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Abstract
In this thesis, we investigated if reinforcement learning could
be applied on elevator systems to improve performance.
The performance was evaluated by the average squared
waiting time for the passengers, and the buildings consid-
ered were apartment buildings.

The problem of scheduling elevator cars is an NP-hard
problem, and no optimal solution is known. Therefore, an
approach where the system learns a strategy instead of us-
ing a heuristic, should be the easiest way to get near an
optimal solution.

A learning system was constructed, where the system
was trained to use the best scheduling algorithm out of five
in a given situation, based on the prevailing traffic. The
purpose of this approach was to reduce the training time
that was required in order to get good performance and to
lower the complexity of the system.

A simulator was then developed, in which the different
algorithms was implemented and tested in four different
scenarios, where the size of the building and the number of
elevator cars varied. The results generated by the simulator
showed that reinforcement learning is a great strategy to
use in buildings with 16 floors and three or four elevator
cars. However, reinforcement learning did not increase the
performance in buildings with 10 floors and two to three
elevator cars. A possible reason for this is that the variation
in performance between the different scheduling algorithms
was too small in these scenarios.



Sammanfattning
Hisschemaläggning där reinforcement

learning väljer strategi

I denna rapport har vi undersökt huruvida reinforcement
learning är användbart för att öka prestandan för hissystem
i lägenhetshus. Prestandan bedömdes efter de genomsnitt-
liga kvadrerade väntetiderna för resenärerna.

Schemaläggningsproblemet för hissar är NP-svårt och
ingen optimal lösning är känd. Att lösa problemet med
hjälp av ett system som lär sig hur det ska agera, bör således
vara en enklare strategi för att komma nära den optimala
lösningen än att använda sig av en heuristik.

Ett självlärande system konstruerades, där systemet
tränades att använda den bäst lämpade schemaläggningsal-
goritmen med avseende på rådande trafikförhållanden. Det
fanns totalt fem olika algoritmer att välja bland. Anled-
ningen till att detta gjordes i stället för att systemet skulle
lära sig en komplett strategi, var för att sänka träningsti-
den som krävdes för att åstadkomma bra resultat och för
att minska komplexiteten.

En simulator utvecklades sedan, där de olika algorit-
merna implementerades och testades på fyra olika scenari-
on, där storleken på byggnaden och antalet hissar varierade.
Resultaten som genererades visade att reinforcement lear-
ning fungerar utmärkt på byggnader med 16 våningar och
tre eller fyra hissar. På byggnader med tio våningar och två
till tre hissar är det dock inte lika användbart och där bör
i stället enklare algoritmer användas. En möjlig förklaring
till detta är att prestandaskillnaderna mellan algoritmerna
var för små under dessa scenarion.
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Chapter 1

Introduction

It is vital to have a well-performing elevator system in highly populated buildings.
Particularly in high-rise buildings, where the elevator usually is the only method
of traveling between floors in a reasonable time. Passengers expect the elevator to
serve them immediately and take them to their destination floor as fast as possible.
However, while ordinary people see this as something that should not be hard to
do and gets frustrated when this takes some time, the problem is not easy at all to
solve. The task of assigning elevator cars to calls to minimize the average waiting
time is as a matter of fact an NP-hard problem even with no car capacity restrictions
[1].

There are different approaches towards decreasing the average waiting time, such
as increasing the number of elevator cars or the capacity of each car. However, that
kind of changes are not always possible to accomplish due to structural limitations
of the building or might not be financially viable. An alternative and often a more
applicable solution would be to optimize the control system for the elevator in the
building. There is a collection of different strategies to control an elevator system,
but an optimal policy for elevator group control is not yet known [2]. Because of
this, developing a near-optimal policy using traditional methods is very difficult
and an alternative approach is to let the computer develop a policy on its own.
This approach to solve problems is known as machine learning and we will focus
on the specific method known as reinforcement learning. Reinforcement learning
is a form of unsupervised machine learning, where the system does not know what
the optimal solution to the problem is. It must instead discover what the optimal
solution is by itself.

1.1 Problem Statement

Is the application of reinforcement learning a viable strategy for reducing the average
squared waiting time for the passengers in an apartment building’s elevator system?
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CHAPTER 1. INTRODUCTION

1.2 Scope

This thesis only focuses on elevator systems in apartment buildings, since it would
not be possible to cover all sort of buildings where elevators are used. Apartment
buildings are common and elevators are frequently used in them.

This thesis will primarily evaluate elevator systems after the average squared
waiting time, where the waiting time is defined as the time between a passenger’s
arrival and entrance into a car [2]. There are also other ways of measuring the
performance of elevator systems, such as average system time, where the system time
is the total time it takes from a passenger’s arrival to its destination, and regular
average waiting time [2]. However, most of these other measuring techniques does
not take into consideration that long waiting times are devastating for the passengers
affected. For example, two passengers with waiting times 2 and 20 seconds have the
same average (11 seconds) as two passengers whose waiting time is 11 seconds each.
Using squared waiting time instead, the average times are 202 and 121 seconds2 for
the respective pair of passengers. This is consequently a better measuring technique
to avoid long waiting times.

1.3 Purpose

Elevators have an essential role in today’s society and we think that they will be even
more important in the future when cities might grow taller instead of wider. The
purpose of this thesis is to investigate if reinforcement learning can be used to create
a control strategy that will reduce the waiting times for the elevator passengers in
apartment buildings. More specifically, this thesis will investigate if reinforcement
learning can be used to select what control algorithm that should be used, based
on the prevailing traffic circumstances.

1.4 Disposition

In the next section, section two, the reader will be introduced to the area of elevator
scheduling and reinforcement learning.

In the third section, the method and the tools to be used will be explained and
motivated. This is to obtain credible results. All assumptions that are made and
the test data that will be used are addressed here.

In section four the results obtained will be presented. These are then interpreted
and discussed in the following section.

In the sixth section, conclusions for the problem statement are made based on
the prior discussion.

Finally, all the references used in the thesis are listed.

2



1.5. TERMINOLOGY

1.5 Terminology
Key terms used in this thesis.

Lobby The ground floor in a building.
Hall call A call to the elevator system made from one of the floors in the building.

A hall call only considers the desired direction.
Car call A call made from inside an elevator car to a specific floor.
Control system The central system that manages all elevator cars. For instance, it

decides which car that shall handle a specific call and where a car shall
go when it becomes idle.

3



Chapter 2

Background

To be able to invent a good strategy for elevator control, a lot has to be known
about the elevator traffic in the building that the elevator shall serve. In this section,
general traffic patterns for elevators will be specified and after that a theory that
can be used to simulate this traffic — the Poisson process — will be explained.
Subsequently, the most used strategies to handle the different traffic types will be
described and a handful of algorithms using these strategies will be defined. This
is followed by a sub-section devoted to the main subject, reinforcement learning.

2.1 Traffic Patterns

The traffic in an elevator system depends principally on the passenger arrivals.
Generally, there are three different kinds of traffic in an elevator system: up-peak,
down-peak and two-way traffic. In this section, each traffic type will be explained
and it will be specified when these occur in an apartment building during a regular
day.

