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Abstract

This thesis empirically studies the impact of imbalanced training data on Convolu-
tional Neural Network (CNN) performance in image classification. Images from the
CIFAR-10 dataset, a set containing 60 000 images of 10 different classes, are used
to create training sets with different distributions between the classes. For example,
some sets contain a disproportionately large amount of images of one class, and
others contain very few images of one class. These training sets are used to train a
CNN, and the networks’ classification performance is measured for each training set.
The results show that imbalanced training data can potentially have a severely neg-
ative impact on overall performance in CNN, and that balanced training data yields
the best results. Following this, oversampling is used on the imbalanced training
sets to increase the performances to that of the balanced set. It is concluded that
oversampling is a viable way to counter the impact of imbalances in the training
data.



Abstract in Swedish

Detta kandidatexamensarbete utför en empirisk studie av den påverkan ojämnt
fördelad träningsdata har på bildklassificeringsresultat för Convolutional Neural
Networks(CNN). Bilder från datamängden CIFAR-10, bestående av 60 000 bilder
fördelade mellan 10 klasser, används för att skapa träningsdatamängder med olika
fördelningar mellan klasserna. Exempelvis innehåller vissa mängder oproportioneligt
många bilder av en klass, medan andra innehåller väldigt få bilder av en klass. Dessa
datamängder används för att träna ett CNN, och nätverkets klassificeringsresultat
noteras för varje datamängd. Resultaten visar att ojämt fördelad träningsdata kan
ha en markant negativ påverkan på de genomsnittliga resultaten för CNN, och att
balanserad träningsdata ger bäst resultat. Oversampling används på de ojämnt
fördeladade träningsdatamängderna vilket resulterar i samma resultat som för den
balanserade träningsdatamängden. Detta visar att oversampling är ett gångbart
sätt att motverka effekterna av ojämnt fördelad träningsdata.
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1 Introduction

Over the past few years Artificial Neural Networks (ANN) have received major
attention due to breakthroughs in several fields, such as computer vision[1], voice
recognition[2] and natural language processing[3]. With statistical methods[4] these
networks are able to approximate underlying functions and patterns in large amounts
of data without any prior knowledge or assumptions about it.

Two special types of ANN known as Deep Neural Network (DNN) and Convolutional
Neural Network (CNN) are today the state-of-the-art approach to solving several
complex problems. One of these problems is image classification[1], the task of
identifying which class an image belongs to given a number of options. Image
classification is useful in several contexts, among them optical character recognition
(commonly known as OCR)[5], image search, and self-driving cars[6]. DNN and
CNN currently outperform all of the previous machine learning approaches to this
problem[7]. The downside of these networks is that in order for them to be trained
to a satisfying level, a lot of data is required[8]. Image classification using CNN
requires labeled images, and as the labeling has to be done by humans to be reliable,
acquiring the data is hard.

Several labeled image datasets are publicly available to provide researchers and
machine learning practitioners benchmarking resources[5][9][10][11]. This base of
benchmarking sets enables comparison[11] between image classification methods and
is used to prove progress in the field[1]. The favored datasets for single class clas-
sification benchmarking, for example MNIST[5] and CIFAR[9], contain the same
amount of images for each class. This is known as balanced or even datasets[12]. Bal-
anced datasets have been empirically shown to outperform imbalanced datasets[13][14][15].
However, in most real-life situations, the available datasets are imbalanced.

Dealing with imbalanced data is a well known challenge in machine learning, and
several methods to lessen the impact of imbalanced datasets exist[13][14][15]. A
simple method is oversampling, duplicating instances of under-represented classes
until a balanced dataset is created[13][14]. Although such methods are known to
perform well in machine learning algorithms[13][14] there is no research on the effects
of imbalanced data on DNN and CNN with the benchmarking datasets.
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1.1 Problem statement

The aim of this thesis is to approximate the loss (or possibly the increase) in CNN
image classification performance due to imbalanced distribution in training data.
This will give insight into what types of distributions cause underperforming, and
how successful oversampling is in increasing the performance. The thesis aims to
investigate the following:

• How important is a balanced distribution in training sets for CNN?

• How is the CNN performance affected by different distributions in training
data?

• Can performance be improved by adjusting the distribution in training data,
and what methods are available for adjusting it?

