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Abstract

Reinforcement learning attempts to mimic how humans react to their surrounding envi-
ronment by giving feedback to software agents based on the actions they take. To test
the capabilities of these agents, researches have long regarded board games as a powerful
tool. This thesis compares two approaches to reinforcement learning in the board game
backgammon, a Q-table and a deep reinforcement network. It was determined which
approach surpassed the other in terms of accuracy and convergence rate towards the per-
ceived optimal strategy. The evaluation is performed by training the agents using the
self-learning approach. After variable amounts of training sessions, the agents are bench-
marked against each other and a third, random agent. The results derived from the study
indicate that the convergence rate of the deep learning agent is far superior to that of the
Q-table agent. However, the results also indicate that the accuracy of Q-tables is greater
than that of deep learning once the former has mapped the environment.
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En jämförelse mellan deep reinforcement learning och
Q-tabeller i spelet backgammon

Sammanfattning

Reinforcement learning härmar hur människor reagerar p̊a sin omgivning genom att ge
en sond återkoppling baserat p̊a handlingarna som den tar. Forksare har sedan länge tes-
tat sondernas prestanda genom att l̊ata de anpassa sig till brädspelsmijöer. Med hjälp
av brädspelet backgammon jämför denna avhandling tv̊a stycken tillvägag̊angssätt till
reinforcement learning, Q-tabeller och deep reinforcement learning. Det framgick tydligt
vilket tillvägag̊angssätt som var överlägset det andra med tanke p̊a inlärningshastighet
samt träffsäkerhet. Algoritmerna utvärderades genom att träna sonderna med hjälp av
självinlärning. Efter varierande mängder träningsepisoder spelade sonderna dels mot varand-
ra och dels mot en tredje, slumpmässig sond. Resultaten antyder att deep learning sonden
har mycket snabbare inlärningshastighet än Q-tabell sonden. Dock har Q-tabellerna större
träffsäkerhet när den har f̊att tillräckligt mycket återkoppling fr̊an sin omgivning.

4



Contents

1 Introduction 6
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 Backgammon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Application to board games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Q-table learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Deep reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Exploration versus exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Method 14
3.1 Backgammon environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Environment reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Representation of reduced environment . . . . . . . . . . . . . . . . . . 15

3.2 Training & Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Q-table learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Lookup table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Deep reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Deep neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Training deep neural network . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Results 19
4.1 Training time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Comparison of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Random agent benchmarking . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 DNN vs Q-table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Discussion 24
5.1 Smaller environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Larger environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 27

5



1 INTRODUCTION

1 Introduction

Reinforcement learning is a general-purpose approach to artificial intelligence. In this paradigm,
agents (software probes that act on behalf of a program) explore an environment and attempt
to optimize the program based on rewards from that environment. A reinforcement learning
method is defined as any method that is suitable for solving a learning problem, which sets
it apart from supervised learning since a correct mapping between input and output is never
presented [1]. There is prodigious value in exploring reinforcement learning. It does not only
provide us with an avenue for better understanding of learning in nature, but has potent
practical applications as well [6][22]. Thanks to recent advances in deep learning, resulting in
improvements of both speech recognition and computer vision, the subject is more relevant
than ever. Ever since the inception of machine learning, board games have been regarded as
a strong test domain for benchmarking algorithms [10][1].

Reinforcement learning takes inspiration from behaviourist psychology in attempts to mimic
how humans learn, by so called ”learning by doing”. Alternatively, it can be described as an
approach to sequential decision problems, where an agent is faced with multiple decisions that
contribute to a cumulative reward [12]. Q-learning is an approach to reinforcement learning
based on finding the optimal action-selection policy for an environment. The simplest form
of Q-learning stores state-action pairs in tables and assigns a value to each pair. This value
represents how favourable the action is in this particular state. By combining the principles of
Q-learning and deep neural networks (DNNs), it is possible to generalize the environment and
optimize agents suited for solving tasks within that environment. It is valuable to explore this
paradigm as it is a different approach to artificial intelligence, and takes us one step further
when it comes to understanding the cognitive decision making of humans and how we react
to our environment [19]. Previous attempts at learning board games include using neural net-
works with the sigmoidal logarithmic function and backwards propagation for learning [13].
More recent attempts include value networks to assess values of board positions and policy
networks in order to make moves [6].

This thesis explores how deep reinforcement learning compares to Q-tables on complex de-
cision problems that contain stochastic elements. It is particularly compelling to study the
magnitude of recent algorithmic improvements in the field, and if Q-tables has any advantages
over deep reinforcement learning.

1.1 Problem statement

This report studies two different methodologies for reinforcement learning. In this process we
consider a board game with a stochastic component (backgammon, where players roll dice).
The first approach examined is classical Q-tables, which determines a future optimal score
by analyzing a Markov decision process. In contrast, the second approach operates with deep
reinforcement learning which trains a network instead of using a look-up table. Therefore,
our problem statement is as follows:

”How does classic Q-table learning compare to deep reinforcement learning in environ-
ments with stochastic components (backgammon) in terms of convergence rate and results?”

The intention is to judge the two methodologies on learning speed and the score, based on a
head-to-head match-up of the two agents.
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1.2 Scope 1 INTRODUCTION

1.2 Scope

Q-table learning and deep reinforcement learning are the techniques covered by this paper.
The two algorithms learn the game of backgammon by using self-play training. In self-play
training, the agent sets up two instances to play against each other. After each state transition
the algorithms update the weights of their lookup tables and networks based on encountered
values. This approach differs from traditional reinforcement learning as it does not require
any pre-training.