2.1.1 Up-peak traffic

Up-peak traffic is characterized by that most of the passengers arrives at one single
floor, typically the lobby, but have several destination floors [2]. In an apartment
building, this is the case on the evenings when the residents are coming home from
their jobs and other daily occupations.

2.1.2 Down-peak traffic

Down-peak traffic is almost the same as up-peak traffic but in the opposite direction.
This type of traffic have multiple arrival floors and a single destination floor, most
commonly the lobby [2]. This scenario occurs primarily in the mornings when the
residents are heading to their daily occupations. The down-peak traffic will therefore
not be as high and concentrated on weekends as on the weekdays since many of the
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2.2. POISSON PROCESS

residents will stay at home the whole day or at least longer than on the weekdays.
This is also true for the up-peak traffic on the weekends.

2.1.3 Two-way traffic

During most of the day, the traffic, however, goes in both directions. Some residents
travel from their apartments down to the lobby, and some in the opposite direction.
This traffic is called two-way lobby traffic. There is also another form of two-way
traffic called two-way interfloor traffic, where the users of the elevator travels be-
tween two floors different than the lobby [2]. This is not a common scenario in an
apartment building if there are no special rooms such as a laundry room that is not
on the ground floor.

2.2 Poisson Process

Under the assumption that the arrival time for two passengers is independent of
each other, the arrival model in an elevator system can be described by a Poisson
process [3]. Measurements on installed elevator systems in buildings has proven this
to be a reasonable assumption [2]. The Poisson process defines that the probability
of a certain number of arrivals at a given time t follows the Poisson distribution and
the probability distribution of the time until the next arrival follows the exponential
distribution [3].

To determine if a passenger has arrived, the cumulative distribution function
(CDF) of the exponential distribution can be used. It is defined as FX(x) = 1−e−λx,
where λ is the average rate of arrivals per a time unit and x is the time since the last
arrival [3]. FX(x) will describe the probability of an event occurring after the time
x has passed. To determine if the event has occurred, a random value is generated
from a uniform distribution in the interval [0, 1]. If the value is less or equal to the
probability, the event has occurred.

Another approach is to calculate the time when the next arrival will occur after
an arrival has been generated. The idea is to generate a random point from a
uniform distribution on the function FX(x) y-axis and locate the x value for the
point. The function FX(x) has an analytical inverse, meaning that the stochastic
variable X can be calculated as X = −ln(U)

λ , where U is a random number generated
from a uniform distribution in the interval (0, 1] [12].

2.3 Control Strategies

Four general approaches to control elevators can be identified. Those will be ex-
plained below. There also exists many simple control strategies that do not fall
into a specific category. One example is the Collective control strategy where the
elevator cars always stop at the nearest call in their running direction [2].

5



CHAPTER 2. BACKGROUND

2.3.1 Zoning approaches

The zoning approach divides the building into zones, where an elevator car only
serves calls within its own zone and parks there when it is idle. The main purpose
of this approach is to minimize the number of stops that an elevator car has to
make and is primarily designed for down-peak traffic. The zones can either be
static, where the elevator cars are permanently assigned to one zone or dynamic,
where the cars can switch zones. [4]

2.3.2 Search-based approaches

In search-based approaches, the space of possible car assignments is searched through
and the assignment that will optimize some property of the system, such as the av-
erage waiting time, is selected. In general there are two types of search strategies:
greedy and non-greedy ones. In greedy strategies, a car is assigned to an elevator
call when the call is registered and this assignment is not changed later when new
information arrives. In non-greedy strategies, the car assignment can be delayed
or changed when new information arrives. This means that greedy algorithms re-
quires less computation time but sacrifices performance compared to non-greedy
algorithms. [2]

2.3.3 Rule-based approaches

Rule-based approaches consist of rules of the form “IF situation THEN action” [2].
In the IF-clause, a logic known as fuzzy logic may be used to identify if the clause
is satisfied or not. Fuzzy logic grades how truthful the statement is in the range
[0, 1]. This approach may be used to switch the scheduling strategy when a specific
traffic pattern emerges. [5]

2.3.4 Learning approaches

Instead of using heuristic approaches, learning approaches may be used. In learning-
based strategies, the system adapts the control strategy based on circumstances
influencing the building that the elevator system is used in, such as the current
traffic. Since there exists no optimal policy for elevator control, some learning
approaches such as supervised learning become less practical. This is because these
require training data with a desired output value, which may not exist in practice.
One possibility is to use reinforcement learning, which do not require a predefined
output value for the training data. [2]

2.4 Algorithms

Based on the above-named strategies, there are a number of algorithms that is often
used in practice. In this section, five of these will be defined and explained.

6



2.4. ALGORITHMS

2.4.1 Longest Queue First (LQF)
In Longest Queue First, idle elevator cars always prioritize the floor with the pas-
senger that has waited the longest. When an elevator car is moving, it will stop
at a floor if it has a hall call in the same direction as the car is traveling [2]. One
disadvantage with this is that a phenomenon known as bunching, where multiple
elevator cars arrive at the same floor simultaneously, often occurs in practice [8].

2.4.2 Zoning
A building with N floors is divided into m zones, where m is the number of elevator
cars. Each zone get at least dN/me floors and one elevator car. If the number of
zones is not divisible by the number of floors, N mod m zones will get one additional
floor.

The boundaries of the zones are static, which means that the floors assigned to
a specific zone are not changed during the course of the simulation. The zones do
only consider the arrival floor of a passenger and not the destination. This makes
the zoning approach only viable in down-peak scenarios. When an elevator car is
idle, it is sent to the floor in the middle of its zone. When a car is moving, it can
pick up passengers in the same movement direction inside its zone.

2.4.3 Round-Robin
In the Round-Robin algorithm, the elevator cars are assigned to calls in a sequential
way, where the first car get the first call, the second car the second call and so on.
The goal of the algorithm is to get equal load among all elevator cars and is not
primarily designed to perform very well time-wise. [4]

2.4.4 Up-Peak Group Elevator
Up-Peak scheduling is a variant of the Round-Robin algorithm, designed for use in
up-peak scenarios. The only difference is that when an elevator car is idle, it moves
down to the lobby to be prepared for upgoing passengers. [4]

2.4.5 Estimated Time of Arrival (ETA)
Rong, Hakonen and Lahdelma [9] developed an Estimated Time of Arrival based
elevator group control algorithm, which is defined in this section. Elevator group
control algorithms using ETA are based on the Three Passage concept. This declares
that there are three types of hall calls that can be made to an elevator car [9]:

• P1: Passage One calls can be served by the elevator car in its current travel
direction.

• P2: Passage Two calls can be served after the elevator car has reversed its
travel direction once.

7



CHAPTER 2. BACKGROUND

• P3: Passage Three calls can be served after reversing the direction twice.