1.2 Scope

A single dataset will be used to create subsets with different distributions of data
between the classes, and these will be used to train a CNN. The limitation of one
dataset avoids performance differences due to varying suitability between CNN con-
figurations and datasets. The aim of this thesis is not to reach high classification
performance, but to compare performances between networks trained with differ-
ently distributed datasets. Thus, only a single simple CNN implementation will be
used.

It is expected that training a CNN with a balanced dataset will lead to the best
performance, compared to CNN trained with other distributions with the same total
amount of training data. Oversampling the classes with less data in imbalanced
datasets is expected to increase the overall performance of the network, but it will not
reach the performance of a CNN trained with an originally balanced dataset.

1.3 Thesis overview

Section 2 introduces image classification and how imbalanced data can affect the
performance of image classifiers. It talks about the principles of ANN and describes
some notable implementations, and mentions a number of popular datasets and
related work. In section 3, the choices of dataset, distributions and network param-
eters are motivated, and the testing procedure is explained. In section 4, the results
are presented. In section 5, the results are analyzed, limitations are discussed, and
a conclusion is presented.
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2 Background

This section introduces image classification and the effect of imbalanced data on the
performance of machine learning algorithms and ANN. Some solutions to improve
the performance with imbalanced data will be presented followed by an explanation
of the state-of-the-art ANN approaches used in image classification. Finally, multiple
datasets used to benchmark image classification algorithms will be presented, as well
as some related work.

2.1 Image classification

Image classification is the process of selecting which class a given image belongs
to, i.e. what objects an image contains. When classifying images, there are two
categories of annotations. Image-level annotation is a binary label saying whether
or not an object class exists in an image, e.g ”this image contains a cat”. Object-
level annotation is specific as to where in an image a certain object can be found,
e.g. “there is a screwdriver centered at position (20,25) with width of 50 pixels and
height of 30 pixels”[7]. This thesis will focus on image-level annotations.

2.2 Classification with imbalanced data

Imbalanced data means that the data used in machine learning training has an
imbalanced distribution between the different classes. Imbalanced data poses a
challenge in classification problems, since algorithms trained with balanced datasets
surpass those trained with imbalanced datasets in performance[13][14][15]. In prac-
tice, the available data is often imbalanced[14]. However, most machine learning
algorithms assume a balanced distribution or the same distribution of classes in
new, unlabeled data as in the known training data[15]. Such algorithms underper-
form if the training data does not have the same distribution as the unknown data
that needs to be classified[13]. Furthermore, most machine learning algorithms aim
to minimize the overall error rate which results in worse performance for the classes
that are under-represented in the training data[13]. This can have a very negative
impact if the rare classes are of importance, for example in rare disease diagnos-
tics[14]. However, imbalanced data has received a great deal of research interest[13]
and there are many successful methods of countering it.

2.2.1 Improving performance of imbalanced data

Solutions to the imbalance problem aim to reduce the bias towards the plentiful
classes and can be divided into three categories; sampling techniques, cost sensitive
techniques, and one-class learning[13][14].

Sampling techniques create balanced distributions by altering the original dataset[13].
Simple sampling techniques include duplicating instances from the minority classes
until a balanced distribution is reached (oversampling) or removing instances from
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over-represented classes (undersampling)[13][14]. However, it is suggested that a
combination is the best solution for extremely imbalanced distributions[14]. Ad-
vanced sampling techniques consist of generating new data in minority classes based
on the current data[13].

Cost sensitive techniques address the learning itself, keeping the original dataset in-
tact. These approaches increase the bias towards the minority-classes[13]. For exam-
ple, a higher penalty can be given to the network when it misclassifies the minority
classes during training, thus encouraging it to learn those classes better[14].

One-class learning only provides training data from a single class, aiming to provide
a tight boundary for the class, serving as anomaly detection[13].

2.3 Artificial neural networks

This section will introduce the principles of ANN and two specialized implementa-
tions, CNN and DNN. It will also talk about Convolutional Deep Neural Networks
(CDBN), a combination of CNN and DNN.