This study is limited by a variety of factors, such as the size of the game and the algo-
rithms themselves. Q-tables are dependant on a lookup table to determine which moves are
favourable in any given situation. An optimal move in backgammon depends on a plethora
of variables including the position of the player’s checkers, the opponent’s checkers and the
rolls of each of the dice. We focus solely on strategy in single matches. Therefore, certain
parameters of the game have been eliminated or reduced. Alterations to the environment are
elucidated following a brief introduction to backgammon in section 3.1. Due to time con-
straints, the analysis briefly glances at how the algorithms relate in alternative settings, such
as larger environments.

1.3 Purpose

The potential learnings of machine learning transcend trivial problems such as board games.
However, that does undermine the usefulness of understanding how state-of-the-art approaches
to artificial learning compare to more outdated ones. It is indeed valuable to get a sense
of direction from the past to better understand the future. The purpose of this report is
to compare two algorithms that approach learning differently. More specifically, this thesis
examines how deep reinforcement learning outperforms Q-table learning and if there are any
indications of what the future may bring.

1.4 Thesis Outline

The following section serves to acquaint the reader with the rules of backgammon as well as
the algorithms studied in this thesis. In addition to this, an overview of the history of machine
learning within board games provides the context of our work. The third section introduces
the methodology of building an environment and agents as well as collecting results. The
results are presented in section 4 and discussed in section 5. Finally, we summarize and
conclude the study in section 6.
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2 BACKGROUND

2 Background

There are certain prerequisites in order understand and develop learning algorithms for board
games. Initially, this section delves into the intricacies of backgammon, giving a general
overview of the rules. Furthermore, the section provides an explanation of Q-table based learn-
ing and how the decision-process takes future states into account when evaluating moves. It is
important to fully grasp the concepts of Q-table learning in order to follow the shift towards
deep reinforcement learning. This section aims to familiarize the reader with backgammon,
Q-tables, deep reinforcement learning and their past applications to board games.

2.1 Backgammon

Backgammon dates back to ancient Egypt circa 5000 years ago and is played by two players.
The board consists of 24 board positions, called points, represented by triangles divided into 4
equal quadrants. Each player starts out with 15 game pieces, called checkers, that are placed
according to figure 1. The checkers are moved towards descending numbers. The numbers for
the white player are reversed in this case. Point 1 is considered black’s home board and point
24 is considered white’s home board. The objective is to move checkers toward the home
board of the color you are playing. Once all of the player’s checkers are confined in the home
board, a player can start bearing off. Bearing off is the process of removing the checkers from
the board by rolling the number which corresponds to the point of the checker. A player wins
a game by bearing off all of their checkers.

The game is played with two dice and the numbers rolled correspond to the moves to be
made. The moves represented by a die cannot be split and must be taken by a single checker.
Furthermore, a checker cannot be moved to a point where the opponent has 2 or more check-
ers. Additionally, if the opponent has a single checker at a point (also known as a blot) it is
possible to hit that checker by moving a checker to the same point. This puts the checker
onto the bar which is a strategical advantage. The bar can be seen as the 0-point for each
player. Checkers on the bar must be moved before any other move becomes legal.

There is a third die called the doubling die which displays the current stake of the game.
At the beginning of a player’s turn, he may propose to double the stakes. Their opponent can
either refuse or accept doubling of the stakes. If a player refuses a proposed doubling, they
concede the current game. Although the doubling die only displays up to 64, there is no limit
to the stakes of the game. Lastly, if a player loses without bearing off a single checker he is
gammoned and loses twice the amount shown on the doubling die. If he has any checkers on
the bar or in the winner’s home board he is backgammoned and loses three time the amount
shown on the doubling die.
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Figure 1: Starting positions for backgammon.

2.2 Application to board games

Early studies conducted, comparing deep reinforcement learning and highly specialized net-
works in the game of checkers, revealed the possibility to devise learning schemes that can
outperform humans [1]. On July 15, 1979, Berliner’s backgammon computer program BKG9.8
beat the reigning world champion Luigi Villa in an exhibition match to 7 points. BKG was
based on finely tuned heuristic functions containing hand-crafted features to resemble and
counter expert level strategy [11][8]. Playing against BKG, Berliner would ask it for the best
move while having a move of his own in mind. Occasionally the agent would suggest a move
superior to Berliner’s, something he considered to be an indication of the potential in machine
learning. However, BKG did not learn the features that allowed it to play at world class level.
It was never addressed whether the methodology used in BKG could be learned [11].

Tesauro and Sejnowski[8] applied the back-propagation algorithm to train a feedforward neural
network based on a data-base of ”expert” positions and moves [4][5]. Even without look-ahead
the neural network was able to achieve levels matching intermediate level of play. A decade
thereafter, the same algorithm trained through self-play starting from random action selection
managed to reach expert levels of play. When combined with shallow look-ahead (2-ply and
3-ply) as well as a stake-doubling algorithm the agent surpassed even the best human players
[10][7].
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Since reaching superhuman levels of play in backgammon, researchers turned their atten-
tion to games of greater complexity such as chess and GO. In these games exhaustive search
is infeasible. Therefore, in order to limit the search area two general principles are applied.
The optimal value function is approximated by truncating the search tree and then using
Monte Carlo tree search to assess the value in each state. This approach has been proved to
converge on optimal play [6][10]. In March, 2016 a GO agent called ”AlphaGo” played against
South Korean GO grandmaster Lee Sedol and won the series 4-1. All things considered, it
may be more impressive that a human player can match the agent in a single game.

