diagonalizable with real eigen-
values.

Irrespectively if the matrix is nondefective or Hermitian, any square
matrix always has a Schur factorization, with the diagonal matrix replaced
by an upper triangular matrix.

Theorem 8 (Schur factorization). For every square matrix A there exists
a Schur factorization

A = QTQ⇤, (6.12)

where Q is an orthogonal matrix, and T is an upper triangular matrix with
the eigenvalues of A on the diagonal.
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More generally, if X 2 Cn⇥n is nonsingular, the map A 7! X�1AX is a
similarity transformation of A, and we say that two matrices A and B are
similar if there exists a similarity transformation such that B = X�1AX.

Theorem 9. Two similar matrices have the same eigenvalues with the same
algebraic and geometric multiplicity.

6.2 Eigenvalue algorithms

QR algorithm for real symmetric matrices

To compute the eigenvalues of a matrix A, one may seek the roots of the
characteristic polynomial. Although, it turns out that the most e�cient
algorithms instead are based on computing eigenvalues and eigenvectors by
constructing one of the factorizations (6.8), (6.11) or (6.12).

To simplify the presentation, in this section we restrict attention to
matrices that are real and symmetric, for which we now present the basic
QR algorithm, in which a Schur factorization (6.12) of a real symmetric
matrix A is constructed from successive QR factorizations.

We note that for each iteration A(k) of the algorithm, we have that

A(k) = R(k)Q(k) = (Q(k))�1A(k�1)Q(k), (6.13)

so that Ak and Ak�1 are similar, and thus have the same eigenvalues.

Algorithm 4: QR algorithm

A(0) = A for k = 1, 2, ... do
Q(k)R(k) = A(k�1)

Ak = R(k)Q(k)

end

The basic QR algorithm can be accelerated: (i) by Householder reflectors
to reduce the initial matrix A(0) to Hessenberg form, that is a matrix with
zeros below the first subdiagonal (or in the case of an Hermitian matrix a
tridiagonal form), and (ii) by introducing a shift to instead of A(k) factorize
A(k) � µ(k)I, with µ(k) an eigenvalue estimate.

Rayleigh quotient

We recall that for a real symmetric matrix A, all eigenvalues �
j

are real and
the corresponding eigenvectors q

j

are orthonormal. Given a vector x 2 Rn,
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what is the real number ↵ 2 R that best approximate an eigenvalue of A
in the sense that kAx� ↵xk is minimized?

If x = q
j

is an eigenvector of A, then ↵ = �
j

is the corresponding
eigenvalue. If not, ↵ is the solution to the n⇥ 1 least squares problem

min
↵2R

kAx� ↵xk, (6.14)

for which the normal equations are given as

xTAx = xT↵x. (6.15)

With ↵ = r(x), we define the Rayleigh quotient as

r(x) =
xTAx

xTx
, (6.16)

where r(x) is an approximation of an eigenvalue �
j

, if x is close to the
eigenvector q

j

. In fact, r(x) converges quadratically to r(q
j

) = �
j

, that is

r(x)� r(q
j

) = O(kx� q
j

k2), (6.17)

as x ! q
j

.

Convergence of QR algorithm

The matrix products Q(k) = Q(1)Q(2) · · ·Q(k) and R(k) = R(k)R(k�1) · · ·R(1),
correspond to a QR factorization of the kth power of A,

Ak = Q(k)R(k), (6.18)

so that the QR algorithm constructs successive orthonormal bases for the
powers Ak. Further, the diagonal elements of the kth iterate A(k) are the
Rayleigh quotients of A corresponding to the column vectors of Q(k),

A(k) = (Q(k))TAQ(k), (6.19)

and thus the diagnonal elements of A(k) converges (quadratically) to the
eigenvalues of A.