2.3.1 Principles of artificial neural networks

ANN is an attempt to imitate the behaviour of the information processing in the
biological nervous system, and use it to solve various problems. The basics of this
structure is creating an interconnected network of neurons and process input by
sending it through the network. This is similar to the impulses travelling between
the millions of synapses in the biological nervous system. The neurons in an ANN
are connected with weights, which set the amount of influence the output of a neuron
has on another neuron. The structures and paradigms of ANN are many but share
the common factor of being only partially pre-determined. The networks are trained
with a selection of learning algorithms, which are automatically adaptive in nature
rather than explicitly programmed. This makes ANN suitable for machine learning
and pattern recognition. A key characteristic in an ANN is defined by whether the
output signal from a neuron will affect its input, hence creating a recursive effect.
Such networks are called recurrent in contrast to feed-forward networks that lack
connection loops.[4]

A feed-forward network is divided into multiple layers (Figure 1). Each layer is
computed by applying the weights to the output of the previous layer. The data
passes through the network layerwise in a defined order. The first layer is always
the input layer, which takes the input data. The final layer is thus the output layer.
There may be several layers between the input and the output layers. However, most
learning algorithms have difficulty training a network with a lot of layers[16][4].

The learning of an ANN is generally either supervised or unsupervised. The differ-
ence between these two paradigms is that supervised training provides the network
with a pair of input data and output data, called labelled data. With the given data,
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Figure 1: An example of a feed forward network with 2 layers and 1 output node.
Source: www.codeproject.com[17]

the network has to change the weights so that the input in the training set will pro-
vide the given output after passing through the network. Unsupervised learning on
the other hand only provides the input, and the output is unknown, unlabelled data.
In the unsupervised case, the ANN has to try to find some hidden structure in the
data without getting negative nor positive feedback on its progress[4].

2.3.2 Convolutional neural networks

Figure 2: A visual representation of CNN
Source: deeplearning.net[18]

The CNN is a specialized feed-forward network that is a state-of-the-art model for
image classification[19][20][11]. The structure is inspired by the stimulus processing
in the biological brain’s primary visual cortex[20]. The inspiration lies within the
addition of convolutional layers doing subsampling of data that combines continuous
areas of adjacent pixels into single values[21]. This subsampling makes up the output
of each convolutional layer as seen in Figure 2.

The layer structure of a CNN is one, or several convolutional layers in succession,
followed by fully connected regular ANN layers. This structure is visualized in
Figure 2. The convolutional layers act as feature extraction layers and the last fully
connected ANN layers act as the classification module. The convolutional layers
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consist of three different layers; the filter bank layer, the non-linearity layer, and the
feature pooling layer[22].

The input and output of each convolutional layer is a 3D matrix where the first two
dimensions are the image height and width, and the third is the number of feature
maps. The feature maps for an RGB image would for example be three; one for
each color channel. Thus, such an image would be represented with three separate
images in the initial input, each with a single unique color channel[23]. The output
feature maps are undefined in nature and depend on the training. The deeper the
network, the higher the level of features in the output[22].

The filter bank layer is constructed of several trainable kernels that each recognize
a particular feature. This feature extraction is done at every location of the input,
and thus the convolutional layer is not sensitive as to where a feature is located in
the input image.

The non-linearity layer will apply a non-linear sigmoid transfer function on the
entire output from the filter bank layer. This transfer function comes in a number
of variants that have shown prowess in different ways, for example by creating local
competition between adjacent features. [22]

The feature pooling layer is the layer that performs the sub-sampling of the con-
volutional layer. This sub-sampling is done for each feature map and results in a
lower resolution representation of the map, but with increased noise resistance. The
sub-sampling could for example be done by setting each value in the feature map as
the average of its neighbours within a certain range. [22]

After the final convolutional layer the output will be passed to the classification
module. The classification module consists of several fully connected layers. These
layers result in an output specifying the class, or classes, contained within the im-
age[22].

2.3.3 Deep learning networks

DNN is a feed-forward type of ANN that solves the efficiency difficulties that arise
when applying learning on a feed-forward network with a large amount of lay-
ers[21][16]. Its significance is due to the fact that adding a layer with N nodes
results in better ability to create complex approximations than just adding N nodes
to an existing layer[24]. The learning is performed greedily on each set of weights
between each layer using the Restricted Boltzmann Machine algorithm (RBM). This
implementation of the RBM finds the maximum likelihood for each weight in the
connections between two bipartite layers given the input [21][16]. RBM can be used
on DNN since DNN are feed-forward networks and will always fulfill the requirement
of a bipartite graph[16].

Deep learning networks benefit from being able to be trained in an unsupervised
manner during a pre-training stage followed by supervised training. Combining these
learning paradigms has been shown to improve the results of DNN[8][25]. A problem
with supervised learning is that it is subject to overfitting - a phenomenon that
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occurs when a network becomes too niche in relation to its learning data causing it to
under-perform on unlabeled data after the training[4]. By introducing unsupervised
training prior to supervised training, the issue of overfitting is reduced. This is
a result of supervised learning being amenable to slightly overfit supervised data
introduced early in the training[8]. This suggests that this network type inherently
improves performance of imbalanced data.