In the realm of simple computer games Mnih et al.[22] managed to develop an agent based
on a deep Q-network (Q-learning applied to DNNs) that could learn Atari 2600 games from
raw sensory data (pixels and game score in this case)[2]. The agent was able to reach a level
comparable to that of a professional human games tester across a set of 49 different games.
Generalized learning is the very essence of artificial intelligence and this agent serves as a first
stepping stone in that direction.

2.3 Q-table learning

Any game of backgammon can be visualized as a sequence of states, actions and rewards. In
each state a participating player takes an action that leads to a reward. The total reward of
a game of backgammon is the sum of rewards that the actions induced,

R = r1 + r2 + . . .+ rn (1)

where r1 is the reward for the first action a1 and so on. Subsequently, we can calculate the
total future reward Rf in a state t as

Rf = rt + rt+1 + . . .+ rn. (2)

Due to the fact that backgammon games are non-deterministic we discount future rewards
exponentially and instruct the agent to value immediate rewards above future rewards [17].
Introducing a discount factor γ to equation 2, the future reward in any given state st is

Rf = rt + γrt+1 + γ2rt+2 + . . .+ γn−trn. (3)

If we denote maxRf (the maximum future reward function based on a state and an action)
as Q(s, a) and factorize the discount factor, the iterative nature of the function becomes
apparent. The Q-function can be approximated as

Q(st, a
π) = rt + γQ(st+1, a

π), (4)

where π is the policy of selecting the actions that lead to the maximum future reward. This
equation is also known as the Bellman Equation. Using the Bellman equation, we can it-
eratively approximate the true Q-function [20]. Applying the theory behind Q-learning to
backgammon, it is reasonable to expect the approximate Q-function to be completely wrong
initially. As we iterate, the approximate function converges on the true value of the Q-function.
In each state (turn) of backgammon we evaluate the reward for the next state. Environment
parameters that affect reward includes opening and covering ’blots’ as well as grouping of
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checkers (as it is advantageous to move the checkers together instead of having them spread
out).

A Q-table stores state-action pairs and assigns them an initial value. As backgammon rounds
are played, the Q-table is traversed and updated.

Q-table =


Q(1, 1) Q(1, 2) . . . Q(1,m)

Q(2, 1) Q(2, 2) . . . Q(2,m)
...

...
. . .

...

Q(n, 1) Q(n, 2) . . . Q(n,m)

 (5)

In the matrix representing a Q-table in equation 5, there are m possible actions for each
of the n states. In a state transition the previous state is updated based on the Q-value of
the present state according to equation 12 presented in section 3.3.

2.4 Deep reinforcement learning

Neglecting the integration with reinforcement learning momentarily, deep neural networks can
be described as a stack of representation layers. The first layer represents the input from the
problem at hand, while subsequent hidden layers abstract that information progressively until
the output layer. The output layer is the neural network’s solution to the given problem.
The enacted abstractions are not explicitly constructed by the engineer. Instead, the network
of abstraction-nodes rearrange its weights based on performance, whilst evaluating training
data, through back-propagation. The back-propagation procedure starts by computing the
gradient at the output layer and then propagates backwards, using the chain rule for par-
tial derivatives [4]. The weights can then be adjusted according to the gradient of each layer
[25]. The technique is alluring to researchers due to its wide variety of applications [16][18][21].

As stated previously, deep learning networks rearrange their weights while training on datasets.
This procedure is triggered by giving the network feedback as it selects actions deemed op-
timal. By replacing the Q-table (explained in section 2.3) with a deep learning network you
trade accuracy for abstraction. The network needs to be tuned in order to operate efficiently.
Hyperparameters such as the number of hidden layers and nodes as well as the learning rate
of the network needs to be set. Increasing the number of hidden layers and nodes therein
increases the learning capacity of the network [14]. Tuning of learning rate and network archi-
tecture is presented in section 3.4. The studies conducted in this thesis utilize a feedforward
neural network, characterized by one-directional, forward flow of information.

Figure 2 shows an example of how neural networks can be applied to backgammon. The
network is not a DNN since these are defined to have two or more hidden layers.
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Figure 2: Applying neural networks to backgammon. The board positions and the encom-
passed checkers are passed to the input layer. In between the input layer and the output layer
is one hidden layer consisting of four nodes [5].
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2.5 Exploration versus exploitation

In the realm of reinforcement learning, exploration is the term used to describe the extent to
which an agent seeks alternate solutions to a problem. In contrast, exploitation describes the
degree that the agent selects actions identified as optimal. An agent that always selects the
optimal action in terms of reward is likely to fail in discovering the optimal strategy. Thus,
there is a need for selecting actions which are seemingly suboptimal, in essence, exploring the
environment [3]. In certain scenarios it is paramount to select a suitable exploration strategy.
In the case of an aerial glider agent that relies on energy-gaining flight trajectories, exploration
has a direct impact on the distance the glider is able to travel [15].