Figure 2.1: A descriptive picture of the Three Passage concept. The elevator
car is traveling upwards and there are passengers waiting to be handled by the
elevator car on different floors. [4]

The floors that cause an elevator car to change direction is called the reversal
floors [4]. For each car, the algorithm calculates the cost to serve a call and chooses
the car with the lowest. The total cost of allocating a hall call to elevator car i, is
defined as

ttotali =
ni∑
j=1

tdelayi,j + tattendingi (2.1)

where ni is the number of passengers that has been assigned to elevator car i but
not yet been served, tdelayi,j is the delay that the new call will cause to passenger j,
who has been assigned to car i but not yet served, and tattendingi is the estimated
time to handle the new call. How tdelayi,j and tattendingi is estimated can be seen in
appendix A. [9]

8



2.5. REINFORCEMENT LEARNING

2.5 Reinforcement Learning

Imagine that you want to train a computer to find the shortest path through a
maze. From each position, the computer can only perform one out of four movement
actions: move up, down, right or left. Given the maze and a position, the computer
knows if it has reached the exit of the maze and what moves that are legal to make.
Without any further information, how can this problem be solved?

One solution is to use a table that for each pair of position and movement action,
contains a value that describes how good it was to perform that certain action at the
position. This value can be based on that it cost the computer 1 to make a move,
and it is rewarded with 100 if it reaches the exit of the maze. If the computer would
have multiple attempts at trying to find a way through the maze, the table should
gradually contain the best path through it. This is an example of how reinforcement
learning works.

2.5.1 Definition

A reinforcement learning system consists of six main elements: an agent, an envi-
ronment, a policy, a reward function, a value function and in some cases a model
of the environment.

The agent is the learner and the decision-maker and the environment is every-
thing outside the agent that it interacts with. It is the environment that gives the
agent rewards.

The policy defines the behavior of the agent at a given time and is a mapping
from the perceived state of the environment to the actions to take in the state.

The reward function defines the goal of the problem. The function maps each
perceived state of the environment to a single number — the reward — which
indicates the desirability of that state for the agent. The reward function defines
the features of the problem that is faced by the agent and may serve as the basis
for changing the policy.

The value function defines what is good in the long run, in contrast to the reward
function which defines what is good in the immediate case. The value of a state is
the total amount of reward that an agent can expect to gather in the future when
starting from the state.

The model of the environment imitates the behavior of the environment. The
purpose of the model is to plan which actions to take in the future by considering
possible upcoming situations where the actions are actually performed. Reinforce-
ment learning systems that do not use a model are trial-and-error learners.

An episode is a scenario that the agent will be trained on. An episode ends
when a special state known as the terminal state is reached, which causes the state
of the agent and the environment to be reset and the episode to be repeated. The
information about the rewards and values is saved between the episodes in order for
the agent to be able to learn anything. In some scenarios, there exists no terminal
state and hence no episodes. In those cases, the interaction between the agent and

9



CHAPTER 2. BACKGROUND

the environment goes on continually. [6]

2.5.2 Exploration and exploitation

One of the challenges when using reinforcement learning, that is not present in other
forms of learning methods, is the trade-off between exploration and exploitation.
The agent explores action by trying actions that it has not tried before and exploits
actions by performing actions that it already knows is generating a good reward [6].

In general there are two different approaches to handling exploration: on-policy
and off-policy. In on-policy methods, the agent always performs exploration and
tries to find the best policy that maintains exploration of possible actions [6]. This
means that the selected action is not always the best one, based on the estimated
reward. In off-policy methods, the agent can learn different policies for behavior
and estimation. The behavior policy usually maintains exploration and the estimate
policy may consist of actions which have not been tried. This means that an agent
trained using an off-policy method may learn strategies that were not experienced
during the learning phase [7].

2.5.3 Action selection policies

The action selection policies are used by the learning methods to determine which
action to take.

The ε-greedy policy will normally choose the action with the highest estimated
reward, but will with a probability of ε choose a random action independent of any
action-value estimate. It is also possible to let ε decay over time, decreasing the
amount of random actions taken. This method ensures that the optimal actions are
discovered if enough trials are done.

One of the drawbacks with the ε-greedy method is that it selects random actions
uniformly. This means that the worst possible action is selected with the same
probability as the second best action. The softmax method avoids this problem by
weighting each action according to its action-value estimate. Actions are always
selected randomly, but the weight is taken into consideration [7].

The most common softmax method uses the Boltzmann distribution. The
method chooses the action a on the t:th time step with the probability of

eQt(a)/τ

n∑
i=1

eQt(i)/τ
(2.2)

where τ is a positive parameter called the temperature. A high temperature means
that all actions are equally probable to be selected and a low temperature means
that actions that have a great difference in their value estimate causes a great dif-
ference in their selection probabilities. As the temperature approaches zero, the

10



2.5. REINFORCEMENT LEARNING

probability of selecting the action with the highest estimated value gets close to 1
[6].

2.5.4 Value functions
Almost all reinforcement learning algorithms contain an estimate of the value func-
tion, which estimates how much reward that can be expected for the agent given a
state or a state-action pair.

Let V π(s) be the value of state s under the policy π and Qπ(s, a) the value
of taking the action a in the state s under the policy π. V π(s) is known as the
state-value function for the policy π and Qπ(s, a) the action-value function for the
policy π [6].

The action-value can be stored in a table, but when the complexity of the
problem increases (for example when the number of possible states gets higher)
this approach becomes less viable and some form of approximation has to be used.
One common approach is to use something called a neural network to estimate the
functions [2].

Temporal difference learning

Temporal difference methods do not need a model of the environment and uses
experience to estimate the value function. Unlike other forms of reinforcement
learning methods, temporal difference learning does not require the final reward to
be generated in order to update the value for a state. The method only has to
wait until the next time step, which makes it applicable in continuous scenarios. [6]

Q-learning
Q-learning (2.3) is an off-policy algorithm which learns an optimal policy indepen-
dent of the one being followed. The algorithm works by observing a state s before
selecting an action a using the selection policy. The action a is then executed and
its reward r is calculated and the new state s′ is observed. The action-value is then
updated for the state using r and the maximum possible reward for the new state.[6]

Let t be the current time, st the state, at the action, rt the reward, α ∈ [0, 1]
the learning rate, γ ∈ [0, 1] the discount factor and maxa the reward for taking the
optimal action in the next state. A learning rate of 0 means that the agent does
not learn anything and a learning rate of 1 means that the agent only considers the
most recent information. A discount factor of 0 means that the agent only considers
the most recent rewards and a discount factor near 1 will make the agent strive for
long-term rewards [7].

Q(st, at)← Q(st, at) + α[rt+1 + γmaxat+1(Q(st+1, at+1))−Q(st, at)] (2.3)
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CHAPTER 2. BACKGROUND

Using Q-learning, reinforcement learning can be implemented as in listing 2.1.

// Initalize the Q-table to some value, e.g. 0
Q(s, a)← 0

// Repeat for each episode
for episode← 1 to maxEpisodes do

// Initalize the state
s← ()

// Repeat until the terminal state has been reached
while ¬terminal(s) do

// Select an action using a policy (e.g. ε-greedy)
a← selectAction(Q, s)

// Take the action a and observe the new state s′ and the
reward r

(r, s′)← takeAction(a)

// Update the action-value table
Q(s, a)← Q(s, a) + α[r + γmaxa′(Q(s′, a′))−Q(s, a)]
s← s′

end
end

Listing 2.1: Reinforcement learning using Q-learning.