2.3.4 Convolutional deep neural networks

The CDBN is a combination of the CNN and the DNN. The CDBN combines the
stacked convolutional layers with subsampling and the greedy RBM training ap-
proach from DNN[26]. This is achieved through an altered RBM, a convolutional
RBM (CRBM). The alteration of the CRBM is that instead of evaluating each
weight separately the weights are shared within different groups, resembling the
subsampling of CNN [26].

Since the CDBN is trained in a similar manner as DNN it is possible to train a CDBN
with unsupervised data prior to the labeled training. The unlabeled data has also
been shown not to be restricted to the classes of the actual labeled training data[26].
CDBN has been successful in almost replicating the performance of the state-of-
the-art CNN implementations with a lot of available labeled data. Additionally,
CDBN has been shown to surpass the performance of such implementations when
the amount of labeled data is restricted[26].

2.4 Datasets and benchmarks

There are several datasets available to benchmark image classification implementa-
tions. These datasets consist of a combination of labeled and unlabeled images
of various quantities. This section will cover the most popular and recognized
datasets.

2.4.1 ImageNet

Figure 3: Example images from ImageNet 2011 Fall Release
Source: image-net.org [27][28][29]
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The current standard image classification and object detection benchmark is the
ImageNet Large Scale Visual Recognition Challenge, which has been running annu-
ally since 2010[10]. The participants of the challenge receive a large number (over a
million) of manually annotated images as a training set, as well as a test set without
annotations. Some image examples are shown in Figure 3. After training their algo-
rithms with the training set, they let the algorithms annotate the unlabeled images
and send them in for evaluation[10].

The year 2012 marked a turning point in the challenge results, as large-scale CNN
was introduced. This approach won both tasks of the 2012 challenge with a big
margin, with an error rate of 15.3% compared to 26.2% achieved by the second best
approach, which used Fisher vectors [30]. Due to the success of the CNN in the 2012
challenge, in 2013 the vast majority of the teams used CNN[10]. There has been
a lot of improvement over the years of the challenge. For Image Classification, the
error rate of the winner has dropped from 28.2% in 2010 to 6.7% in 2014[10].

Data from previous years is available, and researchers may ask for access to the
material and also test their networks and algorithms on the automated judge sys-
tem[10].

2.4.2 MNIST

Figure 4: Example digits from MNIST
Source: Classification Datasets Results [11]

The Mixed National Institute of Standards and Technology (MNIST) database is
a large database of 70 000 handwritten digits (Figure 4). MNIST is a mixture of
subsets from the different National Institute of Standards and Technology (NIST)
datasets that were collected from high school students and Census Bureau employees
that have also been normalized to a 20x20 size[5]. The MNIST dataset has been
widely used to benchmark image classification machine learning algorithms[5][11]
with a lowest error rate of 0.21% achieved in 2013 by Li Wan et al[31].

2.4.3 Tiny images dataset

The Tiny Image dataset is a collection of almost 80 million 32x32 images of vari-
ous kinds. These images consist of varying labeling quality from correctly labeled,
wrongly labeled, to not labeled at all[32]. For example images, see Figure 5.
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2.4.4 CIFAR-10 and CIFAR-100

Figure 5: Example images from CIFAR-10, one from each class
Source: CIFAR-10 [33]

The CIFAR datasets are subsets of 60 000 images from the Tiny Image dataset with
10 different classes in the CIFAR-10 set (Figure 5), and 100 classes in the CIFAR-
100 set[9]. The subject may not be centered in the image, it may only be partial
within the image, and the backgrounds vary[20]. The selected classes in CIFAR-10
are mutually exclusive, so there is no overlap between the classes[9]. The challenge
of classifying the CIFAR-10 dataset has been attempted by a human who reached
94% accuracy[34]. The current best result by machine learning was achieved by
Chen-Yu Lee et al in 2014 with an accuracy of 91.78% [1]. Lee et al also hold
the best score of CIFAR-100, with the same implementation as for CIFAR-10, with
65.43% accuracy[1].