A simple exploration strategy is the ε-greedy strategy, where there is a set parameter ε such
that

a =

{
random(a), if x ≤ ε
maxaQ(s, a), if x > ε

, where 0 ≤ ε ≤ 1 (6)

which tunes how often we select actions at random. After the agent has received dice rolls it
retrieves a random value x, 0 ≤ x ≤ 1. As equation 6 suggests, if x ≤ ε then the agent selects
an action at random, otherwise it performs the action that has the largest Q-value.

Another approach to exploration is to take into account the relative values of the actions
in a given state. Boltzmann selection involves probability relative to the action value. The
probability p of selecting an action a can be calculated as

p =
eV (s,a)∑
a e

V (s,a)
, V (s, a) =

Q(s, a)−maxbQ(s, a)

T
(7)

where the temperature T , decides the significance of differences in state-action values. Higher
temperatures entail equiprobability between actions while lower temperatures distinguishes
more between the values of actions [19]. Other approaches actively prioritize exploration of
unknown parts of the state space [15].

2.6 Benchmarking

Traditionally, agents learn tasks by training on data-sets with dynamic weights. Once the
agents receive feedback from the environment they adjust their weights to better approximate
the Q-function. Benchmarking progress of the agents can be done during training or by
copying the weights into a static instance and playing the agent against a static benchmark.
The former, referred to as generalized policy iteration, implements an additional process in
the training algorithm called a critic. The critic evaluates the agent’s current policy, the
current approximation of the Q-function [3]. However, in this thesis we concern ourselves
with the latter. The advantage of static benchmarking is the uncomplicated procedure of
extracting progress information. Additionally, it is easier to diagnose an algorithm with static
benchmarking. In section 3.2, benchmarks are proposed and rationalized.
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3 METHOD

3 Method

In this section we explain the method used for this thesis. Initially, we explain how we change
the environment and how each alteration impacts game-play. Next, we consider setting up
training and our approach to testing our problem statement.

3.1 Backgammon environment

Backgammon is an infinitely complex game incorporating many variables that determine
whether a strategy is successful or not. Q-table learning relies on a lookup table consisting
of states and possible actions. Unfortunately, this imposes restrictions on the environment as
each variable exponentially increases the size of the lookup table. Our goal is to downsize the
environment while still maintaining the core integrity of the game.

3.1.1 Environment reduction

The amount of states on a backgammon board can be calculated by the combination of
checkers over the board positions. Next, this number is multiplied by the number of unique
dice rolls to obtain the matrix that represents the lookup table. This gives us

S(p, n, a) = a×
(
p+ n− 1

p− 1

)2

= a×
(

[p+ n− 1]!

[p− 1]!× n!

)2

(8)

unique state-action pairs, where p, n, a are the number of board positions, checkers of each
player and actions respectively. Allow us to consider the backgammon board depicted in figure
1. Viewing the bar as 2 board positions (essentially position 0 for both players) we have a
total of 26 board positions. If we disregard rules restricting board positions of checkers we
have a 30 checkers (15 for each player), spread out over the 26 board positions. Given the 21
unique dice combinations we end up with

21×
(

26 + 15− 1

26− 1

)
= 21×

(
40

25

)2

= 21×
(

40!

15!× 25!

)2

≈ 34× 1021 (9)

states, or in other terms, 34 sextillion unique state-action pairs. To restrict the amount of
unique states we decided to use 9 board positions (discarding the bar), 12 checkers (6 checkers
for each player) and 3-sided dice (6 dice combinations). This amounts to

6×
(

9 + 6− 1

9− 1

)2

= 6×
(

14

8

)2

= 6×
(

14!

8!× 6!

)2

≈ 54× 106 (10)

states. 54 million states is a clear improvement and results in more rapid computation rates.We
limit the states further by applying the Egyptian rule only allowing 3 checkers to be present
on any point. In addition to boosting the rate of computation, we also preserve expert tactics
such as blockade (preventing opponent’s checkers from moving by occupying sequential points).

Further reduction has been done by removing the bar. When a checker is hit, it is now
moved to the first position on the opponent’s home board that is vacant. Vacant in this
case denotes that there are no opposing checkers on the point. Additionally, the point is not
occupied by three of the agent’s checkers. Otherwise, moving the hit checker to this position
would be in violation of the Egyptian rule. Lastly, we remove stakes with the motive that
agents are learning to win single games of backgammon, nullifying the effect of stakes.
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3.1.2 Representation of reduced environment

The reduced environment is represented in vector form containing nine integers. Each integer
represents which player the checkers belong to and the number of checkers on the position.
Positive integers represent the current player’s checkers while negative represent the oppo-
nent’s checkers. For instance, a state in the environment could be represented as

{−1, 0, 3,−2, 0, 2,−3, 0, 1}. (11)

This particular state is also the starting state of our backgammon environment.

3.2 Training & Benchmarking

Self-training Similar to the approach of Tesauro[10] we decided to train our agents through
self-play as opposed to expert level agents. This has several implications for the learning
procedure of the agents. Firstly, they develop generalized strategies in contrast to playing
against experts. This is due to the fact that expert agents have developed strategies that they
deem optimal, which leads to learning agents developing counter-strategies. It is problematic
to measure performance of these agents as they may not be suitable for general-purpose play.
Secondly, it increases the convergence rate of the agents as they perform twice the amount of
Q-value updates.