Sarsa
The Sarsa algorithm (2.4) is an on-policy algorithm and the main difference from
the Q-learning algorithm is that the maximum reward for the next state is not nec-
essarily used for updating the action-value. A new action is selected using the same
policy as the one that selected the original action. The notation in the algorithm is
the same as for Q-learning.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]. (2.4)
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Using Sarsa, reinforcement learning can be implemented as in listing 2.2.

// Initalize the Q-table to some value, e.g. 0
Q(s, a)← 0

// Repeat for each episode
for episode← 1 to maxEpisodes do

// Initalize the state
s← ()

// Select an action using a policy (e.g. ε-greedy)
a← selectAction(Q, s)

// Repeat until the terminal state has been reached
while ¬terminal(s) do

// Take the action a and observe the new state s′ and the
reward r

(r, s′)← takeAction(a)

// Select a new action using a policy (e.g. ε-greedy)
from the new state

a′ ← selectAction(Q, s′)

// Update the action-value table
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′

a← a′

end
end

Listing 2.2: Reinforcement learning using Sarsa.

2.5.5 Reinforcement learning in elevator systems

In 1998, Crites and Barto used reinforcement learning to optimize elevator schedul-
ing [2]. They used a system where each elevator car were its own agent and made
decisions independent of the other agents’ decisions. Each agent was only able to
make a small number of actions, such as if the elevator car should stop at the next
floor or continue past it. To make the system more realistic, some constraints were
applied to the action selection process. An elevator car could not continue past
a floor if it contained a passenger that wanted to go off at the floor and it could
not change direction before all calls in the current movement direction had been
handled.

In their model, the state of the agents was represented by which of the hall
buttons that were pressed on each floor, which car buttons that were pressed in
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each car, what floors all the cars were at and in which direction they were traveling.
Using this model, the number of states in the system was over 1022 for a building
with 10 floors and four elevator cars. They used the Q-learning algorithm with some
modifications since a tabular approach was not practical due to the size of the state
space. [2]

The action-value function, Q(s, a), was approximated using a nonlinear neural
network that used different kinds of inputs to approximate the output. The input
to the network was data such as the state of the nine hall buttons used for down
travel, the location, speed and direction of the elevator car. [2]

Two approaches were used. In the first one, each elevator car were given its own
action-value function and in the second one the action-value function was shared
between all elevator cars. The reward function used was the negative sum of the
average squared waiting times for the passengers currently waiting in the halls for
an elevator car. [2]

The traffic that the system was trained on were down-peak scenarios and in
order to get good results, 60,000 hours of simulated training time was required.
Both approaches greatly outperformed scheduling algorithms such as Longest Queue
First and Zoning but only beat more advanced algorithms such as Empty the System
Algorithm (ESA) by a small margin. [2]
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Method

To be able to determine if reinforcement learning is a good strategy to use to reduce
the waiting times for the passengers in an elevator system, we had to compare that
strategy against other scheduling algorithms. This was done using a simulator
where the passenger timings in the elevator system were measured for the different
algorithms.

Following in this section, our model for the elevator will be defined and the
simulator used for the testings will be explained. Afterward, the implemented rein-
forcement learning system will be described in details, followed by the scenarios that
were simulated. Finally, we will define how data was gathered to get trustworthy
results and what data that was collected.

3.1 Elevator Model

In our simulations, a simplified model of the elevator car has been used to facilitate
the implementation of the system and the measurements to it. Unlike elevator
cars in the real world, these did not have any form of acceleration or deceleration
and instead were able to go from stationary to full speed in no time. This was
compensated by a stop time and a start time that occurred after the car stopped
and before it left. The elevator cars were able to stop at a floor if the call to it
was made just before the elevator car passed it. This is not a realistic behavior,
but since the model was the same for all control strategies, it should not have had
any influence on the results. The elevator control system moreover knew the exact
amount of people that was waiting on each floor, where they were traveling and the
number of passengers in each elevator car. The system dynamics for the elevator
cars were based on Crites and Barto’s approximations [2] and the used parameters
were:

• Floor time (the time to move one floor): 1.5 seconds.

• Stop time (the time to stop the elevator car): 2.6 seconds.
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• Door time (the time to open or close the doors): 1 second.

• Load time (the time for one passenger to enter or leave the car): 1 second.

• Start time (the time to start again after a stop): 2.6 seconds.

• Capacity: 8 passengers.

Some general constraints applied to an elevator car regardless of what control
strategy that was used. Due to passengers expectations, it was not possible for a
car to continue past a floor that was the destination for a passenger in the car.
It could neither change direction before all calls in the current direction had been
handled. It was impossible for a car to stop at a floor to pick up more passengers
if its capacity had been reached. Lastly, if a car had stopped at a certain floor,
a passenger always boarded it if it was heading in the correct direction and had
capacity left.

3.1.1 State machine
An elevator car in the system was represented by a finite-state machine, with the
states: idle, the car is not moving and does not have any passengers on board;
moving, the car is moving towards a floor and may have passengers on board;
stopped, the car has stopped at a floor and passengers may board it; accelerating,
the car is accelerating and cannot take on any new passengers; decelerating, the car
is decelerating towards a stop; turning, the car is changing its movement direction.

Figure 3.1: The state machine used for an elevator car. An arrow from one
state to another means that there exists a transition between those states.

Below, the transitions between the states are described, where the first level
indicates the current state and the possible transitions are listed underneath.
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• Idle

→ Stopped: A passenger boards the elevator car.
→ Accelerating: The control system sends the elevator car towards a floor.

• Accelerating

→ Moving: The time start time has passed since the elevator car started
accelerating.

• Moving

→ Decelerating: A passenger in the elevator car wants to go off on the
next floor or the destination of the elevator car is the next floor.

→ Turning: The elevator car needs to reverse its movement direction. This
only occurs if the elevator car is empty and needs to change direction to
serve a passenger.

• Decelerating

→ Stopped: The time stop time + door time has passed since the elevator
car started decelerating.

• Stopped

→ Accelerating: The load time + door time has passed since the last pas-
senger boarded the elevator car and is reset for each passenger. Only the
passengers that have boarded the car since the last stop are considered.

→ Idle: The elevator car is empty and there are no passengers that want
to board on the current floor.

• Turning

→ Moving: The time stop time + start time has passed since the elevator
car started turning.

3.2 Simulator
The programming language chosen for the simulator was Java since it is the lan-
guage in which the authors are most comfortable and it was also suitable for the
task. Since the computational performance of the elevator system and the schedul-
ing algorithms was not considered, a lower level language such as C++ was not
required in order to get better runtime performance. The random generator used
was Java’s built in (java.lang.Random), which generates random numbers from a
uniform distribution. The reinforcement learning system was written using a li-
brary called YORLL (YOrk Reinforcement Learning Library), developed by the
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Reinforcement Learning Research Group at the University of York UK [10]. The
library contained the implementation of all the reinforcement learning algorithms
discussed in section 2.5. The source code for the simulator is available at GitHub 1.