2.5 Related work

In 2003, Weiss and Provost[35] empirically analyzed the best distributions for train-
ing data when some data had to be removed due to a restriction on the data amount.
This study compared subsets of 26 natural imbalanced datasets. The study showed
that is was best to remove data from the over-represented classes, giving the result-
ing set a balanced distribution. Retaining the original distribution when removing
data also gave a good performance. The study also introduced their own ”budget-
sensitive” progressive sampling algorithm that showed the best results[35].

In 2013, Song, Morency, and Davis showed the negative effect of imbalanced training
data using datasets named MSRC-12 and NATOP[12]. The balanced distribution
yielded the best performance. The study successfully increased the performance
of the imbalanced datasets with a combination of a cost-sensitive technique and
undersampling, but did not reach a performance above the original balanced distri-
bution[12].
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3 Methods

A single dataset was selected and partitioned into subsets with different artificially
created distributions, in order to measure the impact of differently distributed train-
ing data on CNN performance. Caffe[36] was used as the CNN library to conduct
performance tests on each subset several times to gauge the average performance.
Oversampling was performed on the subsets with imbalanced distributions to eval-
uate and compare the effectiveness of oversampling on different distributions.

3.1 Dataset

The CIFAR-10 dataset was used for the experiments, as its advantages were several.
It is limited to only 10 classes with 6000 images each. This made it possible to test
multiple subsets with imbalanced distributions of images from each class in isolation.
Imbalanced distributions would have been difficult to obtain from CIFAR-100, as it
only contains 600 images of each class. Simple implementations for CNN classifying
CIFAR-10 already existed, providing suitable network parameters[37]. The network
was also able to be trained at a fast rate due to the small image sizes. This was an
important consideration due to limited available computational power and amount
of different subsets.

The ImageNet database was discarded mainly due to the larger image sizes. Ima-
geNet also provides thousands of classes, while CIFAR-10 consists of a small mu-
tually exclusive selection of classes, making CIFAR-10 more accessible. The Tiny
Images database was discarded as an option due to lack of organized structure and
inconsistent label quality.

The MNIST dataset was a possible choice fulfilling the criteria above. However,
CIFAR-10 consists of images from a variety of angles, MNIST does not. It was con-
cluded that the CIFAR-10 dataset provided a more complex classification task.

Using multiple datasets with different original distributions was left out due to the
risk of introducing differences in performance due to the difference between the
datasets themselves. By using a single dataset, all images were of the same size
and the network parameters did not favor any particular dataset. By restricting
the tests to only one dataset any differences in performance were only due to the
distributions themselves.

3.2 Subsets

The training set of CIFAR-10, consisting of 5 000 images per category, was par-
titioned into different subsets. The test set with 1 000 images of each category
remained unchanged throughout all tests. Thus, all references to subsets are refer-
ring to the subsets of the training data.
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The selection of distributions for the subsets was arbitrary. Distributions with ex-
treme imbalances were excluded, as they would limit the total subset size too much.
The subsets contained 65% of the images in the original CIFAR-10 set. Higher per-
centages were not possible as certain amounts of data needs to be removed to achieve
the imbalanced distributions, and smaller percentages were excluded since such sub-
sets would not train the network sufficiently. The distributions were selected to be
as mutually exclusive from each other as possible.

3.2.1 Distributions

The distributions were as presented in Table 1.

airplane automobile bird cat deer dog frog horse ship truck
Dist. 1 10 10 10 10 10 10 10 10 10 10
Dist. 2 8 8 8 8 8 12 12 12 12 12
Dist. 3 6 6 6 6 6 14 14 14 14 14
Dist. 4 12.25 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75
Dist. 5 14.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5
Dist. 6 7.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
Dist. 7 6.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4
Dist. 8 8.24 8.63 9.02 9.41 9.80 10.20 10.5 10.99 11.37 11.76
Dist. 9 7.58 7.68 7.91 8.29 8.83 9.57 10.52 11.70 13.11 14.79
Dist. 10 12.5 12.5 8.33 8.33 8.33 8.33 8.33 8.33 12.5 12.5
Dist. 11 15.22 15.22 6.52 6.52 6.52 6.52 6.52 6.52 15.22 15.22

Table 1: A table over the different distributions. For each of the 11 distributions
it shows how many percent of the set is made up by each CIFAR-10 class. For
example, in Dist. 4, airplanes make up 12.25% of the total set.

The following list explains each distribution from Table 1.