Mirror state One implementation decision for our learning algorithm was the choice to
employ mirror states in the self-learning procedure. Instead of constructing the underlying
understanding of playing two sides at once the board is flipped in between turns. An indirect
consequence of this decision is the fact that it doubles the rate of convergence on the Q-
function. This is due to

Sblack = −1× reverse(Swhite),

which effectively doubles the amount of updates of state-action pairs per game. The end
result is the same since the color the agent is playing has no impact on decision making, much
like in reality. In summary, each state presented to the agent is one sided and the agent only
considers positive values as its own checkers. An example of mirror transformation of state
x, Sxb to Sxw is presented below

Sxb = {0, 0, 3,−3, 0, 2,−2, 1,−1} fx−→ Sxw = {1,−1, 2,−2, 0, 3,−3, 0, 0},

where fx is an involution that transforms a black state to white and vice versa.

Benchmarking We intend to match the agents against each other. Due to the reduced
state space of the backgammon environment, sheer luck plays a considerable part in the out-
come of a match. In order to counter-act random variability in benchmarking each match-up
is performed in sets of 10000 matches. Additionally, we introduce a third benchmarking agent
that selects random actions in each state. By allowing the deep reinforcement agent and the
Q-table agent to play against the random agent after variable amounts of training sessions, it
is possible to extract reliable statistics, highlighting the effect of learning the environment.

Furthermore, the deep reinforcement agent plays against a fully trained Q-table agent and
vice versa. This allows for effective measuring of relative accuracy and convergence rate.
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3.3 Q-table learning

In this subsection a concrete explanation of the implementation is described and how compo-
nents mentioned in section 2.3 have been modified and applied to fit our research.

Q(st, at)← Q(st, at)︸ ︷︷ ︸
Old value

+ α︸︷︷︸
Learningrate

×[

Expected reward︷ ︸︸ ︷
rt+1︸︷︷︸

Feedback

+ γ︸︷︷︸
Discount factor

×maxaQ(st+1, a)︸ ︷︷ ︸
Max future reward

−
Oldvalue︷ ︸︸ ︷
Q(st, at)]

(12)
Equation 12 explains how Q-values are updated after state transitions. The individual com-
ponents of the equation are broken down in section 3.3.1.

Code 1 Q-table learning procedure

procedure PerformAction(QV alue)
state← backgammon.getState()
dice← (random(1,3),random(1,3))
x← randomFloat(0, 1)
if x ≤ ε then

action← randomAction()
else

action← getMaxV alueAction(state, dice)

QV alue← getV alue(state, action)
updateQV alues(QV alue)
QPrevious← QV alue

backgammon.updateState(action)

procedure updateQValues(maxQPrime)
if (QPrevious 6= null) then

QPrevious← QPrevious+ α× [rt+1 + γ ×maxQPrime−QPrevious]

The pseudo-code describes the reinforcement learning process agents perform to explore and
learn the environment. One important concept of the algorithm is the delayed updating of Q-
values. Due to the stochastic environment predicting maxaQ(st+1, a) is too computationally
demanding. Instead, we update the previous Q(st, at) once we know the outcome of the
maxaQ(st+1, a).

3.3.1 Parameters

In equation 12 new parameters are introduced in order to account for various phenomena
attributed to Q-learning. This subsection elaborates on these parameters and the role they
play in updating the lookup table.

Exploration tuning The exploration-exploitation trade-off described in section 2.5 requires
a lot of fine-tuning. Exaggerating exploration in Q-learning leads to slow learning or diverging
Q-values. On the other hand, overvaluing exploitation may lead the agent to settle for sub-
optimal strategies. We chose to use the ε-greedy strategy and set the exploration parameter
to 0.2.
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Learning rate The parameter α in equation 12 regulates the magnitude of the update
function. The learning rate is a trade-off between accuracy and the rate at which values
propagate through the matrix in equation 5. If the learning rate is set to 1, then Q(st, at) is
updated with the value of the expected reward. If set to 0, values are not updated at all. The
learning rate is to be set to reflect the tolerance of substandard strategy, where lower values
generally increase accuracy. In the research conducted in this thesis the α-parameter was set
to 0.5.

Immediate reward In equation 12 this parameter is denoted as feedback. It is a static
reward value that is received by the agent for taking an action in a given state. Think of
the immediate reward as a rule-set for the agent. Setting predetermined rewards for actions
dictate how the agents behave once the values of the lookup table converge on the Q-function.
For example, setting an immediate reward of 0.3 for a state where the agent hits an opposing
checker results in a strategy where the agent attempts to disrupt the opponent. On the other
hand, setting a negative immediate reward for exposing a blot results in a strategy where the
agent values moving checkers together in a coordinated fashion.

In this comparison we opted to set the immediate reward for moving checkers to the neg-
ative value -0.0011 and the terminal state to 1. This has various implications on the strategy
of agents. Strategies adopted by agents are indirect consequences of the immediate reward
for a terminal state. The negative reward for moving checkers forces exploration in the early
phases of learning.

Discount factor The γ-parameter, referred to as the discount factor, determines the value
of potential future rewards in relation to immediate ones. Due to the distance between starting
state and terminal states this parameter was set to 0.9 to allow positive Q-values to propagate
faster.