3.2.1 Simulating time

The system simulated is a real-time system, which means that the time when an
event occurs in the simulator is important. The time in the simulator was repre-
sented as the number of milliseconds since the start of the simulation. The simula-
tion advanced with a fixed time step where events could occur. An event could be
a passenger arrival or an elevator car that stopped, for instance.

The length of the time step can affect the results of the simulation if not chosen
carefully. If the time step is too long, the precision of the waiting times will be
affected. For example, if the time step is five seconds, the waiting times cannot be
lower than five seconds since the simulation always advances with five seconds at a
time. On the other hand, the lower the time step gets, the longer the simulation
takes to run. The time step chosen was 10 milliseconds since no event occurs at a
higher frequency than that in the simulator. Because the simulator always advanced
with the same time in each step, the simulation was completely deterministic given
that the random generator was given the same seed each time.

3.2.2 Metrics

To describe the handling capacity of an elevator system, the HC5% metric is often
used. It defines that a certain percentage of the building’s population is served
within a five-minute window [11]. Since this is an established way of measuring an
elevator system’s capacity, this method has been used to describe how crowded the
elevator system was in the simulation. The traffic density was consequently repre-
sented as how many passenger arrivals that occurred in five minutes in proportion
to the building’s population, in percent.

3.2.3 Passenger arrival model

The building considered in this thesis was an apartment building, where some as-
sumptions were made. It was assumed that there were no public rooms on any floor
that had an influence on the elevator traffic. Furthermore, people living on the
ground floor were ignored since they rarely (if ever) use the elevator. With those
assumptions in mind, we further assumed that the traffic to and from a certain floor,
other than the lobby, only depended on how many residents it had. For example,
a floor with 100 residents had twice the traffic, both to and from it, as a floor with
50 residents.

1https://github.com/svenslaggare/ElevatorSimulator
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Knowing how many people lived on each floor, the average arrival rate was cal-
culated for the building. The average arrival rate λ is the average number of arrivals
per time unit, which in the simulation was one minute long and was calculated as

λ = traffic desnity
5 . (3.1)

The traffic density differed with the time of the day together with the ratio
between up, down and interfloor traffic. This data was represented in 10-minute
intervals, which means that a day had 144 intervals (6 per hour, 24 hours). To be
able to calculate the time until the next arrival, we assumed that the passenger
arrivals followed a Poisson process (see section 2.2).

The ratio between the different traffic types was represented as how much of
the total traffic that was of a certain type. If, for instance, the up traffic ratio is
0.6, 60 % of all elevator hall calls are made from the lobby. If the up traffic ratio
further is 0.35, 35 % of the traffic goes down to the lobby, and 5 % of the traffic is
interfloor. That means that totally 40 % of the hall calls comes from floors other
than the lobby.

3.3 Reinforcement Learning System
We chose to not use a reinforcement learning system where the system would learn
a complete scheduling strategy, but instead one that learned to use the scheduling
algorithm best suited for the prevailing traffic. The algorithms that were selectable
are defined in section 2.4. This strategy was chosen for the reason that a complete
reinforcement learning system would require a very large amount of states (Crites
and Barto estimated that a state space with a size of 1022 would be required in a
10 floor building with four elevator cars [2]) and hence a neural network would be
required to approximate the action-values, which is beyond the scope of this thesis.

3.3.1 Model

The state of the system was defined by the prevailing traffic pattern, which was
described by four parameters: up, the ratio of passenger traveling from the lobby;
down, the ratio of passengers traveling to the lobby; interfloor, the ratio of pas-
sengers traveling between floors other than the lobby and travels, the total number
of travels. To make the system require less training and to be more realistic, the
parameter values was divided into intervals. The interval grouped similar values
together by rounding them to the closest value divisible by the interval length. For
example, if we chose an interval length of 100 for the number of travels, all values
between 50 and 149 were considered to be in the same interval (100). Two states
were equal if for all the traffic pattern parameters, each value was in the same in-
terval. In our simulations, up, down and interfloor had the interval length of 0.1
and the number of travels the length of 100.
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The possible actions for the system were to use one of the scheduling algorithms
and the system had the ability to switch scheduling algorithm every 10 minutes. We
used 10-minute intervals to give the system enough data about the traffic pattern,
and the traffic did not change more often than that. When the 10-minute interval
had ended, the reward was calculated for the interval and the action-value table was
updated using the learning algorithm. The reward function used was the negative
sum of the average squared waiting times for the served passengers in the interval,
the passengers still waiting on the floors and the passengers inside the elevator cars.
An episode was defined to be an entire day.

3.3.2 Reinforcement learning algorithms

The learning algorithm used was the Q-learning algorithm with α = 0.05 and γ =
0.1. Since the environment was non-deterministic, a low α-parameter was chosen to
minimize how much the action-value was updated each time. The action selection
policy that was chosen was softmax, using the Boltzmann distribution with τ = 200
at the beginning. τ decayed linearly over the course of the training and became 0
when 55 % of the episodes had been simulated.

3.4 Scenarios

When simulating, different scenarios were used where the building’s size and the
number of elevator cars differed. To make it possible to run all simulations a suf-
ficient number of times to get reliable results, only two buildings were simulated
and two different amount of elevator cars were used for each building. This meant
that the total number of scenarios to cover was four. Since elevator scheduling is
not very interesting for small buildings with only one elevator car, those were not
considered and the minimum number of cars was two.

The traffic profile that was used in the simulations was a complete 24-hour
weekday. Since it would take too long time to simulate an entire week, only weekdays
were simulated. The traffic density and pattern during the day were specified using
the following assumptions:

• Hour 0–4: The traffic density is very low since most people are sleeping. The
density first decreases but slowly starts to increase towards the end of the
interval. The main traffic type shifts from up to down during the course of
the interval.

• Hour 5–10: The people in the building wakes up and start going to their daily
occupations. The traffic density increases rapidly until the peak is reached
during hour 8. The traffic type is mostly down, but the number of up travels
increases progressively after 6 o’ clock.
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• Hour 11–14: Most of the building’s population has left the building and the
traffic density decreases. The traffic type is two-way lobby traffic and the
amount of up and down travels are around equal.

• Hour 15–19: People are starting to come home from their daily occupations
and the traffic density increases. The traffic goes primarily from the lobby.

• Hour 20–23: The traffic density is decreasing since most of the buildings
population are home. Most of the travels goes upwards.

The traffic density for the whole day in the building was specified so that the
average person in the building made slightly more than two journeys per day. The
average up rate, down rate, interfloor rate and traffic density per hour that was
used, is specified in its entirety in appendix B.

3.4.1 Medium building

The smaller building had 10 floors (nine excluding the lobby) and a total number
of 710 residents. The number of residents on each floor is presented in table 3.1.
The building had either two or three elevator cars.