1. This is the balanced distribution and was included as a benchmark since it
should yield the best preformance[13][14].

2. A minor 50-50 split. This distribution is interesting since it divides the classes
into two. This was included to see how much the minority classes would
underperform.

3. A major 50-50 split. The difference between a lower and higher imbalance had
potential to show the fragility of the 50-50 distribution.

4. A minor singular over-representation. This was a good comparison to the
50-50 split, examining what the effect would be if only a single class was in
majority. It was also an interesting distribution to apply oversampling on.

5. A major singular over-representation.

6. A minor singular under-representation. This was a distribution that was ex-
pected to have a smaller impact on the performance since only one class was
affected negatively.
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7. A major singular under-representation. Due to the clear minority of a sin-
gle class, this distribution was expected to show the limits of oversampling
improvement.

8. A linear imbalance included due to the smooth transition. The previous dis-
tributions were discretely separated, this distribution was chosen to represent
natural smooth imbalance.

9. An exponential imbalance included to contrast the linear transition and rep-
resent a major imbalance.

10. A minor split between the animal classes and the vehicle classes. A similar
case to distribution 2, but it was more intuitive that similar classes share the
same quantity. Earlier research has shown that when a CNN makes mistakes
in CIFAR-10 classification, it usually mistakes an animal for another animal
or a vehicle for another vehicle[38].

11. A major split between the animal classes and the vehicle classes.

3.2.2 Partitioning CIFAR-10

The CIFAR-10 dataset was partitioned into subsets by for each distribution parsing
through the entire dataset and selecting the first N occurrences of every class, where
N is the wanted number of images from that class to achieve that distribution. Since
there was no simple way to determine what images were better or worse than others
in the dataset, a more advanced selection method was deemed unnecessary.

3.2.3 Oversampling CIFAR-10 subsets

To balance the data, oversampling was performed on the under-represented classes
in the subsets. Random images of each under-represented class were duplicated until
all classes had the same amount of images as the largest class.

3.3 CNN

3.3.1 Framework

The neural network framework Caffe[36] was used to create and train a CNN. Caffe
is an open source framework developed by the Berkeley Vision and Learning Center
and and by community contributors. It is both very fast and simple to use, which
made it a good fit for the tests.

3.3.2 Parameters

The network used in the experiments was one of Alex Krizhevsky’s setups for CIFAR-
10 classification[37]. They are commonly used network setups where a simple and
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straightforward setup is required. The fastest one was picked because it would allow
time to run more tests, and as the goal was not to reach high performance but to
compare performances between networks trained with different subsets. The network
had 3 convolutional layers and 10 output nodes. It was trained with learning rate
0.001 for 8 epochs, and then with learning rate 0.0001 for 2 epochs The momentum
was set to 0.9 and weight decay to 0.004 [39][40].

3.3.3 Testing method

For each subset, the network went through training with the parameters explained
in 3.3.2 three times, with performance being tested after each time. It was tested
on the test data from each of the classes separately. The mean results of the three
runs were recorded, and the total mean and variance for the entire test set was
calculated. Hypothesis testing was used when comparing the total means of the
imbalanced subsets to the mean of the balanced subset.

3.4 Definition of performance

The performance was defined by the percentage of correct answers the CNN pro-
duced during testing. A correct answer means the network classified an image as the
class it belonged to. The performance was measured for each individual category
and a mean result for the entire subset was calculated.
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4 Results

4.1 Distribution performance

Table 2 shows the results of each distribution for each class. The performances are
presented in decimal form, e.g. Table 2 shows that the CNN trained with subsets
created with distribution 4 made a correct classification on 24% of the automobiles in
the CIFAR-10 test set on average. The mean performance on the complete CIFAR-
10 test set is presented in the Total column.

Total Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck
Dist. 1 0.73 0.78 0.84 0.62 0.57 0.70 0.62 0.80 0.76 0.84 0.80
Dist. 2 0.69 0.74 0.75 0.58 0.33 0.58 0.65 0.84 0.78 0.87 0.79
Dist. 3 0.66 0.71 0.75 0.59 0.30 0.52 0.61 0.79 0.77 0.85 0.73
Dist. 4 0.27 0.78 0.24 0.12 0.08 0.19 0.24 0.33 0.27 0.21 0.27
Dist. 5 0.10 0.999 0 0.002 0.0003 0 0 0.001 0 0 0
Dist. 6 0.73 0.74 0.86 0.65 0.53 0.71 0.63 0.81 0.76 0.83 0.79
Dist. 7 0.73 0.75 0.86 0.66 0.52 0.71 0.63 0.80 0.78 0.84 0.79
Dist. 8 0.66 0.63 0.75 0.55 0.35 0.51 0.58 0.82 0.74 0.84 0.80
Dist. 9 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Dist. 10 0.69 0.75 0.77 0.56 0.42 0.66 0.63 0.76 0.70 0.81 0.79
Dist. 11 0.69 0.74 0.82 0.58 0.44 0.59 0.64 0.80 0.69 0.83 0.81

Table 2: The total and the individual class performance ratios.