3.3.2 Lookup table

Normally, lookup tables used for storing the Q-values are implemented as a matrix, mentioned
in section 2.3. Rows and columns represent states and actions where an action is performed at
a given state. The Q-value is the reward for performing the combination. However, applying
the matrix approach results in unused storage quantities. In section 3.1.1, a rough estimation
of the total amount of state-actions is calculated. To limit the amount of storage used by the
lookup table and still keep the performance, the lookup table is implemented as a hashmap.
This allows for a rapid lookup procedure with no wasteful storage. The state-action pair is
embedded and represented in a single hashed key.

3.4 Deep reinforcement learning

This research uses a deep neural network, described in section 2.4, in order to elect the best
action to perform in the current state.

3.4.1 Deep neural network

The input layer takes the state of the environment. This state representation, described in
section 3.1.2, is composed of an integer array ranging from -3 to 3 including the 9 board
positions. This array is fed to the neural network.
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The input is passed to the two hidden layers of the neural network. In this thesis, we opted to
use Tesauro as a source of inspiration for DNN architecture. TD-gammon 2.1 had tremendous
success with only 80 hidden nodes and one layer [9]. Goodfellow [14] suggests that increasing
the amount of hidden nodes leads to increased representational capacity of the DNN. However,
increasing the amount of hidden nodes also increases the time it takes to train one session of
backgammon. Therefore, our first hidden layer consists of 100 nodes and the second layer con-
sists of 50 nodes. The activation function of the hidden layers is rectified linear unit (ReLU).
ReLU is a non-linear function f(z) = max(0, z) and is popular in deep neural networks due
to faster training [25].

Finally, the output layer is represented as a two-unit vector. Softmax is used as the activation
function resulting in a normalized output vector. This vector is the probability for each player
to win the game in the given state. The procedure of obtaining an optimal action from the
neural network consists of presenting the network with connected states in regard to the dice.
Next, the state that produces the highest probability to win is selected.

The DNN is set to use a learning rate of 0.05. This learning rate is an inherent hyperparam-
eter of the network and is not to be confused with the learning rate presented in equation
12. Stochastic gradient descent is used as the optimization function combined with Nestrov’s
updating function with the momentum parameter set to 0.9. This procedure offers improved
stability and convergence over regular gradient descent [24].

Furthermore, the DNN is initialized using Xavier initialization which arranges the weights
in the network appropriately for signals to reach deep through layers [23]. The layers are not
pre-trained.

3.4.2 Training deep neural network

The application of the Q-learning update equation explained in section 3.3 is elucidated in
this section. Parameters included in equation 12, are also used for training the DNN.

The procedure of training the DNN is similar to that of the training process explained for
Q-table learning in the pseudo-code at section 3.3. The difference is that a particular input
state is fitted with a modified output changing the weights in the DNN to an improved
approximation of the value function. Previous input-output vector pairs are saved. As the
next state is encountered, the previous output vector from the DNN is modified using the Q-
learning update equation. Finally, the modified output vector is fitted to the previous input
vector.

18



4 RESULTS

4 Results

In this section we provide the results of our study and describe each result briefly.

4.1 Training time

Table 1 presents the time it takes to train a DNN and a Q-table. It takes roughly 3,5 thousand
times longer to play 100 thousand sessions of backgammon using the neural network than the
same amount using a Q-table.

Table 1: Training time of DNNs and Q-tables

(a) DNN

Sessions Hours Minutes Seconds

1 0 00 00.43
20 0 00 05.01
50 0 00 10.39

100 0 00 18.69
200 0 00 36.70
500 0 01 30.01

1 000 0 02 56.56
2 000 0 05 50.89
5 000 0 14 44.42

10 000 0 29 35.53
25 000 1 16 20.12
50 000 2 33 40.63

100 000 5 08 05.87

(b) Q-table

Sessions Hours Minutes Seconds

1 0 00 00.00
100 0 00 00.02
500 0 00 00.05

1 000 0 00 00.07
5 000 0 00 00.31

10 000 0 00 00.61
50 000 0 00 02.69

100 000 0 00 05.30
1 000 000 0 00 54.76
5 000 000 0 04 38.05

10 000 000 0 09 17.51
50 000 000 0 48 58.75

100 000 000 1 51 14.45

Below is a mapping of the learning process in Q-tables. Positive Q-values indicate learning, as
the algorithm becomes more familiar with the environment. As the agent plays more training
sessions, the number of Q-values converges. According to equation 10 Q-tables explore a
fraction of the state space.

0
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1500000

2000000

2500000

3000000

TRAINING SESSIONS

Positive Q-values Non-Positive Q-values

Figure 3: Mapping of state-actions in Q-tables after variable amounts of training sessions.
Lists the amount of positive and non-positive Q-values.
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4.2 Comparison of agents

This subsection highlights strengths and weaknesses of the algorithms. Additionally, we show-
case interesting outcomes and summarize these. At each benchmarking interval illustrated in
this section, the agents played 10 thousand matches against each other. The 95% confidence
interval for population proportions

(x− β, x+ β) = p̂± z(α/2)×
√
p̂× (1− p̂)

n
(13)

gives us

(0.4902, 0.5098) = 0.5± 1.96×
√

0.52

10000

when the value of (p̂×(1−p̂)) is the largest (for p̂ = 0.5). Equation 13 illustrates that the error
is no larger than 0.01 with 95% certainty. Therefore, we do not include confidence intervals
in the result graphs as they limit the visibility of our results.