Table 3.1: The number of residents on each floor in the medium building.

Floor 1: 65 Floor 2: 80 Floor 3: 75
Floor 4: 85 Floor 5: 90 Floor 6: 90
Floor 7: 75 Floor 8: 80 Floor 9: 70

3.4.2 Large building

The bigger building had 16 floors including the lobby and a total number of 1,170
residents. The resident distribution over the floors is presented in table 3.2. The
building had three or four elevator cars.

Table 3.2: The number of residents on each floor in the large building.

Floor 1: 70 Floor 2: 70 Floor 3: 75
Floor 4: 85 Floor 5: 75 Floor 6: 80
Floor 7: 90 Floor 8: 90 Floor 9: 85
Floor 10: 75 Floor 11: 80 Floor 12: 75
Floor 13: 80 Floor 14: 70 Floor 15: 70
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3.5 Data Collection
To get credible results, each scenario was simulated 50 times and the average for
all data points are presented under results. For each test run, a unique seed was
used. This seed was then used to create the random generator used by the simulator
for each of the scheduling algorithms. Using the same seed for all of the scheduling
algorithms in a test run means that a passenger is always generated at the same time
and with the same arrival and destination floor, which makes the results comparable.

For the reinforcement learner, the simulator used a new random seed for each
training episode. When the training was over, the same 50 seeds as for the other
algorithms were used for the reinforcement learning system, and the data was col-
lected the same way as before. To get good results but still have a reasonable
training time, this was set to one year (365 days).

The following data was collected. All the data points were collected both per
hour and accumulated for the entire day.

• The number of generated passengers.

• The number of served passengers.

• The average waiting time.

• The average squared waiting time.

• The average ride time.

• The percentage of waiting times over 60 seconds.

• The number of travels from the lobby, known as up travels.

• The number of travels to the lobby, known as down travels.

• The number of travels between two floors other than the lobby, known as
interfloor travels.
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Results

In figure 4.1, the generated traffic for the different scenarios is presented. It is a
graphical representation of the table in appendix B and was the same for every
building. The actual number of travels for a specific building is presented at the
beginning of the sub-section devoted to it.

For every scenario, a table containing the accumulated data will be presented.
This is followed by two figures where the first one displays the average squared
waiting times over the day (per hour) and the second one the distribution of which
scheduling algorithm the reinforcement learner used per hour.
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Figure 4.1: Amount of different travel types per hour.
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4.1 Medium Building
In the medium building, the total amount of travels made was 1,796. Of those, 750
were up travels, 994 were down travels and 52 were interfloor travels.

4.1.1 Two cars
When two elevator cars were used in the smaller building, reinforcement learning
performed slightly worse than the best algorithm, Longest Queue First (table 4.1).
It was primary during the early hours, 0–5, and hour 17 that LQF performed better
than reinforcement learning (figure 4.2). It did also perform worse than Zoning
during hours 7–8.

Table 4.1: The performance of the different scheduling algorithms in the
medium building with two elevator cars.

Scheduling
algorithm

Longest
Queue
First

Zoning Round-
Robin

Up-Peak
Group
Elevator

Estimated
Time of
Arrival

Reinforce-
ment
Learning

Average
waiting
time

10.50 s 13.64 s 12.29 s 12.33 s 12.76 s 10.61 s

Average
squared
waiting
time

221.07 s2 302.58 s2 313.30 s2 332.38 s2 294.25 s2 225.86 s2

Average
ride time

16.37 s 16.35 s 15.13 s 14.99 s 15.44 s 16.05 s

Waiting
times over
60 s

0.22 % 0.22 % 1.058 % 1.17 % 0.61 % 0.22 %
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Figure 4.2: The average squared waiting time as a function of time for the
different scheduling algorithms in the medium building with two elevator cars.
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Figure 4.3: The scheduler usage for the reinforcement learning system as a
function of time for the medium building with two elevator cars.

4.1.2 Three cars
When three cars were used, reinforcement learning performed slightly worse than
both Longest Queue First and Round-Robin (table 4.2). In figure 4.4, we can see
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that reinforcement learning was outperformed mainly in the hours 7–8 and 16–18.
Why can be seen in figure 4.5. For example, between hour 16 and 18, where Round-
Robin was the best algorithm, the reinforcement learner used LQF and Up-Peak
Group Elevator around the same amount of time as it used Round-Robin. Those
algorithms did not perform as good during those hours (figure 4.4).

Table 4.2: The performance of the different scheduling algorithms in the
medium building with three elevator cars.

Scheduling
algorithm

Longest
Queue
First

Zoning Round-
Robin

Up-Peak
Group
Elevator

Estimated
Time of
Arrival

Reinforce-
ment
Learning

Average
waiting
time

8.24 s 11.29 s 8.26 s 8.91 s 9.58 s 8.16 s

Average
squared
waiting
time

135.47 s2 225.35 s2 132.70 s2 154.56 s2 171.92 s2 139.28 s2

Average
ride time

15.94 s 15.99 s 14.89 s 14.80 s 15.12 s 15.48 s

Waiting
times over
60 s

0.00 % 0.06 % 0.00 % 0.00 % 0.06 % 0.00 %
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4.2 Large Building
In the large building, the total amount of travels made was 2,992. Of those, 1,253
were up travels, 1,651 were down travels and 88 were interfloor travels.

4.2.1 Three cars
In the scenario where three cars were used in the large building, reinforcement
learning outperformed all of the other scheduling algorithms by a large margin.
The difference in average squared waiting time to the next best algorithm (ETA)
was 198.09 s2 (table 4.3). We can see that reinforcement learning tangent the best
scheduling algorithm during almost every hour of the day (figure 4.6).

Table 4.3: The performance of the different scheduling algorithms in the large
building with three elevator cars.

Scheduling
algorithm

Longest
Queue
First

Zoning Round-
Robin

Up-Peak
Group
Elevator

Estimated
Time of
Arrival

Reinforce-
ment
Learning

Average
waiting
time

17.99 s 23.27 s 21.45 s 22.51 s 18.36 s 15.58 s

Average
squared
waiting
time

904.11 s2 1,090.03 s2 1,333.81 s2 1,426.24 s2 693.56 s2 495.47 s2

Average
ride time

23.06 s 23.42 s 19.95 s 19.83 s 20.40 s 21.12 s

Waiting
times over
60 s

3.24 % 7.02 % 8.25 % 8.85 % 4.18 % 2.00 %
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Figure 4.6: The average squared waiting time as a function of time for the
different scheduling algorithms in the large building with three elevator cars.
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4.2.2 Four cars
When four cars were used, reinforcement learning again performed the best, but
the margin was much lower compared to when three cars were used (table 4.4).
Reinforcement learning tangent the best algorithm during most of the day (figure
4.8).

Table 4.4: The performance of the different scheduling algorithms in the large
building with four elevator cars.