The balanced distribution had the best overall performance, as shown in distribution
1 in Table 2. Distributions 4, 5, and 9 underperformed severely. Distribution 2, 3,
and 8 perform under the median. All distributions gave worse total performances
compared to the balanced distribution at a significance level of 0.1%, except distri-
butions 6 and 7 that did not give a significantly worse performance. The cat class
has the worst results in all distributions. Automobile followed by frog are the best
performing classes overall. The very best individual class performances are found
in the distributions that also contain the worst individual performances, e.g. in
distribution 5. The balanced distribution has the highest minimum performance for
all individual classes.
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4.2 Oversampling performance

Total Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck
Dist. 2 0.72 0.77 0.80 0.57 0.51 0.68 0.64 0.81 0.78 0.84 0.82
Dist. 3 0.73 0.73 0.80 0.59 0.53 0.63 0.65 0.82 0.81 0.87 0.83
Dist. 4 0.73 0.76 0.82 0.60 0.54 0.68 0.63 0.81 0.78 0.85 0.83
Dist. 5 0.73 0.80 0.84 0.61 0.55 0.68 0.63 0.82 0.79 0.82 0.81
Dist. 6 0.73 0.75 0.86 0.65 0.51 0.65 0.66 0.81 0.78 0.85 0.80
Dist. 7 0.73 0.73 0.85 0.62 0.51 0.71 0.66 0.81 0.79 0.86 0.80
Dist. 8 0.73 0.78 0.84 0.62 0.56 0.66 0.64 0.81 0.77 0.83 0.80
Dist. 9 0.72 0.73 0.84 0.58 0.55 0.68 0.59 0.79 0.78 0.83 0.82
Dist. 10 0.73 0.78 0.85 0.63 0.50 0.67 0.63 0.82 0.75 0.87 0.80
Dist. 11 0.72 0.82 0.87 0.58 0.64 0.64 0.49 0.78 0.69 0.84 0.80

Table 3: The total and the individual class performance ratios with oversampling.
Dist. 1 is not included since it was already balanced and thus was not oversampled.

All imbalanced subsets showed improved performance after oversampling. The over-
sampled subsets showed very similar mean performances and individual class per-
formances, as seen in Table 3. The performances are presented in decimal form, e.g.
Table 3 shows that the CNN trained with the oversampled subset created from dis-
tribution 4 made a correct classification on 82% of the automobiles in the CIFAR-10
test set. The mean performance on the complete CIFAR-10 test set is presented in
the Total column. Figure 6 illustrates a comparison between the performance of the
original subsets and their oversampled counterparts. The performances reached by
the oversampled subsets show no relation with the original sets’ performance.
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Figure 6: The total performance ratio of each distribution with and without over-
sampling from Table 2 and Table 3. Dist. 1 shows no result after oversampling since
it was already balanced.
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5 Discussion

5.1 Results analysis

The results show that the distribution of training data has significant impact on
the performance of CNN. The balanced distribution yielded the best performance
as suggested by earlier research. All distributions except 6 and 7 gave a worse
performance than the balanced distribution on a statistically significant level. As
seen in Table 2 the heavier the imbalance, the worse the total performance. The
most imbalanced distributions 5 and 9, the major single-class overload and the
exponential set, had such a negative impact that the CNN only guessed the majority
class repeatedly. As the over-represented classes only made up 14.5% and 14.79% of
the entire set in distribution 5 and 9 respectively, the fragility when using imbalanced
data in the CNN training algorithm is clearly shown.

Comparing distributions 4 and 5 and distributions 8 and 9 shows that reduced im-
balance yields a better performance. Distribution 4, where the over-represented class
made up 12.25% of the set gave almost three times better performance than distri-
bution 5, and the performance yielded by distribution 8 was close to the mean. The
50-50 split distributions gave a performance only slightly worse than the balanced
distribution, suggesting that single class imbalances are the worst case. However,
the under-represented class distributions 6 and 7 gave a performance on par with
the performance from the balanced distribution, which suggests that imbalances in
a single class only affects overall performance if that class is over-represented.