4.2.1 Random agent benchmarking

Figure 4 and 5 depict the win rate of Q-tables and deep reinforcement learning after training
sessions listed in table 1. Q-tables start at 50% win rate and increase slowly towards 80%
win rate. The deep reinforcement agent wins 63% of the games after one training session
and increases to roughly 67%. The deep reinforcement agent displays higher uncertainty in
deciding upon an optimal action-selection policy.
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Figure 4: Q-Table win rate over random agent after training sessions listed in table 1.
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Figure 5: DNN win rate over random agent after training sessions listed in table 1.

4.2.2 DNN vs Q-table

Figure 6 and 7 depict a comparison between the Q-table and DNN when benchmarked against
each other. Figure 6 illustrates the number of training sessions it takes for the Q-table to
outplay a trained DNN. Against a trained DNN, this number is between 10 thousand and 100
thousand.
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Figure 6: The relative win rate between a trained DNN versus a Q-table with training
sessions listed in table 1. The DNN has trained 100 thousand training sessions.

Conversely, figure 7 depicts the win rate of a DNN against a trained Q-table. The DNN does
not manage to reach above 35% win rate. The downward trend displayed at 100 thousand
training sessions of the DNN, can be explained by the lack of convergence towards a perceived
optimal action-selection policy, delineated in figure 5.
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Figure 7: The relative win rate between a trained Q-table versus a DNN with training
sessions listed in table 1. The Q-table has trained 100 million training sessions.

Figure 8 illustrates the difference in level of play between a Q-table at various stages of
learning. The DNN is benchmarked against the two Q-tables after variable amounts of training
sessions. The difference in win rate of the DNN against both Q-tables is approximately 10%.
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Figure 8: The DNN’s win rate over Q-table learning after 20, 50, 100, 200, 500, 1000, 2000,
5000 and 10000 training games. The blue and orange lines represent the win rate over a
Q-table with 1 million and 10 million training games respectively.
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Lastly, figure 9 illustrates the potency of the DNN’s convergence rate. A DNN that has trained
1 session is capable of outplaying a Q-table that has trained 100 thousand sessions.
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Figure 9: Q-table win rate over a DNN that has trained 1 session of backgammon. Depicted
Q-table intervals are 1, 100, 500, 1000, 5000, 10000, 50000, 100000, 200000 and 500000.
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5 Discussion

When conducting a comparative study of the nature covered in this thesis, there is tremen-
dous significance in eliminating variable factors. We opted to use the same parameters for
both algorithms, with the exception of the learning rate. There is a possibility that certain
parameters affect one approach differently than the other. This in turn affects the validity of
the results. Furthermore, analyzing results covered in the previous section, it is important to
keep a holistic perspective due to the fluctuating tendencies of reinforcement learning during
initial training sessions. Due to attention devoted to exploration, an agent may be in the
middle of transitioning to a new strategy while being benchmarked. This may produce mis-
leading results.

To answer the first element of the problem statement we consider figure 5 and figure 4 which
depicts the performance of the algorithms after variable amounts of training sessions. By
studying the win rate after 20 training sessions versus the random action-selection agent, it is
evident that the neural network-equipped Q-learning agent is expeditiously capable of basic
decision-making. On the other hand, the Q-table agent displays inadequate results after 20
training sessions, hinting at an action-selection policy resembling that of randomized selection.
This is a result of values propagating backwards slower in a matrix than a neural network.
Thus, the deep reinforcement learning approach has drastically altered the action-selection
policy after minimal exposure to the environment with positive results.

However, by studying figure 4, 5 and 6, one can infer that the initial trend is misleading.
The deep reinforcement agent is able to learn more quickly but has a smaller maximum
capacity for learning. Therefore, it converges rapidly towards approximately 70% win rate
against a random action-selection policy. The Q-table converges slower towards it’s perceived
optimal strategy with the benefit of convergence closer to the true optimal strategy. Figure
4 indicates a convergence towards approximately 80% win rate against the random action-
selection policy. By comparison of the two algorithms through tug-of-war type match-ups,
portrayed in figure 6, an interesting trend emerges. The generalizing characteristic of deep re-
inforcement learning proves superior in the initial 10 thousand sessions of learning. However,
once reaching approximately 10 thousand sessions the accuracy of Q-tables develops into the
dominating characteristic trumping deep reinforcement learning.

5.1 Smaller environments

Consider the scenario of applying reinforcement learning to an elevator controller, in a building
that is 500 meters tall with 150 floors. The elevator can carry 8 passengers and can either
go up or down. Additionally, it actively accounts for the 2 nearest floors where buttons are
pressed and we have one state per 0.1 meters. Using the same principle of calculating the
state space covered in section 3.1.1, there are less than 109 state-action pairs. In this scenario,
the Q-table approach would be able to map the environment leading to greater accuracy.
Therefore, it would be the preferred approach when it comes to optimization problems such
as minimizing transportation time per person.

5.2 Larger environments

One of the fundamental strengths of neural networks is its adaptability to larger environ-
ments. The results presented based on the reduced environment accentuate the results of
Q-table learning. The trade-off between accuracy and abstraction mentioned briefly in sec-
tion 2.4, becomes intriguing in larger environments where Q-tables are unable to map the
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majority of an environment. This places emphasis on the generalization of neural networks
and its ability to select advantageous actions in unfamiliar states.