Scheduling
algorithm

Longest
Queue
First

Zoning Round-
Robin

Up-Peak
Group
Elevator

Estimated
Time of
Arrival

Reinforce-
ment
Learning

Average
waiting
time

14.66 s 20.68 s 12.70 s 14.07 s 13.95 s 12.31 s

Average
squared
waiting
time

452.38 s2 896.47 s2 362.79 s2 434.49 s2 392.33 s2 330.88 s2

Average
ride time

22.23 s 22.88 s 19.53 s 19.43 s 20.01 s 20.15 s

Waiting
times over
60 s

1.40 % 5.58 % 1.24 % 1.57 % 1.44 % 0.80 %
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Figure 4.8: The average squared waiting time as a function of time for the
different scheduling algorithms in the large building with four elevator cars.
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Figure 4.9: The scheduler usage for the reinforcement learning system as a
function of time for the large building with four elevator cars.
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CHAPTER 4. RESULTS

4.3 Reinforcement Learning
In figure 4.10, the average squared waiting times for the passengers in the large
building with three elevator cars is visualized depending on the training time. The
same parameters were used — α = 0.05, γ = 0.1, τ = 200 which decayed linearly
to 0 until 55 % of the episodes had been trained — for all the simulations.
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Figure 4.10: The average squared waiting time as a function of the number
of training days, in the large building with three elevator cars.
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Chapter 5

Discussion

The reinforcement learning scheduling algorithm performed best according to the
average squared waiting time in the large building and were only beaten by a small
margin in the medium building. Generally, reinforcement learning performed bet-
ter in the scenarios where the large building was used and especially well when
that building only had three elevator cars. One possible explanation to why the
reinforcement learning system performed better in the large building than in the
small one is that the performance variations between the selectable algorithms were
more distinct for the larger building. This implied that the reward the system was
given for selecting an algorithm differed greatly between the different algorithms,
which meant that the system could choose the best algorithm more easily. Why the
difference was bigger when using a lower amount of cars, is probably because the
scheduling algorithm gets less important when more elevator cars are added, since
the cars then will be more spread out in the building.

A reinforcement learning system using our approach, shall ideally never perform
worse than any other algorithm in a time interval. This is not the case for our
reinforcement learning system. In every hour diagram (figure 4.2, 4.4, 4.6 and 4.8)
it can be seen that the reinforcement learner does not always tangent the best algo-
rithm. In the hour diagrams for the two scenarios with the medium building (figure
4.2 and 4.4), the reinforcement learner differs notably during the down-peak hours,
7–8. In the scenario when two elevator cars were used, the reinforcement learner
used about the same amount of Zoning and LQF (the best and the next best in
the interval) but the curve is more similar to the LQF curve than a combination of
them. In the same interval, but when three cars were used, LQF was most used,
primarily followed by Zoning. But, in this case, Round-Robin was clearly the best
scheduling algorithm and was used very moderate. The curve also looks more like
Zoning’s curve than the LQF curve. It is hard to comprehend why the reinforce-
ment learning system makes the decision it does, but it is possible that either our
implementation is not perfect or that the reinforcement learning algorithms that
we used was not optimal for this field of application. Another possible explanation
may be that the used reward function was not good enough.

33



CHAPTER 5. DISCUSSION

5.1 Training Time

The training time that was used for the reinforcement learner in the experiments
was a complete year. But as figure 4.10 shows, that amount of training time is
not truly necessary and it would be possible to go as low as to 125 days without
losing significant performance. This is a more reasonable number to be used as
training time for a system in a real building. One year of training might be too
long, but around four months is more moderate. A real system would probably use
a training profile which stretches over a longer time, but where it gains the biggest
improvements at the beginning of the usage and then gets better gradually over the
years.

The average squared waiting time does not seem to stabilize around a fixed
value, but instead tend to stay in the interval 475–495 after 300 days of training.
One explanation for this is the non-deterministic nature of the simulator. For each
training episode, a different seed was used which means that the traffic patterns
were not exactly the same for two episodes. This means that the overall observed
traffic was different each training session.

We did only study the training time for one scenario — the large building with
three elevator cars. This was because, in this scenario, the performance of the differ-
ent scheduling algorithms varied the most and, therefore, would best demonstrate
how the training time affected the performance.

5.2 Elevator Model and Simulator

In our simulator, the system knew exactly how many people that were waiting on
each floor and how long each one had waited. It is unlikely that a real system
would have this kind of information. Most elevator systems only know that at
least one passenger will travel upwards or downwards from a floor and how long
that passenger has waited. The extra information this system had was used in the
reinforcement learner’s reward function. Because of this, it is questionable whether
this elevator control strategy can be used in a real elevator system and it must most
likely be modified to be usable.

5.3 Reinforcement Learning System

The model that the reinforcement learning system used was a simplified one where
the system did not learn a complete new strategy but used other algorithms de-
pending on the prevailing circumstances. This means that the performance of the
system was constrained by the performance of the other scheduling algorithm. The
system, therefore, was unlikely to develop an optimal strategy, since the algorithms
used was only heuristics. Ideally, the system should develop a complete strategy
on its own to get the best results. However, such a system is more complex and
would require more training time in order to get good performance. Crites and
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5.3. REINFORCEMENT LEARNING SYSTEM

Barto developed such a system, that required 60,000 hours (almost seven years) of
training that outperformed algorithms implemented in this thesis such as Longest
Queue First and Zoning but barely beat more advanced algorithms that were not
covered here. Our model did not require this many hours of training, so this is an
advantage for our model. It is worth noting, though, that we did not use the same
model as they did, and the implementations of the simulator and the scheduling
algorithms is not the same, so the results is not entirely comparable.

The state model used in the simulation was one that was defined by the prevail-
ing traffic pattern. An alternative representation of the state is to only consider the
time of the day and divide it into different intervals. Since all of the episodes are
generated by the same scenario and model, the system should then learn a policy
that is useful. The problem with this model is that it cannot adapt to changes in
traffic during the week or over time. Using the traffic pattern representation, this is
not a problem. For example during weekends, the morning traffic might presumably
be much sparser compared to weekdays. However, since the state is described by the
traffic pattern, it does not matter since the best scheduling algorithm in weekends
for a specific traffic should be the same as for weekdays.

When the system changed scheduling algorithm, the decision was made based on
the traffic in the current interval and not the upcoming, in which the new algorithm
should be used. This is because it would require a model of the future traffic, which
would make the system more complex. If the traffic pattern in the new interval
would be drastically different from the actual, the system could have chosen the
wrong algorithm. However, the interval was chosen to be short (10 minutes) and
the traffic did not change much from one interval to the next, which is a realistic
behavior. This means that the information that was used for selecting scheduling
algorithm was accurate enough.

Choosing the right parameter values, learning algorithm and action selection
policy for the reinforcement learning system, is more of an art than science. We
have not found any source that describes a method for choosing the parameter
values or algorithms, other than that a low α-value is good in scenarios where the
environment is non-deterministic. We did not perform any systematic testing to
find the best algorithms and parameters, and they were chosen based on a few tests
that was not presented in this thesis.
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Chapter 6

Conclusion

The problem statement to be answered in this thesis was if reinforcement learning
is a viable strategy to use in elevator systems in apartment buildings, to reduce the
average squared waiting time. With the simulation results in mind, it is safe to say
that reinforcement learning is a great strategy to use at least in buildings with 16
floors and three or four elevator cars. It can be assumed that it is good even for
bigger buildings than that, but there is no proof for it. However, for buildings with
10 floors and two or three cars, reinforcement learning is somewhat unnecessary and
a regular Round-Robin or LQF algorithm should be used instead.