A relationship between the class representation and the performance for each class
can be seen in distribution 4 and 8 by comparing Table 1 and Table 2. Such a rela-
tionship is not visible in distributions with higher total performance. This suggests
that the imbalanced distributions gave a worse performance due to the difference in
distribution between training and test data, as has been shown in earlier research.
Since CNN is based on statistical models, this result was expected.

The oversampling technique proved effective. All oversampled subsets yielded a
performance similar to the balanced subset as seen in seen in Figure 6. The results
do not show any major differences in performance between the subsets in the total
or for any individual class (Table 3) and this suggests that the oversampling is not
overly dependent on the original distribution. The unanimous performance results
suggest that the distribution of training data is more important than the number of
unique instances in training data for CNN; although several images were duplicates
the oversampled subsets yielded a performance similar to that of the balanced subset.
This supports the conclusion that the original data distribution is of less importance
if oversampling is used.
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5.2 Limitations

The results of this study add to previous empirical results[12][13][14][15][35] showing
that balanced distributions yield the best performance. This study was restricted
to balanced test data and performance was defined as the overall performance, with
the effect that the results of this study will not be applicable in situations where
some classes are more important than others, such as positive cases in rare disease
diagnosis. By using balanced test data across all tests, it is assumed that unknown
data is balanced. This means the tests conducted in this study do not indicate a
general direction for distributions in all situations. However, this study provides
incentive to have balanced training data if the unknown data is expected to be
balanced, or if maximum overall performance is sought.

Choosing the CIFAR-10 dataset introduced restrictions of available tests. Having
a limited amount of available images for each class limited the tests to only mod-
erately imbalanced subsets. CIFAR-10 also removed the possibility of testing the
distributions over a large number of classes. The study is thus unable to claim that
some distributions always yield a better performance, only to suggest it. Since only
the CIFAR-10 dataset was analyzed it is not certain that the findings are universal,
although it is unlikely that CIFAR-10 would be a unique occurrence and we expect
that similar results would be found in other datasets. CIFAR-10 does suffer from
not being truly mutually exclusive; e.g. dogs and cats have several similarities. This
means that some distributions may perform differently depending on different or-
derings of the classes. However, this study assumes that these differences are of less
impact than the distributions themselves.

The same network parameters for the CNN were used for all tests, and different
results may have been obtained with other parameters. A more advanced CNN may
have countered the performance drops caused by the imbalanced data. However,
the selected network parameters are commonly used and have a high performance
considering the simplicity and as the scope of the study was on relative performance,
conducting the tests on a more advanced network was not considered valuable.

5.3 Future research

Since no subsets underperformed on the test data after oversampling, future research
could look into whether even larger imbalances reduce the effect of oversampling and
approximate at what level of imbalance oversampling is no longer enough to improve
the results. Furthermore, as this study only conducted tests with a single quantity
of images, finding similar results on larger quantities would strengthen the results
from this study. Repeating the successful results from this thesis on other datasets
would suggest that CNN is a preferred ANN implementation for imbalanced subsets
combined with oversampling techniques.

22



Both CNN and DNN are state-of-the-art in image recognition, but this study only
performed tests on CNN. The same tests with CIFAR-10 and oversampling could
be conducted with DNN, more advanced ANN types such as the CDBN, or more
advanced CNN implementations.

The good overall results of the distributions 10 and 11 with different quantities
for animals and vehicles suggest that the performance from imbalanced sets also
depends on the similarities of the classes. This relationship would be interesting to
examine in future research.

5.4 Conclusion

The results show that the distribution of the training data has a big impact on
CNN performance. As expected, a balanced training set was optimal. A relation-
ship was found between larger imbalances and worse performances, but only when
some classes were over-represented. Under-representations of single classes showed
no significant impact on the overall performance. It is noted that balanced dis-
tributions in training data are most relevant when the unknown data is expected
to be balanced or when a high overall performance is sought. Using the sampling
technique oversampling on the imbalanced data increased the CNN performances to
that of the CNN trained with balanced data. This makes oversampling a promis-
ing method of countering imbalanced data. However, these experiments need to be
repeated with other datasets than CIFAR-10 for confirmation.
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