The equations presented in section 3.1.1 highlight the primary flaw with Q-table learning
as a concept. As figure 4 illustrates, it takes a significant number of trainings sessions for the
Q-table to adopt an effective strategy. It is reasonable to expect, as the environment expands,
that the state-action pairs that the Q-table needs to explore in order to become adequate,
expands as well. Applying the Q-table approach to full-scale backgammon is infeasible due
to the gargantuan state space. If the Q-table does not have an exhaustive mapping of its
environment, there is a greater probability that it encounters an unfamiliar state. This results
in a randomly selected action which decreases performance.

In the previous section we proposed a small environment where Q-table’s accuracy gener-
ates favourable results as opposed to a DNN. In the problem of finding an optimal strategy
for the game of GO which averages 250 legal moves per position and a length of 150 turns
[6], the state space is considerably larger. In fact, there are approximately 250150 unique
state-action pairs, making exhaustive search of the state space infeasible. In this scenario
Q-tables would roughly resemble a random action-selection policy. In contrast to the optimal
elevator controller, a DNN would be far more practical as it’s generalization characteristic
would provide an above-average action selection policy.

5.3 Limitations

The study conducted in this thesis proved that there are useful applications of Q-tables as
opposed to DNNs. It was limited by a few factors that interfere with the basis for conclusions
of a wider perspective.

The parameter space of neural networks is massive and requires fine-tuning for each indi-
vidual problem. This implies potential for constructing a DNN that outperforms the one used
in this thesis. Specific parameters that have not been examined in satisfactory detail include
learning rate and the network architecture. An optimally configured learning rate increases
the learning capacity of the DNN. Likewise, increasing the amount of hidden layers and nodes
in the network architecture has the same effect [14]. Therefore, it is possible to design a DNN
that could match the Q-table at larger numbers of training sessions than depicted in figure 6.

Furthermore, the exploration strategy of the approaches is an integral component of find-
ing favourable strategies. In this thesis, the ε-greedy strategy was selected as it is simple to
apply. However, a static exploration strategy is seldom optimal. Considering the scenario
where an agent has established the optimal action-selection policy the static ε-greedy strategy
causes divergence from that optimal policy. Employing an exploration strategy that dissipates
as the agent is trained may produce better results. This limitation is particularly applicable
to the DNN as there are signs of uncertainty in selecting an optimal policy in figure 5.

Lastly, in section 3.3.1 we briefly discussed the implications of initializing certain states with
an immediate reward. The terminal states were the only positively initialized states in our
study. Therefore, the agents are given limited guidance as to what an optimal strategy for
backgammon is. By initializing the states differently, the agents may find better strategies
faster. For example, it is undeniable that hitting opponent’s checkers is a favourable action in
most states. By initializing the output state of a hit with a positive value the agents favour
these actions.
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5.4 Future research

There are multiple alternatives to future research within the area discussed in this thesis.
Firstly, the impact that look-ahead has on the performance of these algorithms is a topic
of considerable importance. Secondly, one can investigate the parameter space of the DNN
for the possibility of improved performance or greater decisiveness in electing action-selection
policies. In section 2.5, other exploration strategies than ε-greedy were mentioned. As dis-
cussed earlier, the ε-greedy strategy may interfere with the DNN’s convergence towards an
optimal strategy. Therefore, it is of particular interest to study how different exploration
strategies affect the DNN’s performance.

Lastly, it could be interesting to apply the approaches to a practical environment where
Q-tables could thrive, as opposed to a DNN.
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6 Conclusion

This thesis studied two approaches to reinforcement learning. Q-tables store values for action-
state pairs and the Q-learning algorithm updates these as training sessions are played. On
the contrary, deep reinforcement learning relies on a DNN to assess the value of future states.
They were compared based on their accuracy in selecting optimal actions as well as their con-
vergence rate, how quickly they managed to adopt favourable strategies. The agents produced
by the algorithms were benchmarked against a third, random agent and against each other
under varying circumstances.

It should be noted that the DNN used in this study is not guaranteed optimal configura-
tion, since we have not explored the parameter space. Additionally, due to time constraints
few training sessions were performed. This implicates a possibility for an agent to converge
towards the global maximum. Results indicate that DNNs are effective for learning vast envi-
ronments rapidly, adopting above average action-selection policies tremendously faster than
Q-tables. However, once Q-tables have exhaustively explored the environment they adopt far
more accurate action-selection policies than the DNNs. These results are derived in a reduced
environment. In larger environments the convergence rate of DNNs are to be preferred over
the accuracy in Q-tables, which is the case in full-scale backgammon.

The primary conclusion from this thesis is that the accuracy in Q-tables can improve re-
sults immensely if used in smaller environments. Elevator control, introduced in section 5.1,
is an environment where Q-tables could prove superior to a DNN due to the limited state
space. In larger environments such as optimal strategy for GO mentioned in section 5.2, there
are too many state-action pairs for the Q-table to be useful. Therefore, DNNs are to be
favoured in these situations.

27



REFERENCES REFERENCES

References

[1] A.L. Samuel. 1969. ”Some Studies in Machine Learning Using the Game of Checkers”.
IBM Journal. 3(3), pp 1-36.

[2] C. Watkins and P. Dayan. 1992. ”Technical Note; Q-Learning”. Machine Learning. 8(3),
pp. 279-292.
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