The output of the reinforcement learning was a policy that determined which
scheduling algorithm to use given a traffic pattern. Since the traffic was only defined
by four parameters that could be calculated in a real system, this method could be
applied to such a system. However, a modification to the reward function is required
since it used information that is not available in a real system.
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Appendix A

Estimated Time of Arrival Algorithm

All the formulas and explanations for the algorithm come from Rong, Hakonen and
Lahdelma’s definition [9]. As mentioned in the text, the total cost of allocating a
hall call to elevator car i, is defined as

ttotali =
ni∑
j=1

tdelayi,j + tattendingi (A.1)

where ni is the number of passengers that has been assigned to elevator car i but
not yet been served, tdelayi,j is the delay that the new call will cause to passenger j,
who has been assigned to car i but not yet served, and tattendingi is the estimated
time to handle the new call.

Expected extra stops and expected farthest floor
Let (k, d) represent an elevator call, where k is the floor of the call and d the direction
of the call (up or down). The notation that will be used to calculate the expected
number of extra stops and the expected farthest floor is defined below.

npassk The number of passengers behind the hall call.
fki The number of floors to move for elevator car i, to reach the farthest

floor in its current travel direction.
lneti The expected net distance to the farthest floor.
ski The expected number of stops for the fki floors caused by the new hall

call (k, d) under the condition that the assignment of elevator car i is
empty.

sextrak,j The actual number of extra stops caused by the new call (k, d) before it
arrives at the j:th floor.

smandatoryk,j The number of mandatory stops between floor k and floor j, themselves
excluded.
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APPENDIX A. ESTIMATED TIME OF ARRIVAL ALGORITHM

Ck,j The set of car calls between floor k and floor j, themselves excluded.
Hk,j The set of assigned hall calls between floor k and j, excluding themselves,

that should be handled before the elevator car arrives at floor j.
factuali The actual farthest floor.
ffarthesti The expected farthest floor that the current hall call can reach.
P ki The probability that none of the passengers that boards the elevator car

on floor k with the travel direction d will get off at each ongoing floor.

Under the assumption that a passenger that boards an elevator car on floor k
has an equal probability of exiting at one of the fki floors, we have

P ki =

1− 1/fki if npassk = 1

e−n
pass
k

/fk
i otherwise

. (A.2)

Thus

ski = fki (1− P ki ) (A.3)

and

lneti =


0 if fki = 1
fk

i∑
l=2

fk
i∏

j=fk
i −l+1

P ki otherwise
. (A.4)

After lneti has been calculated, it is uncomplicated to calculate the expected
farthest floor.

ffarthesti = factuali − lneti (A.5)

Then, the number of mandatory stops and extra stops are estimated by

smandatoryk,j = |Ck,j |+ |Hk,j | − |Ck,j ∩Hk,j | (A.6)

and

sextrak,j =
ski (|j − k| − 1− smandatoryk,j )

fki
. (A.7)
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Estimating tattending
i

The notation that will be used for estimating the time to handle a new hall call is:

ts The stop time of one full stop, which is defined as
ts = P ki + ski + lneti + ffarthesti + smandatoryk,j + sextrak,j .

Ci The set of car calls for the i:th elevator car.
Hi The set of hall calls for the i:th elevator car.
Cbeforei The set of car calls for the i:th elevator car to be attended before the

hall call (k, d).
Cafteri The set of car calls for the i:th elevator car to be attended after the hall

call (k, d).
Hbefore
i The set of hall calls for the i:th elevator car to be attended before the

hall call (k, d).
Hafter
i The set of hall calls for the i:th elevator car to be attended after the hall

call (k, d).
tnonstopi,k The nonstop travel time to floor number k based on the current motion

of elevator car i.

tattendingi is then estimated as follows.

a) If (k, d) is a P1 hall call, then
tattendingi = tnonstopi,k +ts(|Cbeforei |+|Hbefore

i |−|Cbeforei ∩Hbefore
i |+∑

i∈Hbefore
i

sextrai,k ).

b) If (k, d) is a P2 hall call, then

i) If no P1 hall calls or car calls exist for elevator car i, then tattendingi is the
same as in a).

ii) Otherwise tattendingi can be split into two parts. The first part is the time
to handle all of the car calls and P1 hall calls, then the car reverses the
direction. The second part is the time to handle (k, d) from the reversal
floor. The time in both parts can be estimated separately using the formula
in a).

c) If (k, d) is a P3 hall call, then tattendingi can be split into three parts. The first
part is the time to finish handling all of the car calls and P1 hall calls (if any),
then the elevator car reverses the direction. The second part is the time to finish
handling all the P2 hall calls (if any), then the car reverses the direction for the
second time. The third part is the time to handle (k, d) from the second reversal
floor. The time in all three parts can be estimated separately using the formula
in a).
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APPENDIX A. ESTIMATED TIME OF ARRIVAL ALGORITHM

Estimating tdelay
i,j

tdelayi,j is the delay time that the new hall call (k, d) will cause to the passenger j in
the set Hafter

i . It is splitted into three parts.

1. One mandatory stop at the destination floor for the hall call if there are no earlier
car call made to that floor.

2. The expected number of extra stops caused by the hall call.

3. The additional travel time if the hall call will affect the reversal floor.
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Appendix B

Average Traffic per Hour

Hour Traffic density (HC5%) Up rate Down rate Interfloor rate
0 0.150 83.8 % 11.2 % 5 %
1 0.038 75.7 % 19.3 % 5 %
2 0.018 58.6 % 36.4 % 5 %
3 0.032 41.4 % 53.6 % 5 %
4 0.092 24.3 % 70.7 % 5 %
5 0.500 8 % 87 % 5 %
6 1.275 3.7 % 91.3 % 5 %
7 2.175 4.5 % 90.5 % 5 %
8 2.225 8.5 % 86.5 % 5 %
9 1.333 14.5 % 80.5 % 5 %
10 0.966 33.5 % 61.5 % 5 %
11 0.916 39.5 % 55.5 % 5 %
12 0.866 45.5 % 49.5 % 5 %
13 0.874 51.5 % 43.5 % 5 %
14 0.924 57.5 % 37.5 % 5 %
15 1.050 62.5 % 32.5 % 5 %
16 1.650 68.5 % 26.5 % 5 %
17 2.150 73.5 % 21.5 % 5 %
18 1.750 69.5 % 25.5 % 5 %
19 0.900 63.5 % 31.5 % 5 %
20 0.437 62.5 % 32.5 % 5 %
21 0.300 68.5 % 26.5 % 5 %
22 0.258 74.5 % 20.5 % 5 %
23 0.226 80.5 % 14.5 % 5 %
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